
Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 61

https://isedj.org/; https://iscap.info

Towards Improving Student Expectations in

Introductory Programming Course with
Incrementally Scaffolded Approach

Deepak Dawar
daward@miamioh.edu

Miami University
Hamilton, Ohio

Abstract

Keeping students motivated during an introductory computer programming can be a challenging task.
Looking at its varied complexities, many students who are introduced to computer programming for the

first time can easily become demotivated. This work looks at the value-expectancy motivational model
of student learning and presents our experiences with a novel instructional delivery interventional
technique, introduced and tested over a period of three semesters. Our research question was simple:
“Can we affect student motivation, and learning outcomes by using an approach that makes targeted
continuous engagement with course material mandatory?” The technique/process was conceived
keeping in mind our previous work on similar lines; our in-class teaching experiences; motivational
theory; and recent developments in cognitive load theory. The students, instead of writing an

assignment and a lab for each module/chapter, were asked to complete one assignment a day, not
exceeding four assignments a week. The assignments were incrementally difficult and had to be done
almost every day. Students found the approach effective, in spite of having to spend considerable

amount of time on assignments. Average final exam scores showed a healthy improvement after the
use of this technique. Owing to a small student sample size, it would be premature to draw conclusions
about the efficacy of the technique, but the initial results show promise of further investigation.

Keywords: Student motivation, introductory programming, pedagogy, value-expectation, student
procrastination, learned helplessness.

1. INTRODUCTION

The landscape of the potential problems faced by
novice programmers is vast and is quite
formidable. Teachers with substantial experience
in teaching programming, including ourselves,
would potentially agree with the above

statement. In introductory programming courses,
failure rates are high (Allan & Kolesar, 1997;

Bennedsen & Caspersen, 2007; Beaubouef &
Mason, 2005; Howles, 2009; Kinnunen & Malmi
2006; Mendes et al., 2012; Newman, Gatward, &
Poppleton, 1970; Sheard & Hagan, 1998; Watson
& Li, 2014), and students can easily become
demotivated. One important reason for this

demotivation is found in the complex nature of
computer programming. The novice programmer
has to grapple with multiple domains of learning

as suggested in the literature (Davies, 1993; Kim
& Lerch, 1997; Rogalski & Samurçay, 1990;

Robins, Rountree & Rountree, 2003;). Hence,
keeping students motivated is an important part
of teaching introductory programming.

Instead of dealing with the multi-faceted

motivational aspects of programming directly, we
looked at how a student values learning; and

what are his/her expectations from that learning.
This is derived from the value-expectation theory
of motivational design of instruction (Keller,
1983). This theory connects value, expectation,
and subsequent motivations as:

𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 × 𝑣𝑎𝑙𝑢𝑒 (1)

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 62

https://isedj.org/; https://iscap.info

It follows that if a student feels that the task is

worth doing, but finds it impossible to finish,
motivation levels are bound to dip (Crego et. al,
2016). Similarly, if a student sees no value in

learning if he/she will not be motivated. A teacher
or the environment may have a limited effect on
some factors and may have a high impact on
others. For instance, it may be quite difficult for
the teacher to influence the value variable in the
equation; i.e., a teacher might have a limited
impact on how a student values learning.

To design an effective instructional delivery
mechanism, we must shed light on what teaching
means to the instructor, and what learning means
to a student. A student’s level of engagement will
depend on their view of activity, and motivation

levels. Biggs (1999) provides a general
framework regarding conceptions of learning and
teaching as a function of three levels. These levels
are:

Level 1: Learning as a function of what
student is

Level 2: Learning as a function of what
teaching is

Level 3: Learning as a function of what
activities the student engages in, as a result
of the teaching environment

Biggs presents these levels in order of increased
complexity with Level 3 being most conducive to

learning.

It is imperative to briefly discuss what constitutes
a productive teaching climate. McGregor (1960)

proposes two competing ideas that can be applied
to a workplace and calls them Theory X and
Theory Y. Biggs takes these concepts and applies
them to academic environment. Theory X
assumes that students are unmotivated, and are
unwilling to learn. So they must be forced to work
hard. Clearly, teacher controls the whole

environment, and there is a distrust between the
teacher and the student. At the opposite end,
Theory Y assumes that students are well
motivated, and therefore, must be trusted to

work and learn. Assessments should be few, and
deadlines must be not enforced strictly. The
control somewhat is with the students, and they

will respond to this by working voluntarily. In our
experience, none of these theories work very well
in a classroom. The answer may lie somewhere in
the middle.

Given these theories and challenges, we had to

decide which part (expectancy or value) of the
motivation model should we try to affect (if there

is such a possibility), to improve overall

motivation of students, and hence learning
outcomes. The value variable in the motivation
model is very subjective. There can be myriad

reasons why a student may or may not value
learning. Fallows & Ahmet (1999), list a set of
points regarding value students attach to
learning, prominent of which are: 1) philosophical
attitude towards learning 2) career aspirations 3)
degree of interest in the course etc. A student
might find value, and hence may be motivated by

multiple factors listed above. We opine that these
are very personal beliefs, and it may not be easy
to manipulate them in a limited setting of
classroom. Therefore, we turn to the expectancy
variable in the equation.

Students must believe that they can succeed in
the course if they are to be motivated. What are
the major causes of student demotivation? There
can be many, but the one suspect that we can
categorically point towards in our classrooms is
high cognitive load. Cognitive load theory (Paas,
Renkl, & Brünken, 2010; Sweller, 1988, 1994)

deals with the aspects of load placed on working
memory while a task is being executed. Computer
programming requires balancing numerous
interactive tasks. For example, writing a
computer program involves juggling numerous
details like problem domain, current state of
program, language syntax, strategies etc.

(Winslow, 1996). Hence, high cognitive loads can
diminish expectations of a novice programmer

leading to a dip in overall motivation, and the
value-expectancy model tells us that students
must believe that succeed in doing the current
assignment, and overall final assessment.

Keeping all these factors and the expectancy
model in mind, we designed an intervention that
made continuous targeted interaction between
the material and students – somewhat
mandatory. This approach was designed to
influence the expectancy factor in the equation,

as this variable seems to be more sensitive to
teacher’s or the environment’s influence.
Students were given a programming assignment
a day, and no more than four assignments a

week. Every assignment built on the previous
assignment(s), and the final assignment was to
be a mini-project testing students on all the

concepts learned so far in previous assignments.
This, we opined, would:
• establish a study pattern for students
• improve student’s expectation since the

assignments would carry germane cognitive
loads

• make them practice programming every
almost every day. This was done keeping in

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 63

https://isedj.org/; https://iscap.info

mind the generally accepted notion that

constant practice improves the learning
outcomes, and as evidenced by psychological
studies (Brown & Bennett, 2002; Glover,

Ronning & Bruning, 1990; Moors & De
Houwer, 2006) done on variable student
populations. Constant practice can also make
students want to learn more (Kalchman, Moss
& Case, 2001) thereby potentially improving
the motivation as a whole.

In a series of studies conducted by Rist (1986,
1989, 1995, 2004), and reviewed by Sorva
(2012) confirm that one of the main
differentiators of students into novice and expert
programmers is their constant engagement and
experience with learned schemata.

2. METHODOLOGY

This paper builds on the previous work published
by Dawar (2020). In that work, students were
strictly asked to turn in an assignment a day, and
deadlines were more strict. They called it AAAD
or ‘An Assignment A Day Scaffolded Approach`.

This paper builds on that work in the following
terms.

1. It refines the AAAD approach by
dynamically adjusting deadlines while still
mandating most assignments to be
submitted within a day.

2. Looks into the relationship of altered

cognitive load and student expectations.

3. Provides additional data to support the
conclusions drawn in the previous work.

4. Provides a framework for future work in
this direction.

Our method rests on three pillars as shown below
in Fig 1.

Figure 1: Teaching Intervention

It can effectively be summarized as - make the

students practice constantly and assert just
enough load on them in terms of deadlines and
materials, so as to avoid possible student
disenchantment and frustration with the course,
while simultaneously improving learning gains.

Having administered this approach for only a

couple of times, and due to small sample size, as
of now, we are not in a position to define as to
what constitutes an optimal load. Hence, we

designed the task load with some assumptions
based on our classroom experiences. While
constructing this mechanism, we faced a couple
of dilemmas. First, constant testing may lead to
high student anxiety (Kaplan et. al, 2005), and at
first glance, it looks like this is exactly what we
are doing by asking students to write an

assignment a day. An easy way to make students
dislike programming, is to put them under
unnecessary stress (Goold & Rimmer, 2000).
Many of our students are non-traditional and
work full time jobs. Second, a strict enforcement
of everyday deadlines may easily overwhelm

these students. Our only chance of overcoming
these hurdles were - providing germane load
assignments following up with regular feedback.
Absent any of these two factors, and we knew we
would lose the students.

We tried to keep the approach as straightforward

as possible with a few exceptions in between. We
also learned from our previous work on a similar
technique, and incorporated a few changes based
on the student feedback. Hence, the current
approach is similar to our previous approach, and
can be summarized as:

1. Students will ideally do one assignment

per day.
2. Opening assignments of the chapter will

test students on very basic skills like
writing a method stub. Subsequent
assignments will gradually increase in
complexity keeping in mind the cognitive

load asserted by the assignment. This is
in part based on the study conducted by
Alexandron et al. (2014).

3. There will not be more than four
assignments per week. Deadlines will be
relaxed on case-to-case basis. Previous
technique had comparatively strict

deadlines.
4. As an exception, and depending upon the

cognitive load, an assignment may be
completed in two or more days rather

than a single day.

The study was conducted over three semesters.

The control group (C1) data was collected in the
first semester (Fall 2018).
This group worked with the orthodox approach
followed at our institution for introductory
programming classes i.e., on an average, one
assignment and one lab work per week, with

quizzes at the end of the module/chapter.

Teaching
Intervention

Continuous
Practice

Congnitive Load
Increments

Continuous
Feedback and

Resolution

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 64

https://isedj.org/; https://iscap.info

In the next semester (Spring 2019), the

experimental group (E1) was administered the
interventional approach, and pertinent data
collected at the end of semester. A total of 37

assignments were given to the experimental
group over a course of 13 weeks of which 1 week
was spring break. Rest of the 12 weeks meant
84 days of which weekends accounted for 24
days. 10 days were meant for quizzes and exams.
Hence, the students had to complete 37
assignments in about 50 days; i.e., about 0.75

assignments a day. An additional end of course
survey (see Appendix C) was conducted with this
experimental group to measure how well this
approach was received by the students. The
experiment was again repeated in the third
semester (Fall 2019) with another experimental

group E2. We followed the exact same procedures
for E2 that were followed for E1 with slight
deadline modifications especially for full time
working students. All other factors like quizzes,
projects etc. remain the same for control and
experimental groups.

The number of students in C1, E1, and E2 were
20, 22, and 21, respectively. One student from
C1 and three students from E2 declined to have
their data included in the study. The course is
mandatory for Computer Science (CSE) students
but can be used as an elective for Information
Technology (IT) majors. The control group C1 had

12 IT/CSE majors and 8 non-IT/CSE students.
The experimental group E1 had 13 IT/CSE, and 9

non-IT/CSE majors. E2 had 12 IT/CSE, and 8
non-IT/CSE majors, respectively. So, the class
composition of all groups compared was fairly
similar with C1, E1, and E2 having about 40%,

41%, and 40% non-IT/CSE majors, respectively.
This relatively similar class composition gives us
some level of confidence about the experimental
set up.

Administering the right cognitive load is crucial to
success of this intervention. As can be inferred

from Table 1 (see Appendix A), even a slight
modification of problem statement can quickly
increase the number of concepts that the student
has to deal with, thereby increasing the cognitive

load. The task load belongs to the chapter that
concerns itself with “method writing” in JAVA.
This was to be delivered as an approximately

eight-day module with classroom practice labs
(non-graded), five assignments, and a quiz at the
end. Detailed descriptions of these assignments
are included in Appendix B.

Comparison

Since the experimental groups (E1 and E2) had
to do many more assignments (at least 4 more

assignments per module), an equitable

comparison between the control and
experimental groups was a challenge.

We decided that the comparison of the last
summative assignment given to the experimental
group(s) with the usual single assignment per
module given to the control group would make a
fair comparison. Both these assignments were
similar in terms of concepts they tested but there
were also some differences. For example, they

differed in cognitive load and total points in many
cases. The experimental group students would
have had more exposure to the concepts since
they would have submitted a series of
assignments before attempting the final
assignment.

We assessed the following metrics for both
groups, and for each assignment compared.

• assignments submitted late
• assignments not submitted

To measure the impact of our technique on

overall grades, if any, we administered the exact
same module quizzes, and final exam to both
groups, and compared the following data points:

• module wise quiz scores
• final exam scores

3. RESULTS

We divided our analyses into two parts - inter and
intra group. Inter group analyses compared the
control (C1) with experimental groups (E1, E2),
and intra group compared/analyzed the results of
the experimental groups (E1, E2) only.

Module C1 (20) E1 (22) E2 (20)

1 1 0 0

2 0 0 0

3 0 0 0

4 2 0 0

5 2 1 0

6 5 3 3

7 4 3 6

Total 14 7 9
Table 2: Assignments not submitted per

module

Inter Group Analyses
The control group did only one assignment per

week whereas the experimental groups did
several leading up to the last assignment of the
module. We compared the statistics of the last

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 65

https://isedj.org/; https://iscap.info

module assignment of the experimental group

with the usual weekly assignment of the control
group.

Module C1 (20) E1 (22) E2 (20)

1 0 1 2

2 1 2 1

3 1 3 0

4 1 2 7

5 1 5 5

6 4 5 4

7 2 4 7

Total 10 22 26

Table 3: Late assignments submitted per

module

Module C1 (20) E1 (22) E2 (20)

1 71% (3.72) 75% (2.05) 75% (2.22)

2 79% (2.08) 71% (2.33) 78% (3.32)

3 73% (3.19) 73% (2.55) 73% (3.68)

4 62% (3.72) 66% (2.49) 71% (3.01)

5 74% (4.26) 75% (2.44) 75% (3.10)

6 67% (3.41) 67% (1.78) 76% (1.95)

7 56% (3.48) 65% (2.50) 61% (3.30)

Average 68% (3.40) 70% (2.30) 73% (2.94)
Table 4: Mean grade points (with standard
deviations) scored on the quiz by all groups

As an example, for assignments listed in Table 1,
in the control group, an assignment similar to 5
was given to the students. In the experimental
groups, however, the same assignment 5 was
given as the last assignment, after students have
had some exposure to the relevant concepts in

the previous assignments vis-à-vis assignments
1, 2, 3, and 4.

Tables 2, 3 and 4 summarize the data points
collected for comparison. The number of possible
submissions per module in the control and
experimental groups were 20, 22, and 20

respectively which is equivalent to the number of
students in those sections.

The data collected lays out some interesting
points. The experimental groups, at an anecdotal
level, showed a greater inclination to submit the

final assignment as compared to the control
group. Bear in mind that the experimental group
students - by the time they submit the final
assignment - have already submitted multiple
assignments on module topics leading up to the
last assignments. The non-submission rate, that

is almost half of the control group, may hint at

the student’s proclivity and willingness at
submitting the final assignment.

We believe that a better non-submission rate for
the experimental group, even after doing multiple
rounds of assignments is a healthy indicator of
voluntary student engagement with the course.
Even though the non-submission rate is lower in
the experimental groups, the late submission rate
is higher. Late submissions in both control and

experimental groups were allowed to see that if
given the time, would students be motivated
enough to work on the assignments?

We found that students were more willing to work
on the assignments in the experimental groups

even if that meant submitting it late. This is
evident from the fact that there are more late
submissions in experimental groups than no
submissions. The trend is reverse in the control
group. This is to reiterate that the data presented
here for experimental groups is for the last
cumulative assignment. By this time, for the

same module, students would have submitted
many incrementally difficult assignments, and a
general student fatigue is expected which may
speak for the higher number of late submissions.

Table 4 presents the end of module quiz grades
for both groups. The groups were administered

the exact same quizzes. There seems to be no
significant difference in the quiz performance for

the groups, though the standard deviation in the
experimental groups seems to be on the lower
side than that of the control group. Does that
mean that constant practice, even though unable

to improve overall group performance on quizzes,
can help stem high variability of individual
performance in the group?
Could it be because weak students were able to
improve their performance gradually? We cannot
say anything for sure given such small sample
size, but the data does provide directions for

potential explorations.

Group Average
Final

Quiz

Score

Average
JAVA

Program

Score

Cumulative
Average

C1 66% 51% 56%

E1 74% 71% 72%

E2 78% 74% 75%

Table 5: Final exam score for all groups

The groups were administered the exact same
final exam. The two part exam consisted of
writing a JAVA program and a multiple choice quiz

that covered all seven modules.

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 66

https://isedj.org/; https://iscap.info

The JAVA program was worth two-third of the

total points, and the quiz, one-third. Table 5
presents the data.

It is quite interesting to note that while there was
no significant difference between module quiz
scores, the experimental groups performed much
better in the final exam. Even though the gains in
the final quiz are marginal, the experimental
groups outperformed the control group by 20
percentage points or more in JAVA program

writing. The overall cumulative improvement in
final exam mean score was 16%, and 19% for E1
and E2 respectively. These numbers may
insinuate that – for the experimental groups – the
increased practice led to an improvement in final
exam score, though it is too early to say anything

with high degree of confidence due to such a
small sample size. Nevertheless, the final exam
numbers are encouraging.

Intra Group Analyses
Tables 6 and 7 present detailed non- submission
data for E1 and E2 respectively. The first column

represents the module/chapter that was covered,
and the numbered columns represent the
assignment number in that particular module.
Some modules had four, some five, and some had
seven assignments. The instances of no
submissions are relatively very low as compared
to late submissions. Similar trend was missing in

the control group.

Tables 8 and 9 represent the late submission data
for E1 and E2, respectively. Tables 10 and 11
present a cumulative summary of the
assignments for E1 and E2, respectively.

Cumulatively, for both experimental groups, only
about 2% of the total assignments were not
submitted. This could mean many things; one of
the possible explanations might be that given the
right conditions, the students were willing to
engage more.

Module 1 2 3 4 5 6 7 Total

1 0 0 0 0 - - - 0

2 0 0 0 0 0 0 - 0

3 0 0 0 0 - - - 0

4 0 1 0 1 0 0 - 2

5 0 0 0 0 1 - - 1

6 0 0 1 0 1 1 3 6

7 0 2 1 1 3 - - 7

Table 6: Assignments not submitted for
group E1

Module 1 2 3 4 5 6 7 Total

1 0 0 1 0 - - - 1

2 0 0 0 1 1 0 - 2

3 0 0 0 0 - - - 0

4 2 2 0 2 1 0 - 7

5 0 1 0 0 0 - - 1

6 0 0 0 0 1 0 3 4

7 0 2 3 1 6 - - 12
Table 7: Assignments not submitted for

group E2

Module 1 2 3 4 5 6 7 Total

1 0 1 2 1 - - - 4

2 2 1 2 2 0 2 - 9

3 0 0 1 3 - - - 4

4 2 1 3 2 1 2 - 11

5 2 2 3 4 5 - - 16

6 2 1 4 4 2 1 5 19

7 2 5 6 5 4 - - 22

Table 8: Assignments submitted late for group
E1

Module 1 2 3 4 5 6 7 Total

1 3 4 3 2 - - - 12

2 1 1 1 2 0 1 - 6

3 2 1 1 0 - - - 4

4 1 2 1 3 1 8 - 16

5 1 1 4 7 6 - - 19

6 2 2 3 1 0 4 3 15

7 3 5 2 1 8 - - 19
Table 9: Assignments submitted late for group

E2

Module

No
Maximum
Possible

Sub-
missions

Not Sub-
mitted

Late Sub-
missions

1 88 0 4

2 132 0 9

3 88 0 4

4 132 2 11

5 110 1 16

6 154 6 19

7 110 7 22

Total 814 16(1.9%) 85(10.5%)

Table 10: Assignment Summary for E1

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 67

https://isedj.org/; https://iscap.info

Module

No

Maximum

Possible
Sub-

missions

Not Sub-

mitted

Late Sub-

missions

1 88 1 12

2 132 2 6

3 88 0 4

4 132 7 16

5 110 1 19

6 154 4 15

7 110 1 19

Total 814 15(1.8%) 91(11.1%)

Table 11: Assignment Summary for E2

Late submissions were allowed with reduced
credit, and cumulative late submission rate
stands at about 10.5%, and 11%.

The instances of both late and no submissions

increase as the course progresses, even though
the rate of increase of no submissions is low as
compared to late submissions. This may be
explained by the fact that the concepts to be
learned become complex as the course
progresses, and some students might have given

up on some of the later stage assignments.

4. COURSE SURVEY AND DISCUSSION

An end of course survey was conducted for both

E1 and E2. Number of participants were 22, and
13 respectively, i.e., 35 students in total. The
questions were primarily centered around the

potential impact of high number of assignments
on their motivation, stress levels, and their choice
between the instructional intervention and the
orthodox method of single assignment per
module used at our department. The full survey
is listed in Appendix C.

One of the questions asked the students about
how they felt about the utility and effectiveness
of this intervention in completing the course
satisfactorily. A surprising 90% of the students in
E1 and 84% in E2 answered that they felt
positive/better about using this technique while

10% in E1, and 9% in E2 reported that they felt
slightly worse while working with this technique.
Another question asked the students about the
utility of doing a daily assignment in learning
computer programming. A whopping 100% of the
students in both E1 and E2 felt that it is useful.
This gives us some confidence to assert that given

the right cognitive load and environment,
students do see potential value in constant
practice for learning programming.

Another important question asked the students
about their choice between the novel instructional
technique and the normal course delivery

mechanism of doing one assignment per week.
96% in E1, and 76% of students in E2 preferred
the novel technique. On an aggregate level, 88%
of the students said that they would prefer
working every day, 6% preferred orthodox course
delivery, and 6% showed no preference. Hence,
the students overwhelmingly choose working

everyday as a mode of course delivery over our
normal delivery method. This, we believe, is a
very important piece of feedback for us. Students
were also asked about their stress levels
regarding doing so many assignments. A
cumulative 45% of the students answered that

working every day on assignments made it easy
for them to manage stress.

Students remarked that the process made it easy
to manage overall stress as the assignments were
gradually increasing in difficulty. 39% said it
increased their stress levels as they had to do

many more assignments, and 15% choose that it
made no difference.

The efficacy of this intervention cannot be
generalized with such a small sample space, but
the initial results do reveal some interesting
insights. Many students seem to find working on

incrementally difficult assignments beneficial,
even if it means working more time than usual.

According to the assignment data collected and
student responses on the survey, most students
show an inclination towards practicing more, as
long as the cognitive load is manageable. This is

evident from the minimal no-submission and late-
submission instances during module 1 to 5 that
cover basic JAVA concepts. Module 6 and 7 cover
complex concepts such as 2D arrays and file
operations.
Confirming our expectations, the instances of no-
submission and late-submission rise during these

modules. Overall, this technique, appears to
successfully increase student engagement with
the course.

It is no doubt that the workload of this technique
may be perceived as higher when compared to
orthodox course delivery. The pressure of

completing an assignment every day can still lead
to student demotivation, and may even
exacerbate the de-motivational factor this
technique was designed to mitigate. Results and
responses, however, show that the technique
successfully navigated these roadblocks.

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 68

https://isedj.org/; https://iscap.info

A significant potential limitation of this technique

is its resource intensiveness. Since students have
do so many assignments, they tend to ask many
more questions about the concepts, as well as

clarifications on assignments. Providing timely
feedback is challenging even when the instructor
has a course grader. Grading so many
assignments, in our experience, was one of the
major concerns, as this may inadvertently lead to
grading fatigue.

Another important aspect was the continual and
immediate presence of instructor and tutor
support. Without this perennial support, this
technique may be rendered ineffective very
quickly. Our experience in a more traditional
approach is that about 50%-60% of the students

asked questions on the day the assignments were
due. Since students have a due date almost every
day of the week, it requires continuous tutor
support due to sheer volume of the queries. If
these questions remain unaddressed at the
outset, it may cause learning gaps for the
students. Since the subsequent assignments

build on previous assignments, it may have a
snowball effect, which is highly undesirable. The
daily deadlines were especially difficult for the full
time working students. For them, as evidenced by
comments in the survey, it was difficult to
schedule time every day to finish the
assignments.

5. CONCLUSION AND FUTURE WORK

Students in both experimental sections of our
introductory programming course agreed that
working on incrementally difficult assignments
everyday added value to their process of learning

computer programming. It helped them practice
consistently, thereby improving their enthusiasm
about the course and programming. Though there
were no significant differences in the individual
chapter quiz scores between the control and
experimental groups, the experimental groups
performed much better in the final exam. At an

anecdotal level, it seems that it may be possible
to affect the motivation levels of students using
this intervention. The end of course survey

responses indicate that though the technique was
very well received.

It would be too premature to consider the

intervention as a success given the significant
challenges this technique entails. Firstly, grading
a large number of assignments, and providing
high volume of feedback is resource intensive.
Hence, an automatic grader may be required to
speed things up. Continuous tutor support is also

required to help stem student frustration, and to

give them the feeling that help is always

available.

Figure 2: Incrementally Scaffolded System:

An Abstraction

To mitigate the load on the instructor,
tutor/grader and students while maintaining the
integrity of the technique, we envisage coupling
an automatic grading system with an artificial

tutor bot, capable of answering basic questions
about the course, assignments, and simple
concepts of programming. An abstract schemata
of this system is shown in Figure 2. We are
encouraged by the initial results of this study, and
the promise of future research.

6. REFERENCES

Alexandron, G., Armoni, M., Gordon, M. & Harel,

D. (2014). Scenario–based programming:
Reducing the cognitive load, fostering
abstract thinking. In Companion Proceedings
of the 36th International Conference on

Software Engineering pp. 311–320.

Allan, V. H. & Kolesar, M. V. (1997). Teaching
computer science: a problem solving
approach that works. ACM SIGCUE Outlook,
25(1–2), 2–10.

Biggs, J (1999). Teaching for Quality Learning at

University. Society for Research Into Higher
Education.

Beaubouef, T. B. & J. Mason (2005). Why the High
Attrition Rate for Computer Science Students:

Some Thoughts and Observations. Inroads –
The SIGCSE Bulletin, 37(2), 103–106.

Bennedsen, J. & Caspersen, M. E. (2007). Failure

rates in introductory programming. ACM
SIGCSE Bulletin, 39(2), 32–36.

Brown, S. W., & Bennett, E. D. (2002). The role
of practice and automaticity in temporal and
nontemporal dual-task performance.
Psychological Research, 66, 80–89.

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 69

https://isedj.org/; https://iscap.info

Crego, Antonio, Carrillo-Diaz, María, Armfield,

Jason M. & Romero, Martín (2016). Stress
and Academic Performance in Dental
Students: The Role of Coping Strategies and

Examination-Related Self-Efficacy Journal of
Dental Education February 2016, 80 (2) 165-
172.

Dawar, D. (2020). An Assignment a Day
Scaffolded Learning Approach for Teaching
Introductory Computer Programming.
Information Systems Education Journal 18(4)

pp. 59-73.

Fallows, S., & Ahmet, K. (1999). Inspiring
Students: Case Studies in Motivating the
Learner. Kogan Page Publishers.

Glover, J.A., Ronning, R.R. and Bruning, R.H.:
1990, Cognitive Psychology for Teachers,

Macmillan, New York.

Goold, A., and Rimmer, R. (2000). Factors
affecting performance in first-year
computing. SIGCSE Bulletin 32, 39–43.

Howles, T. (2009). A study of attrition and the use
of student learning communities in the
computer science introductory programming

sequence. Computer Science Education,
19(1), 1–13.

Kalchman, M., Moss, J., & Case, R. (2001).
Psychological models for the development of
mathematical understanding: Rational

numbers and functions. In S. M. Carver & D.
Klahr (Eds.), Cognition and instruction:

Twenty-five years of progress (pp. 1-38).
Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers.

Kaplan, D. S., Liu, R. X., & Kaplan, H. B (2005).
School related stress in early adolescence and
academic performance three years later: The

conditional influence of self-expectations.
Social Psychology of Education, 8, 3-17.

Keller, J. M. (1983). Motivational design of
instruction. In Instructional-Design Theories
and Models: An Overview of their Current
Status, C. M. Reigeluth, Ed. Lawrence
Erlbaum Associates, pp. 383–434.

Kim, J. & Lerch, F. J. (1997). Why is programming
(sometimes) so difficult? Programming as
scientific discovery in multiple problem
spaces. Information Systems Research 8(1)
25–50.

Kinnunen, P. & Malmi, L. (2006). Why students
drop out CS1 course?. In Proceedings of the

Second International Workshop on

Computing Education Research (pp. 97–108).

New York, NY: ACM.

McGregor, D. (1960). The Human Side of
Enterprise. McGraw Hill.

Mendes, A. J., Paquete, L., Cardoso, A. & Gomes,
A. (2012). Increasing student commitment in
introductory programming learning. In
Frontiers in Education Conference (FIE) (pp.
1–6). New York, NY: IEEE.

Moors, A., & Houwer, J. D. (2006). Automaticity:
A Theoretical and Conceptual Analysis.

Psychol Bull, 132(2), 297-326.

Newman, R., Gatward, R. & Poppleton, M. (1970).
Paradigms for teaching computer
programming in higher education. WIT

Transactions on Information and
Communication Technologies, 7, 299–305.

Paas, F., Renkl, A., & Sweller, J. (2010). Cognitive
Load Theory and Instructional Design: Recent
Developments. Educational Psychologist, 38
(1), 1-4.

Rist, R. S. (1986). Plans in Programming:
Definition, Demonstration, and Development.
In Soloway, E. & Iyengar, S., eds., Empirical

Studies of Programmers. Norwood, NJ: Ablex
Publishing, pp. 28–47.

Rist, R. S. (1989). Schema Creation in
Programming. Cognitive Science, 13, 389–
414.

Rist, R. S. (1995). Program Structure and Design.
Cognitive Science, 19, 507–562.

Rist, R. S. (2004). Learning to Program: Schema
Creation, Application, and Evaluation. In
Fincher, S. & Petre, M., eds., Computer
Science Education Research. London, UK:
Taylor & Francis, pp. 175–195.

Robins, A. V., Rountree, J. & Rountree, N. (2003).

Learning and teaching programming: A
review and discussion. Computer Science
Education 13(2) pp. 137–172.

Rogalski J. & Samurçay R. (1990). Acquisition of
programming knowledge and skills. In J. M.

Hoc, T. R. G. Green, R. Samurçay & D. J.
Gillmore, eds., Psychology of Programming.

London: Academic Press, pp. 157–174.

Sheard, J. & Hagan, D. (1998). Our failing
students: a study of a repeat group. ACM
SIGCSE Bulletin, 30(3), 223–227.

Sorva, J. (2013). Notional machines and
introductory programming education. ACM
Transactions on Computing Education

(TOCE), 13(2), Article 8.

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 70

https://isedj.org/; https://iscap.info

Sweller, J. (1988). Cognitive load during problem

solving: Effects on learning. Cognitive
Science, 12(2), 257–285.

Sweller, J. (1994). Cognitive load theory, learning

difficulty, and instructional design. Learning
and Instruction, 4(4), 295–312.

Watson, C. & Li, F. W. (2014). Failure rates in
introductory programming revisited. In

Proceedings of the 2014 Conference on

Innovation & Technology in Computer
Science Education (pp. 39–44). New York,
NY: ACM.

Winslow L E (1996) Programming pedagogy – A
psychological overview. ACM SIGCSE
Bulletin, 28(3), 17–22.

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 71

https://isedj.org/; https://iscap.info

APPENDIX A

Table 1: Increment in cognitive load with time

Assignment

No.

Description Concepts Tested Cognitive Load

1 Write a method printS that

takes a string as an input and
prints it to the console.

Rudimentary method

writing.

Low

2 Modify the above method
printS and enable it to take
another argument, an integer,
n. The method then prints the
string n times in a line.

Method writing, method
calling, method
modification.

Low

3 Reuse printS to print a user
entered string n×n times; i.e.,
a square with each element as
the string

User input, loops, method
writing, method calling

Medium

4 Reuse printS method to print a
right angle triangle in terms of
user entered string

User input, loops, method
writing, method calling,
Problem solving

Medium

5 Reuse printS to print a pyramid
in terms of user entered string

User input, loops, method
writing, method calling,
Problem solving

High

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 72

https://isedj.org/; https://iscap.info

APPENDIX B

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 73

https://isedj.org/; https://iscap.info

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 74

https://isedj.org/; https://iscap.info

APPENDIX C

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 75

https://isedj.org/; https://iscap.info

Information Systems Education Journal (ISEDJ) 19 (4
ISSN: 1545-679X August 2021

©2021 ISCAP (Information Systems and Computing Academic Professionals) Page 76

https://isedj.org/; https://iscap.info

