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Abstract
Hybrid autoregressive-latent growth structural equation models for longitudinal data represent a synthesis of the autoregressive and latent
growth modeling frameworks. Although these models are conceptually powerful, in practice they may struggle to separate autoregressive
and growth-related processes during estimation. This confounding of change processes may, in turn, increase the risk of the models
producing deceptively compelling results (i.e., models that fit excellently by conventional standards despite highly biased parameter
estimates). Including additional time points provides models with more raw information about change, which could help improve
process separability and the accuracy of parameter estimates to a degree. This study thus used Monte Carlo simulation methods to
examine associations between change process separability, the number of time points in a model, and the consequences of misspecification,
across three prominent hybrid autoregressive-latent growth models: the Latent Change Score model (LCS), the Autoregressive Latent
Trajectory Model (ALT), and the Latent Growth Model with Structured Residuals (LGM-SR). Results showed that including more time
points increased process separability and robustness to misspecification in the LCS and ALT, but typically not at a rate that would be
practically feasible for most developmental researchers. Alternatively, regardless of how many time points were in the model process
separability was high in the LGM-SR, as was robustness to misspecification. Overall, results suggest that the LGM-SR is the most effective of
the three hybrid autoregressive-latent growth models considered here.
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Introduction

Hybrid autoregressive-latent growth longitudinal structural equa-

tion models (SEMs) (hereafter referred to as “hybrid models” for

simplicity)—such as the Latent Change Score model (LCS;

McArdle, 2001), Autoregressive Latent Trajectory Model (ALT;

Bollen & Curran, 2006), and Latent Growth Model with Struc-

tured Residuals (LGM-SR; Curran et al., 2014)—synthesize the

autoregressive and latent growth modeling traditions, capturing

both the extent to which past status relates to future status and

absolute change over time (Bollen & Curran, 2004). Hybrid mod-

els can struggle to differentiate between autoregressive and

growth processes during estimation, however, which may explain

why some hybrid models produce extremely biased, yet well fit-

ting, solutions in the face of even minor, routine misspecifications

(Clark et al., 2018; Jongerling & Hamaker, 2011; Voelkle, 2008).

There is preliminary evidence though that hybrid models are bet-

ter at separating change processes as additional time points are

included (Clark et al., 2018). The present study thus uses Monte

Carlo simulation methods to examine the interplay between

change process separability, number of time points, parameter

bias, and model fit, across three popular hybrid models (LCS,

ALT, and LGM-SR).

Hybrid Autoregressive-Latent Growth Longitudinal
SEMs

The most commonly used SEM for analyzing longitudinal data in

the social and life sciences are the autoregressive and latent growth

model (Bollen & Curran, 2004). In autoregressive models (AR),

scores at one time point are regressed on scores at one or more

previous time points. The regression coefficients capture the extent

to which past status is related to future status or the extent to which

rank-order stability is preserved across time (Biesanz, 2012). In

latent growth models (LGM), scores across time are used as indi-

cators of two latent factors, an intercept and a slope factor (Bollen

& Curran, 2006). These latent factors are conceptually distinct from
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the latent factors found in latent variable measurement models

where multiple indicators are used to identify a latent construct.

The intercept factor specifically captures status at the initial time

point of data collection (although other specifications are possible),

and the slope factor captures the rate of (often linear) change over

time. Both latent factors vary across participants such that LGM

capture both the average extent to which participants change over

time and also the extent to which there are individual differences in

those trajectories.

To simultaneously take advantage of the conceptual strengths of

AR and LGM, several hybrid models have been developed that

combine AR and LGM style parameters (Bollen & Curran,

2004). The three hybrid models we focus on here are the LCS

(McArdle, 2001), ALT (Bollen & Curran, 2004), and LGM-SR

(Curran et al., 2014). These models were selected as they are the

most prominent hybrid autoregressive-latent growth longitudinal

SEMs (Usami et al., 2019), and because they all have distinct

approaches to integrating autoregressive and growth parameters

(and consequently, overlapping yet distinct conceptual interpreta-

tions). Accordingly, it may not be the case that all hybrid models

function similarly across different situations.

Latent change score model. The LCS captures change over time

using a series of latent change score factors that reflect true but

unobserved occasion-to-occasion change. A basic univariate LCS,

the dual change score model (McArdle, 2001), is depicted in

Figure 1. In the LCS, observed scores at each time point are

separated into latent factors that capture either systematic var-

iance in the construct of interest or error variance. The latent

factors that capture systematic variance in the construct of interest

are then used to specify latent change score factors that capture

differences between scores at time t�1 and time t (lcs in Figure 1).

These latent change score factors are specified as a joint function

of autoregressive and growth processes so that change between

time points is simultaneously determined by autoregressive and

growth parameters. The autoregressive process is incorporated via

a series of regression paths (b in Figure 1) that capture the extent

to which scores at one time point predict more or less change

between time points. The growth process is incorporated via a

latent slope factor (g1 in Figure 1) that connects to latent change

factors via basis coefficients (typically fixed to 1) and captures the

rate of constant change over time. The residual variances of the

change score factors are typically fixed to 0, making change

between time points in the latent construct factors wholly a func-

tion of the two growth processes.

Autoregressive latent trajectory model. The ALT (Figure 2; Bollen

& Curran, 2004, 2006) is structurally similar to the LCS (under

certain conditions, the LCS is statistically subsumed by the ALT;

Usami et al., 2015), but does not use latent difference score factors

to model change, and observed scores are typically not separated

into systematic construct and irrelevant error variance. The growth

process is incorporated via latent intercept and slope factors (g0 and

g1 in Figure 2) that capture a steady rate of change over time, while

the autoregressive process is incorporated by adding autoregressive

paths (b in Figure 2) from one observation to the subsequent obser-

vations that capture the extent to which scores at one time point

predict subsequent scores. Thus, observations at each time point are

specified as a function of both growth and autoregressive processes.

That is, like the LCS, change over time is simultaneously deter-

mined by autoregressive and growth parameters in the ALT. Unlike

the latent change score factors which have their residual variance

fixed at 0, observations are not specified as completely explained

by the change processes. Also, the first observation does not load on

either the intercept or slope factor as is typical in a growth model or

LCS. In Figure 2, the first observation is treated as an exogenous,

predetermined variable, consistent with how the ALT model is

typically presented and used in practice, though alternative speci-

fications are possible (Jongerling & Hamaker, 2011; Ou et al.,

2017).

Latent growth model with structured residuals. In the LGM-SR

(Figure 3; Curran et al., 2014), the growth process is incorporated as

in a traditional LGM, with an intercept and slope factor on which all

observed variables load (g0 and g1 in Figure 3). The growth model

residuals are then specified as distinct latent factors in the model,

and autoregressive paths (b in Figure 3) are added to this residual

structure. This autoregressive process captures the extent to which

deviations from the model implied trajectory at one point are

related to deviations from the model implied trajectory at the next

time point.

g0 g1

k

lcsy2

y1 y2 y3 y4 y5

T1 T2 T3 T4 T5

e1 e2 e3 e4 e5

ψ2
1 ψ2

1 ψ2
1 ψ2

1 ψ2
1

β1 β1 β1 β1

1 1 1 1

σg12σg02

σg0g1

μg1μg0

lcsy3 lcsy4 lcsy5

1

1 1 1

1 1 1 1

1

1

1 1

1 1

1 1

1 1

1

Figure 1. Latent Change Score Model. T1 . . . T5 ¼ Time 1 through Time 5

observations; y1 . . . y5 ¼ Time 1 through Time 5 latent variables;

lcsy2 . . . lcsy5 ¼ latent change score factors; e1 . . . e5 ¼ Time 1 through

Time 5 residuals; b ¼ autoregressive coefficient; g0 ¼ intercept factor;

sg0
2¼ intercept factor variance;�g0¼ intercept factor mean; g1¼ slope factor;

sg1
2¼ slope factor variance; �g1¼ slope factor mean; sg0g1¼ intercept–slope

covariance;  2¼ residual variance; k¼ constant (i.e., mean structure). Shared

subscripts denote parameters commonly constrained to equality.
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Separating Change Processes

Hybrid models are appealing because they include both autoregres-

sive and growth-related parameters. Empirically separating two

developmental processes in a single model can be difficult in prac-

tice, however. The asymptotic correlations between autoregressive

coefficients and growth factor mean estimates—two of the most

critical parameters for capturing change over time—often approach

r ¼ +1 in the LCS and ALT (Clark et al., 2018; Jongerling &

Hamaker, 2011; Voelkle, 2008). Although these parameters are

specified to work together to reproduce observed trajectories (Jaco-

bucci et al., 2019), with such high correlations misspecification in

one change process may be too easily accommodated by the other

in service of reproducing the observed data. This can be beneficial

when the goal is predicting or describing change over time (Jonger-

ling & Hamaker, 2011; Ou et al., 2017), but as developmental

researchers are typically interested in the explanation of develop-

mental trends, these model features must be taken seriously as they

could lead to erroneous conclusions.

At its core, a lack of process separability reflects a lack of

unique information for effectively distinguishing between two

types of change processes during parameter estimation. One of the

most direct ways to provide more information along these lines is to

include additional time points (Timmons & Preacher, 2015), and

there is some evidence that asymptotic correlations between auto-

regressive coefficients and growth factor means do decrease as

more time points are added to the LCS (Clark et al., 2018). This

question has not yet been examined thoroughly in the LCS or other

popular hybrid models though, especially in relation to robustness

to misspecification. Indeed, if the inseparability of change pro-

cesses during model estimation is related to the propensity to pro-

duce biased yet well-fitting solutions, and change processes

become more distinguishable with more time points, hybrid models

may become more robust to at least minor and routine misspecifi-

cations when there are more time points available. In longitudinal

models, more time points are always preferred of course (up to a

point of diminishing returns; Timmons & Preacher, 2015), but it is

not always feasible to continue adding waves of assessment (Don-

nellan & Conger, 2007); therefore, it is critical to understand the

nature and magnitude of the specific benefits gained by including

more time points for distinct models.

Present Study

By integrating AR and LGM style parameters, hybrid models offer

a compelling way of studying developmental dynamics. However,

hybrid models often struggle to separate AR and LGM processes

during estimation, which can lead to unexpected results in certain
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Figure 3. Latent Growth Model With Structured Residuals. T1 . . . T5 ¼
Time 1 through Time 5 observations; e1 . . . e5 ¼ Time 1 through Time 5

residuals; b ¼ autoregressive coefficient; g0 ¼ intercept factor; sg0
2 ¼

intercept factor variance; �g0 ¼ intercept factor mean; g1 ¼ slope factor;

sg1
2 ¼ slope factor variance; �g1 ¼ slope factor mean; sg0g1 ¼ intercept–

slope covariance; a¼ basis coefficient;  2¼ residual variance; k¼ constant

(i.e., mean structure). Shared subscripts denote parameters commonly

constrained to equality.
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Figure 2. Autoregressive Latent Trajectory Model. T1 . . . T5 ¼ Time 1

through Time 5 observations; e1 . . . e5 ¼ Time 1 through Time 5 residuals;

b ¼ autoregressive coefficient; st1
2¼ time 1 variance; �t1¼ time one mean;

g0 ¼ intercept factor; sg0
2 ¼ intercept factor variance; �g0 ¼ intercept

factor mean; g1 ¼ slope factor; sg1
2 ¼ slope factor variance; �g1 ¼ slope

factor mean; sg0g1 ¼ intercept–slope covariance; st1g0 ¼ intercept–time

one covariance; st1g1 ¼ slope–time one covariance; a ¼ basis coefficient;

 2 ¼ residual variance; k ¼ constant (i.e., mean structure). Shared

subscripts denote parameters commonly constrained to equality.
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situations, such as when unrealistic parameter constraints are

applied to improve convergence (Clark et al., 2018; Orth et al.,

2021). The aim of the present study was to help better understand

this aspect of hybrid models, specifically by examining (1) the

separability of autoregressive and growth processes in three popular

hybrid models (LCS, ALT, and LGM-SR), (2) if the number of time

points included in these models relates to separability, and (3) if the

separability between autoregressive and growth processes is related

to parameter estimation and model evaluation when models are

misspecified.

Method

Data were generated using Mplus version 8.1 (Muthén & Muthén,

1998–2018). All data sets contained 1,000 observations at every

time point; results thus demonstrate model functioning under a

“best case scenario” for longitudinal data (i.e., large sample, no

attrition). For every condition described below, 1,000 unique data

sets were generated and analyzed using maximum likelihood esti-

mation. Individual Mplus input files were created and run for each

simulated data set using the Mplus Automation Package (Hallquist

& Wiley, 2014) in R (R Development Core Team, 2016).

Data Generation

Population models were specified in accordance with the structures

depicted in Figures 1 to 3. The population parameters used in the LCS

conditions come from the analysis of verbal ability in McArdle (2001),

a seminal demonstration of the LCS. The population parameters in the

ALT and LGM-SR conditions also came from fitting these models to

the McArdle (2001) data. Across all conditions, population basis coef-

ficients were specified in accordance with linear growth. Population

model parameters and trajectories for all conditions are presented in

the supplemental material (https://osf.io/ny2fw/).

Two major characteristics of the population models varied

across conditions: the number of time points and the invariance

of the autoregressive coefficients over time. The invariance of the

autoregressive coefficients was varied when examining the func-

tioning of misspecified models. The autoregressive coefficients

were specifically varied in these conditions, as there is evidence

that incorrectly constraining the autoregressive paths over time is

an important form of misspecification for parameter estimation and

model evaluation in hybrid models (Clark et al., 2018; Voelkle,

2008). Moreover, estimating hybrid models is often difficult in real

data (Orth et al., 2021), which has resulted in the widespread appli-

cation of parameter constraints—such as constraining autoregres-

sive coefficients over time—that improve convergence but are

unlikely to precisely hold in the population.

Baseline condition population models. Population models with

invariant autoregressive coefficients over time are hereafter

referred to as “baseline models.” Data was generated from baseline

models with 5, 10, 15, 20, 30, and 40 time points. In the 40 time

point conditions, all parameter values were divided by 5 in order to

improve computational feasibility. This did not affect the nature of

the change trajectories and did not lead to results inconsistent with

other conditions.

Misspecification condition population models. The population

models for the misspecification conditions were equivalent to those

used in the baseline conditions with the exception that

autoregressive coefficients varied over time. Population models for

the misspecification conditions were specified with both 5 and 20

time points. Five different misspecification conditions were con-

sidered. Four or 19 autoregressive coefficients were randomly gen-

erated from a distribution that had a mean of the original population

coefficient and a standard deviation of roughly half the original

population coefficient. In the first condition (MS-1), autoregressive

coefficients were included in the order they were generated. In the

second condition (MS-2), autoregressive coefficients were ordered

from smallest to largest over time. In the third misspecification

condition (MS-3), autoregressive coefficients were ordered from

largest to smallest over time. In the fourth misspecification condi-

tion (MS-4), all of MS-1’s original autoregressive coefficients were

doubled. In the fifth misspecification condition (MS-5), all of the

MS-1’s original autoregressive coefficients were halved.

Data Analytic Strategy

Models that imposed invariance on the autoregressive coefficients

over time were fit to the generated data. Although these con-

straints are not inherently part of any model considered here and

can be empirically evaluated, they are common in the literature as

they improve interpretability and convergence (Clark et al., 2018).

The empirical asymptotic correlation matrix was obtained by tak-

ing the correlations between different parameter estimates across

replications. We focus on the correlation between the autoregres-

sive coefficient and slope mean estimates below because these

parameters are the most directly relevant for representing change

over time, and because past work has shown that this correlation is

uniquely large in certain hybrid models but decreases with more

time points (Clark et al., 2018). Full asymptotic correlation

matrices can be found in the online supplemental however

(https://osf.io/ny2fw/).

The average parameter estimates across replications, standard

deviations across replications, average estimate of the standard error

across replications, and percentage of replications with a statistically

significant coefficient at the conventional p < .05 level were com-

puted. Again, we focus on autoregressive coefficient and slope mean

estimates below, but the full results for each condition can be found

online (https://osf.io/ny2fw/). For ease of presentation, we use the

average of the population autoregressive coefficient as a reference

point for the estimated autoregressive coefficient below. Under the

conditions considered here, the over-constrained autoregressive coef-

ficients would ideally approximate the average population coeffi-

cient. However, though this does provide a concise summary of

model functioning, it does obfuscate occasion-specific bias; the full

set of population coefficients can thus be found online for making

more granular comparisons between actual and estimated autoregres-

sive effects (https://osf.io/ny2fw/).

Finally, the average values and standard deviations across repli-

cations for a set of popular fit statistics (w2, RMSEA, SRMR, CFI,

TLI), as well as the percentage of models evidencing “adequate”

and “excellent” fit, were computed (West et al., 2012). The thresh-

olds used for denoting adequate and excellent fit conform to those

typically cited in the literature (Browne & Cudeck, 1993; Hu &

Bentler, 1999; West et al., 2012). Specifically, for the w2, the per-

centage of models that demonstrated significant misfit at both the

.05 and .01 level was computed; for the RMSEA and SRMR, the

percentage of models with values below .08 and .05 was computed;

for the CFI and TLI, the percentage of models with values above .90
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and .95 was computed. Selected results regarding model fit are

presented below, while the full results can be found in the online

supplement (https://osf.io/ny2fw/).

Results

Estimation problems were rare. In some ALT conditions, a small

minority of models converged with serious estimation problems,

and substantially aberrant parameter estimates that affected the

primary results. These outliers were excluded from the main anal-

yses. Replications were specifically excluded in the baseline ALT

condition with 5 time points (three replications removed) and

20 time points (32 replications removed), and the MS-1 (54 replica-

tions removed) and MS-5 (298 replications removed) conditions

with 5 time points, and the MS-2 condition with 20 time points

(118 replications removed).

Latent Change Score Model

Autoregressive and growth processes separability. The correlation

between the autoregressive coefficient and slope factor mean

estimates was r ¼ �.99 in the baseline condition when there were

only 5 time points. This correlation consistently fell as more time

points were added, dropping to r ¼ �.12 when there were 20 time

points and r ¼ �.03 when there were 40 time points (Table 1).

Across misspecification conditions, these correlations also

approached unity when there were 5 time points and were consid-

erably smaller when there were 20 time points (Table 2). The auto-

regressive and growth processes were thus essentially

indistinguishable for the LCS with 5 time points. Separability

improved however as the number of time points in the model

increased, particularly after at least 20 time points were included.

Parameter estimation and model evaluation. In the misspecifica-

tion conditions, estimates of the autoregressive coefficient and

slope factor means were consistently, substantially biased when

there were 5 time points; estimates were also usually statistically

significant (Table 2). These models reproduced the population tra-

jectories well however (i.e., the parameters were biased in such a way

that the observed data was still accurately reproduced) and so fit well

by conventional standards (https://osf.io/ny2fw/). In the 20-time

point misspecification conditions, bias in the parameter estimates

Table 2. Parameter Estimates and Correlations Between Autoregressive Coefficients and Slope Factor Means for LCS Across Conditions With 5 and 20

Time Points.

Baseline MS-1 MS-2 MS-3 MS-4 MS-5

5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP

b: Population value .09 .09 .10 .09 .10 .09 .12 .09 .21 .19 .05 .05

Estimate mean .09 .09 .26 .11 .37 .18 �.12 .01 .40 .29 .17 .06

Estimate SD .01 <.01 .01 <.01 .02 <.01 .01 <.01 .01 <.01 .02 <.01

Mean SE .01 <.01 .01 <.01 .02 <.01 .01 <.01 .01 <.01 .02 <.01

%p < .05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

�sl: Population value 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06

Estimate mean 2.05 2.06 �1.67 1.19 �4.46 �2.91 8.72 8.49 �2.93 .98 �.57 1.55

Estimate SD .37 .03 .37 <.01 .43 .04 .27 .07 .27 .03 .45 .03

Mean SE .38 .03 .28 <.01 .43 .03 .29 .07 .30 .04 .47 .03

%p < .05 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 21% 100%

r(b,�sl) �.99 �.12 �.99 �.17 �.99 �.59 �.97 .01 �.97 <.01 �.99 �.55

Note. MS ¼ misspecification conditions 1 through 5; TP ¼ time points; SD ¼ standard deviation; SE ¼ standard error; %p < .05 ¼ percentage of estimates that were
statistically significant at the level of p < .05; b ¼ autoregressive coefficient; �g1 ¼ slope factor mean; r(b,�sl) ¼ correlation between autoregressive coefficient and
slope factor mean. Autoregressive population values represent the mean autoregressive value across time.

Table 1. Correlations Between Autoregressive Coefficients and Slope Factor Means, and Model Size, Across Baseline Conditions.

5 Time points 10 Time points 15 Time points 20 Time points 30 Time points 40 Time points

LCS

r(b,�sl) �.99 �.91 �.64 �.12 <.01 �.03

# Estimated parameters 7 7 7 7 7 7

Degrees of freedom 13 58 128 223 488 853

ALT

r(b,�sl) �.86 �.82 �.71 �.64 �.53 �.21

# Estimated prameters 11 11 11 11 11 11

Degrees of freedom 9 54 124 219 484 849

LGM-SR

r(b,�sl) .04 .02 .02 .01 .05 .01

# Estimated parameters 8 8 8 8 8 8

Degrees of freedom 12 57 127 222 487 852

Note. LCS ¼ latent change score model; ALT ¼ autoregressive latent trajectory model; LGM-SR ¼ latent growth model with structured residuals; r(b,�sl) ¼
correlation between autoregressive coefficient and slope factor mean; # Estimated parameters ¼ number of freely estimated parameters in the model.
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was less extreme; in some conditions, estimates reasonably reflected

the data generating model such that the single autoregressive coeffi-

cient approximated the average population coefficient. Despite the

fact that bias in the parameter estimates was reduced in the 20 time

point conditions, the majority of these models were rejected on the

basis of conventional fit thresholds (https://osf.io/ny2fw/).

These trends in parameter estimation and model fit are illustrated

graphically in Figures 4 and 5. Figure 4 depicts how much larger or

smaller the average estimated autoregressive coefficients and slope

means were compared to the population values, expressed as a per-

centage (absolute value) of the population coefficient. This figure

highlights how the estimates in the 5 time point conditions consis-

tently deviated more from the population values than the estimates in

the 20 time point conditions. However, even with 20 time points, the

estimated coefficients were often at least twice (100%) as large or

small as the population value. Furthermore, with both 5 and 20 time

points, deviations from the population values appeared to be greater

in some conditions than others, specifically MS-2 and MS-3. Figure 5

depicts the percentage of models that fit at least adequately across

conditions and illustrates the asymmetry in fit such that models with

5 time points—despite their less accurate estimates—were much

more likely to fit the data well compared to the models with 20 time

points. The SRMR, CFI, and TLI specifically were most likely across

conditions to suggest adequate fit.

Overall, when there were only 5 time points in the LCS and

change processes were less separated, misspecified models demon-

strated considerable bias in the parameter estimates but still fit the

data well by conventional standards. Conversely, when there were

20 time points in the LCS and change processes were more distin-

guishable, the misspecified models demonstrated much less bias in

the parameter estimates than with 5 time points, but, consistent with

the misspecification, these models tended to fit the data poorly by

conventional standards.

Autoregressive Latent Trajectory Model

Autoregressive and growth processes separability. The correlation

between the autoregressive coefficient and slope factor mean esti-

mates was r ¼ �.86 in the correctly specified condition when there

were only 5 time points (Table 1). This association gradually fell as

more time points were added, dropping to r ¼ �.64 when there

were 20 time points, and r ¼ �.21 when there were 40 time points

(Table 1). Across misspecification conditions, the correlations

between the autoregressive coefficient and slope factor mean esti-

mates were large with 5 time points (rs from �.80 to �.99), and

smaller with 20 time points, though still sizeable in magnitude

(rs from �.56 to �.79). The autoregressive and growth processes

were thus largely indistinguishable for the ALT with 5 time points.

Separability did improve as the number of time points in the model

increased; however, this improvement was gradual.

Parameter estimation and model evaluation. In the misspecifica-

tion conditions, estimates of the autoregressive coefficients

and slope factor means were considerably biased when there were

5 time points; estimates were also typically statistically significant

(Table 3). These models were somewhat effective in reproducing

the average population trajectories (https://osf.io/ny2fw/), and fit

was often mixed across conditions. That is, in most conditions, at

least some fit statistics implied an adequate or excellent model

based on conventional thresholds. In the 20-time point misspecifi-

cation conditions, estimates of the change parameters were usually

less biased than in the 5 time point conditions, with fit again often

mixed across conditions (Table 3).

These trends in parameter estimation and model fit are illu-

strated graphically in Figures 6 and 7. Figure 7 highlights how the

estimates in the 5 time point conditions generally deviated more

from the population values than the estimates in the 20 time point

conditions, with some estimates more than 1000% larger or smaller

than the population value. However, even with 20 time points, the

estimated coefficients were often at least twice (100%) as large or

small as the population value. Furthermore, with both 5 and 20 time

points, deviations from the population appeared to be greater in

some conditions compared to others, specifically MS-2 and MS-3

in the 20 time point conditions, and MS-2, MS-4, and MS-5 for the

5 time point conditions. Figure 7 shows how models with 5 time

points were on average more likely to fit the data well compared to

the models with 20 time points. The SRMR, CFI, and TLI specif-

ically were most likely across conditions to suggest adequate fit.

Overall, when there were only 5 time points in the ALT and

change processes were less separated, misspecified models demon-

strated more bias compared to when there were 20 time points and

processes were more separable. The fit of the models across con-

ditions was often ambiguous, though in general the less biased

models in the 20 time point conditions were somewhat more likely

to be rejected on the basis of conventional thresholds for model fit.

Latent Growth Model With Structured Residuals

Autoregressive and growth processes separability. The correlations

between the slope factor mean and autoregressive coefficient esti-

mates were trivial (rs less than .10) in the baseline conditions, even

with just 5 time points (Table 1). Correlations did tend to shrink as

more time points were added, but this decrease was modest given

the low baseline. Across misspecification conditions, the correla-

tions between the autoregressive coefficient and slope factor mean
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estimates were similarly small in magnitude. The autoregressive

and growth processes were thus largely separable for the LGM-SR

regardless of the number of time points.

Parameter estimation and model evaluation. In both the 5- and

20-time point misspecification conditions, there was little bias in

the parameter estimates (Table 4). To the extent there was bias, it

Table 3. Parameter Estimates and Correlations Between Autoregressive Coefficients and Slope Factor Means for ALT Across Conditions With 5 and

20 Time Points.

Baseline MS-1 MS-2 MS-3 MS-4 MS-5

5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP

b: Population value .13 .13 .13 .13 .13 .13 .12 .13 .27 .27 .07 .07

Estimate mean .13 .13 �.07 .15 1.46 .43 .29 .44 1.39 .30 .47 .08

Estimate SD .03 .01 .02 .01 .02 .01 .03 .01 .02 <.01 .06 .01

Mean SE .03 .01 .03 .01 .03 .01 .03 .01 .03 .01 .06 .01

%p < .05 99% 100% 81% 100% 100% 100% 100% 100% 100% 100% 100% 100%

�sl: Population value 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01

Estimate mean 5.01 5.01 6.36 4.73 �2.27 4.01 2.60 2.50 �8.43 4.36 1.94 4.87

Estimate SD .26 .07 .14 .07 .19 .06 .22 .03 .23 .06 .44 .07

Mean SE .25 .07 .19 .07 .21 .07 .22 .05 .29 .07 .28 .07

%p < .05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 98% 100%

r(b,�sl) �.86 �.64 �.80 �.63 �.93 �.79 �.96 �.66 �.93 �.56 �.99 �.64

Note. MS ¼ misspecification conditions 1 through 5; TP ¼ time points; SD ¼ standard deviation; SE ¼ standard error; %p < .05 ¼ percentage of estimates that were
statistically significant at the level of p < .05; b ¼ autoregressive coefficient; �g1 ¼ slope factor mean; r(b,�sl) ¼ correlation between autoregressive coefficient and
slope factor mean. Autoregressive population values represent the mean autoregressive value across time.
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was localized to the residual structure, and minimal such that the

estimate of the autoregressive coefficient was close to the average

of the population coefficients. All models consequently fit the data

well by conventional standards (https://osf.io/ny2fw/).

These trends in parameter estimation and model across conditions

are illustrated graphically in Figures 8 and 9. Figure 8 highlights that

although the estimates in the 5 time point conditions generally deviated

more from the population values than the estimates in the 20 time point

conditions, these deviations were usually below 50%. Furthermore, to

the extent deviations were observed, they were all located in the auto-

regressive coefficients of the residual structure; the slope means were

estimated accurately across conditions. Figure 9 illustrates how, con-

sistent with the generally reasonable estimates, most models fit well.

Overall, with both 5 and 20 time points in the LGM-SR, change

processes were separable and bias was both minimal (being about

what would be expected given the nature of the misspecification)

and quarantined to the parts of the model that were misspecified

(i.e., a misspecified autoregressive structure did not heavily affect

the slope factor). Consistent with the low degree bias, models

tended to fit the data well by conventional standards.

Discussion

In this study, Monte Carlo simulation methods were used to inves-

tigate associations between change process separability, number of

time points, parameter bias, and model fit, in three popular, widely

used hybrid autoregressive-latent growth SEMs for longitudinal

data: LCS (McArdle, 2001), ALT (Bollen & Curran, 2006), and

LGM-SR (Curran et al., 2014). Overall, as more time points were

included in these models, autoregressive and change process separ-

ability increased and parameter bias in the presence of misspecifi-

cation decreased. This supports the notion that providing hybrid

models with more raw information about change over time enables

them to more effectively separate change processes during para-

meter estimation, and that this can potentially help improve robust-

ness to common misspecifications.

It is difficult, however, to directly attribute the observed decreases

in bias here to increased processes separability per se. For example,

additional time points may simultaneously yet unrelatedly increase

both separability and robustness. Furthermore, there was evidence

across misspecification conditions that the underlying population

trends may impact robustness to the types of misspecification consid-

ered (e.g., the LCS appeared more biased when autoregressive coeffi-

cients steadily increased or decreased over time). Still, considering the

LCS, ALT, and LGM-SR individually, it appears that—even if not

directly or exclusively causal—a lack of process separability at least

signals a potentially considerable lack of robustness to misspecifica-

tion, which warrants caution when using and interpreting these models.

Considering results across models, the LCS and ALT consis-

tently demonstrated much less process separability than the LGM-
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SR and were more likely to produce notably biased results when the

model was misspecified. These differences between the models

likely follow in part from their distinct specifications, especially

as the LGM-SR is not necessarily a more or less complex model

(the LCS, ALT, and LGM-SR all include a similar number of free

parameters, with the LGM-SR falling between the LCS and ALT;
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presented in top panel; results from 20 time point conditions presented in bottom panel. Adequate fit defined here as: w2 p > .01; RMSEA < .08; SRMR < .08;

CFI > .90; TLI > .90. Complete results regarding model fit are in the online supplement (https://osf.io/ny2fw/).

Table 4. Parameter Estimates and Correlations Between Autoregressive Coefficients and Slope Factor Means for LGM-SR Across Conditions With 5 and

20 Time Points.

Baseline MS-1 MS-2 MS-3 MS-4 MS-5

5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP 5 TP 20 TP

b: Population value .25 .25 .25 .23 .27 .28 .26 .26 .49 .46 .12 .12

Estimate mean .25 .25 .30 .23 .24 .28 .26 .26 .60 .45 .15 .12

Estimate SD .04 .01 .04 .01 .04 .01 .04 .01 .05 .01 .03 .01

Mean SE .04 .01 .04 .01 .04 .01 .04 .01 .05 .01 .03 .01

%p < .05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 100%

�sl: Population value 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45

Estimate mean 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45

Estimate SD .05 .04 .05 .04 .06 .04 .05 .04 .06 .04 .05 .04

Mean SE .05 .04 .05 .04 .05 .04 .05 .04 .06 .04 .05 .04

%p < .05 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

r(b,�sl) .04 .01 .05 .02 .05 .02 .04 .01 .04 .04 .05 .01

Note. MS ¼ misspecification conditions 1 through 5; TP ¼ time points; SD ¼ standard deviation; SE ¼ standard error; %p < .05 ¼ percentage of estimates that were
statistically significant at the level of p < .05; b ¼ autoregressive coefficient; �g1 ¼ slope factor mean; r(b,�sl) ¼ correlation between autoregressive coefficient and
slope factor mean. Autoregressive population values represent the mean autoregressive value across time.
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Table 1). Indeed, this pattern of results maps on to the distinction

Usami and colleagues (2019) recently drew between joint

(or “accumulator”) and non-joint hybrid models. Although all these

models incorporate growth and autoregressive processes, models

such as the LCS and ALT that specify outcomes as a joint function

of change processes can be thought to represent a qualitatively

distinct subset of models with unique interpretations and considera-

tions. This is consistent with the present findings such that it was

the two “joint” models specifically that struggled to separate

change processes and that produced considerably biased results

when misspecified (especially with fewer time points).

Conversely, when autoregressive and growth processes were

isolated, as in the LGM-SR, asymptotic covariances between para-

meter estimates were small, and bias was minimal, largely regard-

less of how many occasions of assessment there were. This

emphasizes that the number of time points per se is not sufficient

to broadly explain associations between parameter estimation,

model evaluation, and misspecification in hybrid models. That is,

more occasions of assessment are preferable to less, but the specific

advantages gained depend on other factors such as model form, and

the processes operating in the population. All of these findings

follow from how the models were designed, but do still carry impli-

cations for developmental researchers, suggesting that the use of

certain hybrid SEM (LCS and ALT) entails inferential risks even

with a larger than typical number of time points available.

Implications and Recommendations

The LCS and ALT have several major limitations. As illustrated

here, these models are generally ill-equipped to accurately character-

ize developmental processes when only a small number of time

points are available. Including more time points can address this, but

including more time points is not always feasible, especially to the

extent necessary to eliminate concerns (Timmons & Preacher, 2015).

Models could also be estimated with as few parameter constraints as

possible. However, less restricted models often fail to converge, and

although even a single extra constraint can improve convergence,

this usually still leads considerable bias (Clark et al., 2018). Indeed, a

highly plausible scenario is one in which there are not enough time

points to constrain the model without potentially introducing severe

bias, yet a fully unconstrained model cannot be effectively estimated.

Overall, the results here and from other methodological studies (e.g.,

Clark et al., 2018; Voelkle, 2008) indicate that LCS and ALT models

have serious, difficult to accommodate idiosyncrasies that could

readily lead to erroneous developmental conclusions. Accordingly,

we (1) strongly recommend that developmental researchers avoid

applying the ALT model to their data, and exercise extreme caution

with the LCS, which although slightly more robust and responsive

here exhibited similar properties as the ALT across conditions.

On the other hand, the LGM-SR performed well across condi-

tions. It was fairly robust in the face of misspecification no matter
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how many time points were included, and parameter estimates were

only weakly correlated. To be sure, by isolating the two change

processes, the LGM-SR may appear less conceptually compelling

than the LCS and ALT. The LGM-SR is indeed a less literal synth-

esis of autoregressive and growth processes, and its time-specific

residual factors exclusively capture within-person variance, which

may not always be ideal when time varying covariates are consid-

ered. However, the LGM-SR’s isolation of change processes

clearly has some practical advantages. Model selection should of

course ultimately be guided by theoretical concerns, but in the

context of hybrid models, the LCS and ALT are too limited to

confidently apply, even if they do represent a close match to a

theoretical question.

The results for the LGM-SR show that growth and autoregres-

sive processes can be simultaneously incorporated into a single

model without becoming seriously entangled. In other words, the

limitations of the LCS and ALT are not inherent limitations of

hybrid models per se. Rather, it appears that it is the specific

method of combining autoregressive and growth processes that has

the most implications for model performance. Thus, we (2) also

recommend that researchers interested in simultaneously modeling

growth and autoregressive processes in an SEM framework begin

with the LGM-SR or similar models that isolate the two distinct

change processes. For example, one promising alternative to the

LGM-SR is the Random Intercept–Cross Lagged Panel Model

(RI-CLPM; Hamaker et al., 2015). The RI-CLPM is equivalent to

a LGM-SR with 0 slope factor variance and includes a latent inter-

cept factor that captures stable, trait-like between person variation

across the study. The RI-CLPM has many benefits, including that it

can be identified with fewer waves of data than the LGM-SR, the

potentially appealing interpretation of the random intercept, and

how it provides a parsimonious method of modeling longitudinal

trends when there is little change and/or individual variability in

change over the course of the study (e.g., when studies are short

and/or focus on rare behaviors). Although various properties of the

LGM-SR and RI-CLPM still need to be investigated, the current

results imply that models specified along these lines represent a

more reliable approach for considering different types of trends

over time.

Notably, only univariate models were considered here, but uni-

variate models are rarely the primary models of interest. That is,

researchers are most often interested in the inclusion of time invar-

iant and time varying covariates in order to predict developmental

trends. There is evidence that paths from time invariant predictors

to the slope factors in LCS will also be severely biased under

conditions like those considered here (Clark et al., 2018). However,

0

50

100

χ2 RMSEA SRMR CFI TLI

tiF
etauqed

A
% 5 

Ti
m

e 
Po

in
ts

MS-1 MS-2 MS-3 MS-4 MS-5

0

50

100

χ2 RMSEA SRMR CFI TLI

tiF
etauq ed

A
% 20

 T
im

e 
Po

in
ts

Figure 9. Percentage of Replications With Adequate Model Fit Across Misspecification Conditions for the LGM-SR. Results from 5 time point conditions

presented in top panel; results from 20 time point conditions presented in bottom panel. Adequate fit defined here as: w2 p > .01; RMSEA < .08; SRMR < .08;

CFI > .90; TLI > .90. Complete results regarding model fit are in the online supplement (https://osf.io/ny2fw/).

450 International Journal of Behavioral Development 45(5)



as noted above, the limitations observed in the univariate LCS and

ALT suggest that they should be avoided in general, and not

extended with multiple variables. The results for the LGM-SR were

more encouraging, suggesting that the LGM-SR and related models

like the RI-CLPM are more viable approaches for examining pre-

dictors of change and bidirectional influences over time. More work

is needed to confirm this, however. Also, it is important to highlight

here that a major goal in the development of the LGM-SR and

RI-CLPM was the disaggregation of within and between person

effects. The residual structure thus specifically captures within-

person trends over time, which is distinct from standard time vary-

ing covariates growth models, and how time varying covariates are

typically included in LCS and ALT models.

Future Directions

Examining the LGM-SR and similar models across bi- and multivari-

ate contexts is a critical next step. This raises the issue of separating

growth, autoregressive, and cross-lagged processes in estimation, the

latter two of which are not as separated in the model specification as

the growth and autoregressive processes. Closer investigations of the

LGM-SR, RI-CLPM, and their interrelations are also warranted. For

example, to what extent can slope factor variability be ignored in an

RI-CLPM before parameter estimates in the residual structure begin to

diverge meaningfully from the LGM-SR (especially in shorter studies

where the RI-CLPM is more feasible)? Finally, the current study

included large samples, no attrition, and evenly spaced assessment

intervals. These are idealized data conditions that most actual studies

will deviate from. Future work can thus more thoroughly examine

model functioning under more realistic data conditions. However,

real-world data conditions will only exacerbate the challenges we

identified in models applied to ideal data.

Conclusion

Hybrid autoregressive-growth longitudinal models offer both con-

ceptual and practical benefits. This study highlighted, however, that

in many common situations some of these models struggle to dis-

tinguish between different change processes during estimation.

Although the LGM-SR consistently separated the different change

processes during estimation, the LCS and ALT both struggled until

many time points were included in the model, which are likely not

practical in real-world longitudinal studies. The LCS and ALT were

also more likely to provide extremely biased but well-fitting solu-

tions, potentially leading to inaccurate conclusions. Broadly speak-

ing the LGM-SR appears to be the safest, most robust hybrid

autoregressive-growth longitudinal model across contexts.
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