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Abstract: This paper discusses a model of a mathematics teacher professional development imple-
mented in Italy and Hungary with in-service and pre-service mathematics teachers. The model
focuses on comparative geometry, and it develops with the use of an artifact: the Lénárt spheres.
The teacher training model is the result of several years of experience of the two authors both as
regards the activities in the classroom with the Lénárt spheres and as regards the training of teachers
in this field. The proposed teachers’ professional development, in addition to providing ideas for
activities to be implemented in the classroom, has the objective of proposing reflective activities
from a community of inquiry perspective; during the activities, mediated by the artifact, both the
Pedagogical Content Knowledge and the Mathematical Content Knowledge are taken into considera-
tion (Ball et al., 2008). The model has been implemented in Italy in more than 15 training courses
taught in the last 5 years, both with primary school teachers and with secondary school teachers.
In Hungary, the model is at the basis of elective courses under the title ‘Ball Geometry’ at ELTE
University, Budapest, for decades. These courses have been aimed at prospective preschool and
elementary school teachers at the Faculty of Primary and Preschool Education, as well as future
secondary teachers at the Faculty of Natural Sciences. The subject of the teachers’ professional
development paths corresponds to the comparative geometry between the plane and the sphere.
After the presentation of the model, some examples of activities implemented in Hungary during the
pandemic period will be illustrated and commented from a didactic point of view, which will serve to
exemplify the path described. The described path was carried out remotely in online mode through
synchronous and asynchronous activities. The distance obviously changed the way we interacted
with the artifact, but it did not prevent the achievement of the courses’ objectives.

Keywords: Lénárt spheres; comparative geometry; teacher training

1. Theoretical Background

As shown in the literature [1,2], the collaboration and mutual trust between teachers
and researchers is fundamental for the success of professional development paths, and
the design of our training model has taken into account these studies. In all phases of the
path, we have tried to create a collaborative and relaxed atmosphere. Our model aims to
share specific analytical and reflective practices with teachers with the aim of building a
community of inquiry [3,4]. In a community of inquiry, participants are driven by the desire
to discover, ask questions, try to understand by collaborating with others in an attempt
to produce answers. Everyone, individually or in a group, gives their contribution to the
development of the practice through critical reflection activities, and this contributes to
the continuous development of the entire community. During the implementation of our
training model the teachers and the researchers shared and developed their knowledge;
the result of this process is the formation of a shared knowledge of theories and practices
composed of elements of mathematics, teaching and pedagogy [5]. In fact, as pointed out
by Shulman in 1986, [6], knowledge of the contents of the discipline is certainly central
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to the teaching and learning of mathematics, but, for a teacher, the knowledge of the
contents is intertwined with the pedagogical knowledge that is fundamental in the design,
development and evaluation of classroom activities. During the teachers’ professional
development path, all aspects of Mathematics Teachers’ Specialized Knowledge [7] are
taken into account. In detail, the structure of our model is based on the connection between
a group of individuals, that is, the teachers and the mathematics education researcher, and
teacher training activities mediated by the artifact Lénárt spheres (see [8,9]).

In this case, we are referring to the meta-didactic transposition model that considers
the practices of mathematics educators (researchers) and those of teachers, when both
communities are engaged in teacher education activities. It is an adaptation of Chevallard’s
anthropological theory [10] to teacher education, through the integration of additional
elements [11].

The Meta-Didactical Transposition—TMD model is deeply related also with the MKT
construct of Ball and others (e.g., [11]).

The complex dynamic interaction develops among various communities involved
in teacher education activities, and meta-didactic transposition is characterized by five
intertwined features: the institutional aspects, meta-didactic praxeology, the dual dialec-
tics, processes of intermediary processes and the dynamics between internal and external
components. All these features allow TMD to consider some of the main teacher profes-
sional development paths in relation to their development. One of the cardinal aspects
of TMD, which originates within Chevallard’s Anthropological Theory of Education is
the praxeology. This notion is structured on two levels: Praxis, or knowing how to do, and
Logos, or knowledge. Praxis includes the problems to be studied and the techniques to solve
them. Logos includes the discourses that describe, explain and justify the techniques used
or the production of new ones. Technology is intended in the etymological sense of ‘logos
on technè’, discourse on Technique. The formal justification of Technology is provided by
Theory. Every praxeology, therefore, is constructed from the quatern (Problem, Technique,
Technology, Theory), with Problem and Technique defining the know-how—Praxis and Tech-
nology and Theory defining the knowledge—Logos [12]. Meta-didactic praxeologies do not
refer to classroom didactics, but to the practices and reflections on didactic praxeologies that
in the various projects are used to train teachers in accordance with a certain theoretical
framework and are the result of the interaction between the concrete practices used by
teachers, the teachers’ own reflection on these practices and the reflection of the community
of researchers who are concerned with the effects of the educational processes they develop.
And it is precisely the meta-didactic praxeologies that are at the heart of our teachers’ profes-
sional development courses. Moreover, in this context a fundamental linking figure arises,
the broker (mediator), who is one of the elements external to TAD introduced by TMD.
The broker is that figure who creates new links between different communities of practice,
coordinates them and generates new meanings by facilitating the sharing of knowledge
and practices [12]. Trainers in the model we will present below have often taken on the
role of brokers.

2. The Model

With respect to the design of the activity, the lesson plan we propose during teach-
ing training is inspired by Activity Theory design [13]. The activity plan follows the
following schema:

• Introduction of the activity. The researcher discusses with teachers non-Euclidean
geometry. Initially, some notions of non-Euclidean geometry are introduced by the
researcher from a theoretical point of view (with non-graduate teachers in mathematics
we focus more on this point). It is specified that the objective of the training course is
not to “learn” non-Euclidean geometry but that we will focus on comparative geometry.

• Manipulative activities with the Lénárt spheres. Teachers are introduced to the Lénárt
spheres, and the researcher asks them to begin to familiarize themselves with this
structured material. Teachers are divided into groups (usually, a maximum of four
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teachers) and, after an initial exploration moment, the researcher presents some of the
features of the sphere that the teachers will use in their inquiry [3]. The researcher
addresses the mathematical content selected for the activity from a conceptual and
epistemological point of view.

• Analysis of an example. The researcher discusses with the whole group of teachers,
according to the rules of a community of inquiry, a didactical path which can be
implemented with the use of spheres. Obviously, the paths presented are in line with
the school grade in which the teachers teach. The activities presented are analyzed
both from the point of view of the content and from the pedagogical point of view,
with some of the main mathematical teaching constructs [7].

• Group activity. The researcher assigns a task covering a mathematical content, a
learning difficulty and a cognitive process, related to the content at stake, that are
developed according to the scholastic level of interest of the teachers. The small
group activity is carried out according to the rules of a community of inquiry, and the
members of the group strongly interact with the Lénárt spheres. The group activity
aims at the construction of a product, an artifact, the design of an activity for students
etc., which should highlight teachers’ reflections, convictions and beliefs.

• General discussion. The sub-groups present their materials in a written or oral form
to the big group. Each presentation is discussed within the community of inquiry,
conducted by the researcher, in order to highlight beliefs and convictions, tackle
doubts, difficulties and unclear contents regarding both the mathematical content and
the analysis of the related learning process from a didactical point of view. The final
discussion, based on the oral presentations, is performed with the same characteristics
of a community of inquiry.

3. Venue and Participants

The present paper is about our experiences with primary and preschool students.
We take our examples mostly from distance communication during the last year of the
pandemic period. Our main goals have been more or less the same since the course began,
but until last March most of the communication with the students happened face-to-face in
the classroom. Since the lockdowns of the pandemic, however, we have mainly opted for
the written form of communication. The experimentation was conducted with Hungarian
and Italian teachers.

With many obvious drawbacks, this method proved surprisingly fruitful in many
other ways. Students have time to ponder over an example or to create diagrams or other
illustrations much more comfortably than before. Likewise, we could comment on their
written answers more comfortably and deeply in this way.

Very importantly, we have tried to introduce a friendly, familiar style that is close to
the tone of personal correspondence. We praise good mistakes, by which we mean, in the
natural way of truth-finding, perfectly acceptable mistakes through trial and error. In fact,
we consider good mistakes to be evidence of independent thinking and experimentation,
as opposed to copy-and-paste methods from various internet sources.

The geometry syllabus in the compulsory curriculum fits the future profession of
preschool and primary teachers. As such, it contains little or no reference to non-Euclidean
geometries that form the basis of the Ball geometry course. One might think that students
with this background in math are far from interested in such an advanced subject. This is
not the case, as the number of students shows, which was over 80 in recent years.

We regularly ask the participants why they come to the course. The most typical
answers are:

• Recommended by someone who has attended before.
• The title “Ball Geometry” made them curious.
• They had a mild or not-so-mild math phobia in secondary school and were hoping for

a positive turn in this regard.
• By contrast, they loved math in high school and longed for new challenging subjects.
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Why are these students particularly suitable for checking the level of actual under-
standing of geometric concepts?

Most of them have adequate wording skills and readability. Consequently, they are
able to express their thoughts, feelings, inner struggles with new topics and joy over success.

They are eager for gathering positive mathematical experiences, but at the same time
do not feel guilty about deficiencies in their prerequisite mathematical knowledge, since
mathematics is just one among many other subjects from pedagogy to literature, art and
music in their curriculum. Due to the diversity of their subjects, they were open and
receptive to the connection between different areas of human culture and science. Their
association skills helped them understand the new concepts.

The shortcomings in their mathematical knowledge turn out to be beneficial in some
respects. After appropriate experience, they can recognize their own deficiencies. They
rarely escape behind root-learned definitions and arithmetic routines without real under-
standing. Still, when this is the case, they recognize and correct their own deficiencies.
They do not feel the need to be infallible that often causes trouble with future high school
teachers. Their answers clearly show what is left in the minds of the educated but not
math-specialist students from the mathematical and geometric material they encountered
in their previous studies.

It was a great surprise for them to come across a completely different material in
geometry than what they were used to. (See Brousseau’s idea of the didactic contract.) It
was unusual that they could express their opinion on these issues or describe their positive
or negative feelings on a mathematical problem. They viewed mathematics and geometry
as strictly objective sciences in which only flawless answers can be accepted, and it is up to
the instructor to decide whether the answer is flawless.

To be able to judge the effectiveness of the course, we must also consider the following
aspect. The basic notions used to introduce students to geometry are indeed some of the
most difficult concepts that are among the central problems and heated debates of scientific
research in present-day mathematics.

The nature and cardinality of the point, the idea of a continuous line, the definition of
a straight line, perpendicular and parallel lines, the concept and measurement of distance
and angle—all of them are light years away from being simple or easy.

Yet, school education expects the learner to accept these terms as obvious concepts
without any doubt or objection.

This can be one of the first experiences that alienate the student from geometry. He
gets used to keeping his doubts and objections to himself. Since the definitions given by the
teacher do not satisfy him, he does not recognize the geometric shape by the definition, but
only by the visual image. He views the definition as a meaningless but necessary formality,
a game to play because the teacher requires him to do so.

The efficiency or ineffectiveness of visual recognition is revealed when the student
encounters the same concept in a different environment, by a different form of representa-
tion. The visual appearance that helped the student recognize the concept becomes one
of the main obstacles in the new environment to true understanding, to the process of
successful interiorization.

However, if the student overcomes this obstacle and identifies the same concept in
the new environment, the failure turns into a success. He understands the significance
of the definition and breaks free from the shackles of inoperative knowledge within a
single system.

If current math teaching considers it its main task to make students know certain fixed
concepts and theorems, then comparative geometry is a new subject inside or outside of
mathematics. Its purpose is not to convey an irrefutable truth established by the great
scholars of the past, but to inspire the student to think independently, to express his or her
opinion, to make decisions, to be able to describe his or her own line of thought, to make
mistakes without a sense of guilt, but with the intention of correcting the mistakes.
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Summing it up, comparative geometry views the student not merely as a pupil of
great scientists of the past but as their partner. It is not because the student considers
himself as smart as they (who knows, anyway? they were once pupils too), but because
those great scientists lived and acted the same way, considering their predecessors not as
their superiors but as fellow researchers in their investigations.

4. Some Extracts from the Experimentation

We report below some of the discussions with teachers regarding some topics of geom-
etry, in the perspective of the comparison between plane geometry and spherical geometry.

4.1. What Is a Point?

Student 1: “In my opinion, a point can be a physically drawn point on a flat
surface, such as a drawing sheet. But it can also be a reference point, for example,
I choose the chandelier on the ceiling as a reference point for how far I am from it.
If I wanted to be very philosophical, I would say that the point can be anything,
and the nothing, the emptiness is everything. I don’t know, this came to my mind
first. I’m a little shot at the question of drawing half a point . . . Except for the
‘half point’ drawn with a pen, you might not be able to draw half a point because
it’s already a point.”

Teacher: “Nice, illustrative description. I agree with you that half a point cannot
be drawn. I once thought that I was the first to tell this, but I was a little mistaken:
a Chinese book Mo Jing already had it 2300 years ago. . . ”

Student 2: “I would choose the circle as my best friend to build geometry on
the plane. It is easy to create triangles from it, all kinds of rectangles or even
polygons by drawing different radii, diameters and/or secants. . . Well, if the
point was the ‘good’ solution, then I am very far from the truth. . . ”

Teacher: “Dear M., one of my main goals in this course is to convince you that
the choice of basic concepts is completely arbitrary!”

Student 2: “I think the point is the smallest possible shape, the point is a point on
a flat surface and on a spherical surface. Each additional shape consists of points
and is made up of points, starting with a first point and ending with a last point.
What is the difference between point and nothing, it is a catchy question? The
point is something, it exists and is there, it is a place, so by no means nothing.”

Teacher: “I don’t know much more myself!”

Student 3: “If we consider an infinite flat surface even the point is infinite itself.
I think a point that could be visible on a surface is itself full of points. Probably
‘half of a point’ it’s not a naked-eye measurable element, neither an abstract idea
we can think about. I mean I consider they are both ‘infinite’ surfaces (with
no boundaries) and we draw a point this point is, in an abstract point of view,
infinitive full of points. As we can see, it isn’t possible to consider ‘half of a point’,
a point it’s always full of infinite little points itself. I can conclude a point is a
‘relative idea of element’, it depends on the position we want to consider it.”

Teacher: “My answer (which you can accept or refuse) is that there is only one
thing that I know for sure about the point, namely, its location within a larger
environment. The dot or cross that symbolizes a point on a sheet of paper or on
the peel of an orange is actually a sea of ink or paint when examined under a
magnifying glass or a microscope. It is up to the user to decide whether or not a
particular shape can be considered a point.”

Student 4: “The simplest element on the plane has to be two-dimensional and,
on the sphere, three-dimensional. First, I wanted to choose a square because
in my head I compare a flat surface always with a sheet of paper but then I
thought about it again. I think I would choose a circle because it has no beginning
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and no end just like the infinite surfaces. Three-dimensional it would become a
bullet then.”

Teacher: “In this course we take the point as the simplest element on the plane
and on the sphere. What is a point? What is the difference between the point
and nothing?”

Student 4: “A point is a point, no nothing. How could it? Points can be very
important. For example, in a text they mark the end of a sentence or are part of a
sign (!) or letter (i). You use them also for writing the date (26 February 2021).
The display of a computer/laptop/tablet/mobile phone consists also of kind of
‘dots’ (pixel). If you look at one of these ‘dots’ alone it doesn’t seem important
but on the whole, they form a picture. Maybe every point consists out of many
other points. In that case a half point is just a point out of less other points.”

Students are surprised, sometimes shocked, by the question. They think that the
concept of point needs no further explanation. Many math teachers are likely to share the
same view and will not initiate a discussion with students on this issue. In our opinion, an
open exchange of ideas between teacher and student has several benefits. As highlighted by
the TDA [4], both in terms of Praxis and Logos, the role of the teacher is very relevant, both
in terms of the choice of knowledge involved and the approaches to it. The teacher cannot
and should not play the role of infallible authority, but only represent his own perception,
his approach to definition, which in no way excludes other opinions. An exchange of
views at the beginning of the geometry class creates a student-friendly atmosphere in the
classroom, promotes the independent expression of different opinions and encourages
students to exercise the right to trial and error during their investigations.

Teacher’s attempt to interpret the notion of point to all students:
“If I say: ‘New York is an important point of railway junction within the U.S.A.,’ this

means that nothing else is interesting for me of New York (its history, population, rivers,
etc.), but only its place within the U.S.A. In other words, I consider New York as a point
within the U.S.A.

If I say: ‘Time Square is an important point of traffic within New York,’ I consider
Time Square as a point within New York. In this case, Time Square relates to New York in
the same way as New York to the U.S.A. in the previous example.

When I say, ‘The Earth orbits the Sun in an elliptical orbit,’ I am viewing the Earth as a
point because I am only focusing on the location of the Earth in the Universe. However,
when I try to explain why there are seasons or days and nights on the Earth, the point
assumption helps me no longer. I have to assume the movement and rotation of a three-
dimensional sphere as the shape of the Earth.”

4.2. What Is a Straight Line on the Plane and on the Sphere?

Teacher: “In order to study the straight line, connect two points with the line
which shows the shortest distance on the surface. Stretch a rubber ring on a flat
surface (cell phone) and on a sphere (an orange). Also, follow the route of a drop
of water on a flat surface and on a sphere. Describe the lines you get.”

Student 5: “If we draw a line on a drawing sheet, i.e., we connect 2 points we get
a line. I think you can extend both ends of the point indefinitely. I couldn’t tell
a given distance how long, actually, as long as we can, we’ll pull the extension.
Since we are working on a flat surface, the lines do not meet each other, but as
we live on the Earth, which is spherical, so if I draw a straight line on Earth and
continue, I may come back to one end once. . . If we draw a line on the spherical
surface, we get a circle from above, for example, and I don’t think that line can
be extended because they meet on the sphere (the starting point will be the end
point.) These lines are different on the planar and spherical surfaces but are
still the same. In the same way, we draw a line, they will only have a different
look/shape. On a flat surface, it only looks like a straight line, and on a spherical
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surface, it looks like a circle from above. And on a plane, nothing resembles a
circle, I just see the drawn lines as straight.”

Student 6: “The simplest line on the plane and on the sphere is again the point.
If we consider the point as the simplest element on the surface, the succession of
points is a line, if we go ‘dividing and deconstructing’ the line into consecution of
points one point is in itself a line. So, the simplest line is the point. I don’t know
if you’ll agree but I think that we can’t consider the straight line as the infinite
flat surface. I mean. . . A line, a consequence of points it’s something, it can’t be
considered as all the flat surfaces. Honestly, it’s a difficult dissertation even with
myself! Seen in depth a line is a line (consequence of points) either on the plane
or on the sphere.”

Teacher: “This ‘consequence of points’ is very hard to define. . . Is there a bisect-
ing point between any two ‘consecutive’ points? If yes, what is the meaning
of ‘consequence’?”

Student 6: “I wrote it basically starting from the point I wrote before, yes I think
ideally we must consider a bisecting line between two points. I wrote the answer
considering the assumption I did before: ‘the line is a consecution of points, so
one point is in itself a line. So, the simplest line is the point’.”

Student 7: “What is the next simplest element on the plane? I first, again, wanted
to choose the square. I think because it’s one of the shapes you always hear of in
school. But then I read my answer from the question above again and realized
that a square could consist out of many points. Just like on the computer desktop.
So, I am not sure about my answer because now I think that every other element
could consist out of points.”

Teacher: “What is the simplest line on the plane and on the sphere?”

Student 7: “I think the simplest lines are these consisting out of points.”

Teacher: “But all lines consist of points! Which is the simplest among them? I
proposed the straight line on the plane and asked if there is a straight line on the
sphere. What do these lines look like on the plane and on the sphere?”

Student 7: “On the plane the line is totally straight no matter of which direction
you look at it. On the sphere the line is only totally straight if you look at it
from a 90◦ point of view which is directly above the line. Otherwise, you can
see ‘roundings’.”

Teacher: “Again, you cannot look at it from outside, you are a ‘spherelander’
living on the sphere.”

Student 8: “Every line is different, because in every situation the line behaves in
different ways. It is easier to draw a straight line on a flat surface. Besides, it is
much nicer on the plane than on the sphere. It was also clear from the last task
(orange drawing) that it is more difficult to draw a straight line on a spherical
surface. The lines are similar in plane and sphere, but a spherical line is not a
regular line, but takes on the shape of the surface.”

Teacher: “Whether it is more difficult or whether it is nicer is probably a matter
of habit. My Vietnamese acquaintances did not understand why I cannot eat with
chopsticks because it is so simple. . . ”

This is also a topic that many teachers do not waste much time explaining. They
probably think the visual image is enough to decide if the line is straight. This is in stark
contrast to one of the central tasks of math lessons, namely to clarify the meaning of the
mathematical definition, which remains a lifelong mystery to many children and adults.
The transfer of the concept of straight line from the plane to the sphere offers the teacher
an excellent opportunity to convey the essence and advantages of mathematical definition
to the students.
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Another advantage is that there are several experiments with strings, rubber rings,
drops of water, etc. to illustrate a straight line on the plane and on the sphere. In this way,
the teacher has the opportunity to emphasize the role of direct perception and experience in
mathematics, the path from concrete experiment to mathematical-geometrical abstraction.
In this situation, the teacher’s fundamental role as a broker emerges [10].

4.3. When Do You Call Two Straight Lines Parallel?

Student 8: “On a plane surface, two lines are parallel if the line lies at the same
angle below or above the specified line. On a spherical surface, it could only be
parallel if we spread the surface and compared the lines drawn below or above
each other there.” “Very clever, very deep thought. Parallel means that if we
connect two straight lines the same points will be equidistant from each other.”

Student 9: “When are two planar lines parallel to each other? When the points
of the two lines at the same height are equidistant from each other, they do
not meet each other by dragging them to infinity, that is, they have no point of
intersection. When are two spherical lines parallel to each other? When the two
circular arcs have no intersection with each other and all points closest to each
other are equidistant from each other, they are the same size. What is the meaning
of ‘parallel’ anyway? It is the location of the nearest points of two adjacent lines
at equal distances, without any point of intersection.”

Student 10: “Two plane lines are parallel if they do not intersect and are mono-
planar. Unfortunately, for the sphere, I don’t know if there is any example of a
parallel line at all.”

Student 11: “Two lines on the plane are parallel if there is the same distance
between them throughout in a plane: there is the same distance between two
lines all the way, not necessarily the same length. On the sphere it is just as in the
plane, the Tropic of Cancer is parallel to the Tropic of Capricorn, but so are the
Equator and the polar circles.”

Student 12: “Which straight lines are called parallel on the plane or on the sphere?
Two straight lines are parallel that never touch themselves. Actually, I never
heard about parallel lines on the sphere. All the straight lines on the sphere have
the same path/direction.”

Student 13: “We consider two lines or any other things to be parallel that are not
in contact with each other, but if we put them on top of each other, they would
exactly overlap.”

Teacher: “Are the edges of two plates on the table parallel to each other?”

Student 13: “Two planar lines can easily be like this, but we cannot do this on a
spherical surface. “

Student 14: “Two plane lines are parallel to each other if there exists a line that is
perpendicular to both of them.”

Teacher: “Excellent definition (although other types are also possible).”

Student 14: “Two spherical lines are parallel to each other if there exists a line
that is perpendicular to both of them.”

Teacher: “I am in trouble now what to answer! According to your definition,
which spherical straight lines are NOT parallel to each other? You see, it is up to
us what we call parallelism. . . ”

The concept of parallel lines also seems perfectly clear to the student and often to
the teacher as well. The two lines do not intersect and keep an equal distance from each
other—that needs no further explanation. However, after the discovery of hyperbolic geom-
etry, the general public has met explanations about parallelism that were incomprehensible
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for most readers, including many students and teachers. The concept of the spherical
straight line gives the teacher a tool to examine the question of parallels from a different
perspective. Although spherical geometry differs from plane geometry and hyperbolic
geometry in terms of parallel lines, stepping out of the box of Euclidean geometry helps
a lot in understanding the fundamentals of a third world of geometry. In terms of TDA,
the praxeologies inherent in non-Euclidean geometry can only consolidate knowledge of
Euclidean geometry and, thus, lead toward a more enlightened learning.

4.4. How Many Full Straight Lines Can Be Drawn Through Two Points on the Plane and on
the Sphere?

Student 15: “How many full straight lines can be drawn through two different
plane points? Only one.

How many full spherical straight lines can be drawn through two different
spherical points? Two full lines can be drawn. From one point to another on the
shortest path and the other line from the other half of the point (as if continuing
the shorter line) is connected to the other point.”

Student 16: “I think an infinite number of straight lines can be drawn, especially
on a flat surface.”

Student 17: “If we draw two points on a sheet and try to draw lines on the paper,
we can connect the two points with a specific line from point to point. If we do
the same on a spherical surface and two points are selected in the same way, then
(1). draw a line between two points that can be approached from two sides, that
is, we can choose from two lines if the two lines are not of equal length (2). If the
two lines are of equal length (two points are equidistant), then it does not matter
which line we choose, we are talking about the same line in both cases.”

Student 18: “On the plane: just one full straight line. On the sphere: if we
consider the points which stand on the ‘great circle’ (or the shortest path between
two spherical points on the sphere) there are infinite spherical straight lines which
passes through them. Since we said that the only line on the sphere that can be
considered as a ‘spherical straight line’ is the one which passes through Great
circle, this is the only possibility we have. “

Teacher: “I am a bit confused by your wording, so I reformulate the question:
How many full spherical straight lines = great circles can be drawn on the globe
through Bologna and Moscow?”

Student 18: “None, they’re not on the Equator so the line which passes thorough
Bologna and Moscow is spherical circles not great line.”

Teacher: “No, No, No! Now I see your problem: it is your reminiscences from
geography about the latitude lines. If the Earth-globe is an orange, and you pick
two toothpicks into Bologna and Moscow, of course there is a spherical great
circle through them! In the geographic coordinate system, the spherical straight
lines are the Equator and all longitudes (meridians). Nothing else—no Tropic of
Cancer or Capricorn, no Arctic or Antarctic Circle. Of course, there are infinitely
many other great circles which are neither north-south (like the longitudes), nor
east-west (like the Equator). If you understand this, then you can go through all
the following questions to correct them. Do not rush, take your time! And: Is this
the only possibility, or can we find special pairs of spherical points with different
answer to the same question?”

Student 18: “If we consider two points on the Equator (for ex Quito and Padang)
then we can say the line which passes through them is a spherical straight line.
In this case one straight line can be drawn.”

Teacher: “See my ‘No, No, No!’ remark above!”
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This question establishes the link between the description of the point and the straight
line. When the teacher has discussed the concept of the point on the plane, the student
will likely think that the point behaves the same way on the plane and on the sphere. This
seems to be confirmed by the fact that two points on the sphere usually define a straight
line, as is always the case in the plane. The discovery of the opposite points and the infinite
number of lines passing through them is extremely impressive for the students. Stepping
out of the plane onto the sphere, the teacher has a way to show the student that even
the simplest geometric shapes, such as the point, can show sharp differences in different
geometries. The discovery of the opposing points and the infinite number of straight lines
that connect them is extremely impressive for the students. By stepping out of the plane
onto the sphere, the teacher demonstrates that even the simplest geometric shape behaves
quite differently in different geometries.

4.5. Is There a Smallest Circle on Plane and Sphere?

Student 19: “I don’t think that the smallest circle exists on the plane. What circle
can be considered as the smallest? We can always draw a circle which is smaller
than the little one, then an even smaller circle. On the sphere there is no smallest
circle either, because all the circles which are different from the great circle are all
small circles.”

Student 20: “I don’t think there can be an infinitely large or an infinitely small
circle on the plane. On the sphere I think there is such a circle, the latitudes and
the polar circles came to my mind.”

Teacher: “The polar circles are indeed much smaller than the Equator, but
are there even smaller spherical circles (even if they don’t have a special ge-
ographic name)?”

Student 21: “The smallest circle on the plane is a circle one point away from the
point (the radius of the circle is a point).”

Teacher: “Cute wording! Still, the point is often called a degenerate circle because
no matter how small a circle we draw, it has an even smaller circle, all the way to
the center of the circles. In other words, we can approach the point as close as
we want with real circles. In general, this approach can also be considered as the
definition of the adjective ‘degenerate’.”

Student 21: “Likewise, on the sphere we draw a circle of radius one point away
around the point.”

Student 22: “I would say the smallest circle on the plane is a circle which only
consists of four points which are connected through straight lines.”

Teacher: “Lovely childish! (Sorry, I could not resist, do not be offended!) Can
four points form a full circle? And if you take the bisection of the sides, do you
get an even smaller ‘circle’? But your answer is a wonderful example of how
deeply Euclid’s is ingrained in our thinking. You believe in the Euclidean straight
line, even if you define a circle! Now on a serious note: Is there a real circle on
the plane so you can’t draw another circle entirely within the original circle? And
so on and so on? What is the end of this process?”

Student 23: “Surely there is, the smallest circle I can represent on the sheet. It
could be an empty dot.”

Teacher: “In this geometry game, we are dealing with things that only exist in
our imagination! The point is not an empty circle, as there are still an infinite
number of points inside the empty circle. We can call the point the smallest circle
or a degenerate circle, because no matter how small a circle is, we can draw or
imagine an even smaller circle, all the way to the center of the circles.”
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This, too, seems to be a topic that needs no explanation, although the concept of
limit is one of the guiding themes of recent mathematical research. The vast majority of
students are just as unsure of this question as mathematicians and philosophers have been
for thousands of years. Students often claim that the smallest circle depends on how sharp
the pencil we draw the circle with is. It is also a common answer that the radius of the
smallest circle is 1 unit of measurement. Both the plane and the sphere give the teacher
an opportunity to start a discussion with his students about infinitely small geometric
shapes and infinitely small numbers, i.e., the concept of geometrical and arithmetical limit.
Interestingly, the role of π as the circumference/diameter ratio is characteristically different
on the plane and the sphere. So, the role of pi can be examined by the teacher by referring
not only to abstract arithmetic considerations about rational and irrational numbers, but
also to direct geometric experimentation and measurement.

5. Discussion and Conclusions

As emphasized by the TDA, in teaching situations it is good to keep several factors
under control. The Technology and Theory that define the Know-How-Logos are as important
as the Problem and Technique that define the Know-How-Praxis [10]. The teachers’ choice of
the knowledge to be transposed is crucial. As the above excerpts show, there is a lack, as
far as the students involved are concerned, of both a conscious knowledge of geometry
and a habit of collective discussion and reflection during the learning paths.

In full accordance with Wagner and Jaworski, as cited in Jaworski [3], we emphasize
the importance of co-learning (as was called in the above-mentioned paper) between the
educator and the practitioner, somewhat similar to the relationship between a theoretical
scientist and an experimental physicist, which can, of course, be realized within one and
the same person. This relationship should be based on the cooperation of equal partners,
instead of a hierarchical subordination between the scholar and the teacher. The hierarchical
relationship can be harmful in several ways. It may give a sense of inferiority and irritability
to the practicing teacher, who may come to feel that his direct experience in day-to-day
labor in the classroom becomes an impersonal statistic in a scientific dissertation. His role
is reduced from that of a research fellow to that of a research object, regardless of his own
inventiveness and creativity and his mathematical and pedagogical skills. Another danger
is that the practicing teacher perceives the educator’s behavior as a model for his own
attitude, and creates a similarly rigid, hierarchical atmosphere in the classroom. He confines
himself to infallible statements instead of experimenting, reasoning and arguing, and
expects unquestioned acceptance from his students. This can be all the more inconvenient
and alienating for the student, since the concepts studied in school geometry are often
among the most difficult ones, and have been the focus of intense scholarly debate to
this day. In the examples above, we have seen how much uncertainty and doubt arise in
the students about seemingly obvious basic concepts of geometry, such as the point, the
straight line, the circle, etc. If we do not allow these doubts to come to surface and be
clarified, the student is likely to feel all further conclusions and theorems to be uncertain
and unconvincing. The changed relationship between teacher and student should also
be reflected in the oral or written communication between them. We are by no means
advocating a disrespectful manner, that may be tolerable among peers but unacceptable
between teacher and student. We advise to teachers to communicate in the style of live
language and, as far as only possible, avoid using outdated terms that are not present in
everyday language.

As TDM suggests and as outlined in the excerpts above, all this is transposed and
amplified when in a teacher education context. The role of the teacher educator as a broker
becomes essential when there is a shift from sapient knowledge to the mathematical and
pedagogical knowledge necessary for teaching, i.e., when the object of the transposition
becomes the praxeologies related to the teaching-learning of mathematics.
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