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Score differencing is one of the six categories of statistical methods used to

detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null

hypothesis that the performance of an examinee is similar over two item sets

versus the alternative hypothesis that the performance is better on one of the

item sets. We suggest, to perform score differencing, the use of the posterior

probability of better performance on one item set compared to another. In a

simulation study, the suggested approach performs satisfactory compared to

several existing approaches for score differencing. A real data example

demonstrates how the suggested approach may be effective in detecting frau-

dulent examinees. The results in this article call for more attention to the use of

posterior probabilities, and Bayesian approaches in general, in investigations

of test fraud.
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Researchers such as van der Linden (2009) noted that an increasing concern of

producers and consumers of test scores is fraudulent behavior before and during

the test and that such behavior is more likely to be observed when the stakes are

high, such as in licensing, admission, and certification testing. Naturally, there is

an upswing in research on statistical methods and models that can be used to

detect test fraud. The statistical methods to detect test fraud were divided into six

categories by Wollack and Schoenig (2018). One of the categories is “score

differencing,” which involves a test of the null hypothesis of equal ability of

an examinee over two sets of items I 1 and I 2. Score differencing can be used to

detect several types of test fraud including item preknowledge (e.g., Sinharay,

2017a, 2017b; Sinharay & Jensen, 2019), fraudulent erasures (e.g., Sinharay

et al., 2017), fraudulent gain scores (e.g., Fischer, 2003), and cheating on unproc-

tored tests (e.g., Guo & Drasgow, 2010).

With the exceptions of Sinharay and Johnson (2020) and Wang et al. (2017),

the currently used methods for score differencing are mostly frequentist and are

dependent on (frequentist) p values. As researchers such as Allen and Ghattas

(2016), Skorupski and Wainer (2017), and van der Linden and Lewis (2015)
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noted, a frequentist p value is an answer to the question “What is the probability

of a significant value of the test statistic given that the examinee did not commit

fraud?” which is not the question the investigators are interested in when they are

trying to detect test fraud. The question of interest actually is “Given the avail-

able information, what is the chance that the examinee committed a test fraud?”

and this question conforms more with a Bayesian approach than a frequentist

approach. Consequently, van der Linden and Lewis (2015), Allen and Ghattas

(2016), Sinharay (2018), and Skorupski and Wainer (2017) called for more

applications of Bayesian statistical methods to the detection of test fraud. In

addition, a recent statement by the American Statistical Association (Wasserstein

& Lazar, 2016) included the recommendation that researchers and practitioners

should explore approaches other than the frequentist p values, and Bayesian

approaches are included in their list of “other approaches.”

However, Bayesian methods have rarely been applied in score differencing,

with the exception of Sinharay and Johnson (2020), who suggested the use of

Bayes factors, and Wang et al. (2017), who suggested the use of a Bayesian

predictive checking methodology. The goal of this article is to suggest the

Bayesian approach of using the posterior probability given the item score for

score differencing.

The next section includes descriptions of score differencing and of the existing

frequentist and Bayesian approaches for score differencing. The following section

includes a description of our suggested approach of the use of posterior probability

for score differencing. Simulated and real data sets are analyzed in the next two

sections. The last section includes conclusions and recommendations.

Review of Score Differencing

Description of Score Differencing

Consider a test with N items, each of which can be a dichotomously or poly-

tomously scored item. Let 0; 1; : : : ; mi denote the possible scores on item i. Let

us consider a randomly chosen examinee whose true overall ability is y. Score

differencing for an examinee involves an examination of whether the examinee’s

performance is equal over item sets I 1 and I 2. The item sets I 1 and I 2 are

nonoverlapping and together include all the N items. In most applications of score

differencing, the sets I 1 and I 2 would be naturally defined. For example, Table 1

provides the sets I 1 and I 2 in four applications of score differencing.

Also, note that I 1 and I 2 could vary over the examinees. For example, they

would be different over the examinees in the detection of item preknowledge on

an adaptive test because of the administration of different items over examinees

on adaptive tests, and they would be different over the examinees in the detection

of fraudulent erasures because the set of items with erasures is typically different

over the examinees.
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Let the true ability of the examinee on I 1 and I 2 be denoted as y1 and y2,

respectively. The null hypothesis of interest in score differencing can then be

expressed as H0 : y1 ¼ y2. The alternative hypothesis is that the performance on

one item set is better than that on the other due to reasons such as test fraud. Thus,

the null and alternative hypotheses correspond to the answering behaviors of a

noncheater and a cheater, respectively. Let us assume, without loss of generality,

that the alternative hypothesis is that the performance on I 2 is better than that on

I 1 for the examinee or that y2 > y1. For example, in an application of score

differencing to the detection of item preknowledge, the alternative hypothesis is

that the performance on the compromised items is better than that on the non-

compromised items. The alternative hypothesis represents the situation where,

due to test fraud, the examinee received a performance boost that is equivalent to

an increase of y2 � y1 in ability (whereas, without the fraud, the boost would be

zero and y2 would be equal to y1).

Let y1; y2; : : : ; yN denote the scores for the examinee on the N items of the

test and let ðy1; y2; : : : ; yN Þ be denoted as y. Let y1 ¼ fyi; i 2 I 1g and

y2 ¼ fyi; i 2 I 2g, respectively, denote the collection of the scores of the exam-

inee on the items in Sets 1 and 2. Let the probability of a score j on item i for the

examinee be denoted as

PijðyÞ ¼ Pðyi ¼ jjyÞ; j ¼ 0; 1; 2; : : : ; mi; i ¼ 1; 2; : : : ; N ;

where mi is the maximum possible score on item i. For example, for the general-

ized partial credit model (Muraki, 1992),

PijðyÞ ¼
exp

Xj

h¼0

aiðy� bihÞ
" #

Xmi

c¼0

exp
Xc

h¼0

aiðy� bihÞ
" # ;

where ai and bih, respectively, denote the slope and the location/threshold para-

meters of item i, and bi0 ¼ 0.

TABLE 1.

The Item Sets in Various Applications of Score Differencing

Application in Detection of I 1 I 2

Item preknowledge Noncompromised items Compromised items

Fraudulent erasures Nonerased items Erased items

Fraudulent gain scores Items on first

administration

Items on second

administration

Cheating on unproctored

tests

Items on proctored test Items on unproctored test
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Using the conditional independence assumption of item response theory

(IRT), the likelihood of the examinee, henceforth denoted as Lðy; yÞ, is given by

Lðy; yÞ ¼
YN
i¼1

Ymi

j¼0

PijðyÞdjðyiÞ; ð1Þ

where djðyiÞ ¼
1 if yi ¼ j

0 otherwise:

�
The above description encompasses dichotomous items as well. If item i is

dichotomous, then mi ¼ 1, and

d0ðyiÞ ¼ 1� yi; d1ðyiÞ ¼ yi;Pi0ðyÞ ¼ Pðyi ¼ 0Þ; and Pi1ðyÞ ¼ Pðyi ¼ 1Þ�

For example, if the two-parameter logistic model (2PLM) is used for item i that is

dichotomous, then

Pi1ðyÞ ¼
exp aiðy� biÞ½ �

1þ exp aiðy� biÞ½ � and Pi0ðyÞ ¼ 1

1þ exp aiðy� biÞ½ � ;

where ai and bi, respectively, are the slope and difficulty parameters of item i.

The Rasch (1960) model is a special case of the 2PLM with the ais being the

same over all the items.

For an examinee, let us define the maximum likelihood estimate (MLE) or the

weighted MLE (Warm, 1989) of the examinee ability from the scores on I 1, I 2,

and all the items as ŷ1, ŷ2, and ŷ, respectively.

A Frequentist Approach to Score Differencing

Let us denote the log-likelihood of an examinee as lðy; yÞ, that is,

lðy; yÞ ¼ log Lðy; yÞð Þ:

The likelihood ratio test statistic (e.g., Finkelman et al., 2010; Guo & Drasgow,

2010) for testing the null hypothesis H0 : y1 ¼ y2 is given by

L ¼ 2 lðŷ1; y1Þ þ lðŷ2; y2Þ � lðŷ; yÞ
h i

;

¼ 2
X
i2I 1

Xmi

j¼0

djðyiÞlogPijðŷ1Þ þ
X
i2I 2

Xmi

j¼0

djðyiÞlogPijðŷ2Þ �
XN

i¼1

Xmi

j¼0

djðyiÞlogPijðŷÞ
" #

;

¼ 2
X
i2I 1

Xmi

j¼0

djðyiÞlog
Pijðŷ1Þ
PijðŷÞ

þ
X
i2I 2

Xmi

j¼0

djðyiÞlog
Pijðŷ2Þ
PijðŷÞ

2
4

3
5�

ð2Þ

For score differencing, that is, for testing the null hypothesis H0 : y1 ¼ y2

versus the alternative hypothesis H1 : y2 > y1, Sinharay (2017a) suggested the

signed likelihood ratio (SLR) statistic given by
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LS ¼
ffiffiffiffi
L
p

if ŷ2 � ŷ1;

�
ffiffiffiffi
L
p

if ŷ2 < ŷ1�

(
ð3Þ

When the log-likelihood lðy; yÞ originates from the commonly used IRT models,

the statistic LS has an asymptotic standard normal distribution under the null

hypothesis (e.g., Sinharay, 2017a; Cox, 2006, p. 104). A large value of LS leads to

the rejection of the null hypothesis. Sinharay (2017a, 2017b) and Wang et al.

(2019) demonstrated using real and simulated data that the performance of LS

was satisfactory compared to that of several existing statistics for detecting item

preknowledge, and Sinharay and Jensen (2019) found LS to have satisfactory

Type I error rates and power in several applications of score differencing. There-

fore, LS is the only frequentist statistic for score differencing that is considered in

this article.

Existing Bayesian Approaches for Score Differencing

Bayes factor. The Bayes factor (e.g., Kass & Raftery, 1995) is a Bayesian

approach for model comparison and can be applied when one is interested in

determining whether the model M2 fits the available data better than does model

M1. The Bayes factor in favor of model M2 in comparison to M1 is given by

BF21 ¼
pðyjM2Þ
pðyjM1Þ

; ð4Þ

where, for example, pðyjM1Þ denotes the marginal probability of the data y under

model M1 and can be computed as

pðyjM1Þ ¼
Z
c

pðyjc;M1ÞpðcjM1Þdc;

where pðyjc;M1Þ is the distribution of the data, given the parameters c under

model M1 and pðcjM1Þ is the prior distribution under model M1. The larger

(smaller) the value of BF21, the stronger (weaker) is the evidence in favor of

model M2 versus M1. Kass and Raftery (1995) provided the guidelines shown in

Table 2 on the relationship between the value of the Bayes factor and the evi-

dence it provides in favor of Model 2 versus Model 1.

Sinharay and Johnson (2020) noted that it is possible to consider score differ-

encing as a comparison of two models M2 and M1, where M1 represents the

assumption that a common examinee ability (y) underlies all the item scores

(y) and M2 represents the assumption that two different abilities (y1 and y2)

underlie the scores (y1 and y2) of the examinee on item sets I 1 and I 2. Therefore,

the likelihood functions of an examinee’s scores under M1 and M2 are Lðy; yÞ and

Lðy1; y1ÞLðy2; y2Þ, respectively, M1 represents no performance difference, and

M2 represents a possible performance difference. Note that even though M1

and M2 typically represent two models in the computation of Bayes factors, they
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both are based on the same IRT model in score differencing; they are different in

the sense that M1 involves one ability parameter (y) while M2 involves two

ability parameters (y1 and y2) for the same examinee.

Then, Sinharay and Johnson (2020) showed that the Bayes factor in the

context of score differencing can be computed as

BF21 ¼
pðyjM2Þ
pðyjM1Þ

;

¼

Z y1¼1

y1¼�1

Z y2¼1

y2¼y1

Lðy1; y1ÞLðy2; y2Þpðy1; y2Þdy1dy2Z y¼1

y¼�1
Lðy; yÞfðyÞdy

;

ð5Þ

where pðy1; y2Þ is the joint prior distribution on y1 and y2. For example, if the

2PLM is used, then Lðy1; y1Þ ¼
Y

i2I 1

exp½yiaiðy1�biÞ�
1þexp½aiðy1�biÞ�, and the Bayes factor can be

computed as

BF21 ¼
pðyjM2Þ
pðyjM1Þ

;

¼

Z y1¼1

y1¼�1

Z y2¼1

y2¼y1

Y
i2I 1

exp½yiaiðy1 � biÞ�
1þ exp½aiðy1 � biÞ�

2
4

3
5 Y

i2I 2

exp½yiaiðy2 � biÞ�
1þ exp½aiðy2 � biÞ�

2
4

3
5pðy1; y2Þdy1dy2

Z y¼1

y¼�1

YN
i¼1

exp½yiaiðy� biÞ�
1þ exp½aiðy� biÞ�

2
4

3
5fðyÞdy

:

ð6Þ

A large value of BF21 will provide strong evidence in favor of a large score

difference. The guidelines shown in Table 2 can be used to determine what value

of Bayes factor is large.

Predictive checking method. Wang et al. (2017) suggested a Bayesian predictive

checking method to detect item preknowledge—the method can be used in other

TABLE 2.

Interpretation of the Bayes Factor

Bayes Factor Log of Bayes Factor Evidence

1–3 0–1 Weak/not worth more than a bare mention

3–20 1–3 Positive

20–150 3–5 Strong

>150 >5 Very strong
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types of score differencing as well. In this method, one computes gðy1jy1Þ, the

posterior distribution of the examinee ability given the examinee’s item scores on

I 1. Then, one computes the predictive distribution of a test statistic Tðy2Þ, such

as the raw score on I 2, as

gðTðy2Þ ¼ t2jy1Þ ¼
Z
y1

pðTðy2Þ ¼ t2jy1Þgðy1jy1Þdy1; ð7Þ

where pðTðy2Þ ¼ t2jy1Þ is the probability that the test statistic is equal to t2,

given y1. Finally, a predictive p value is computed as the probability of the test

statistic under the predictive distribution being more extreme than the actual

observed value of the statistic. A small predictive p value, for example, one

smaller than .05 or .01, indicates potential item preknowledge for the corre-

sponding examinee (Wang et al., 2017). The predictive p value is often com-

puted using a simulation where several draws of the test statistic are made from

the abovementioned predictive distribution of Tðy2Þ. This predictive p value is

similar in spirit to the posterior predictive p value (e.g., Gelman et al., 2014, p.

146). Wang et al. (2019) found the performance of the predictive checking

method to be similar to that of the SLR statistic and superior to that of another

existing statistic. To compute the predictive p value, as in Wang et al. (2017)

and Wang et al. (2019), we set

Tðy2Þ ¼
X
i2I 2

yi ¼ the raw score on I 2�

We computed pðTðy2Þjy1Þ using the recursive formula of Lord and Wingersky

(1984) and approximated the integral in Equation 7 using the Riemann approx-

imation (e.g., Thisted, 1988, p. 262).

A New Bayesian Approach for Score Differencing: Use of Posterior

Probability

Score differencing essentially is a test of a hypothesis, that of the equality of

examinee ability over two sets of items, against a one-sided alternative hypoth-

esis. Researchers such as Gelman et al. (2014, p. 95), Robert (2007, p. 226), and

Stern (2005) suggested that a direct measure of the scientific evidence in favor of

an alternative hypothesis and against the null hypothesis can be obtained as the

posterior probability of the event corresponding to the alternative hypothesis, and

Stern (2005) recommended the use of the posterior probability specifically for

testing against one-sided alternative hypotheses. The remainder of this section

includes (a) the definition and details on the computation of the posterior prob-

ability for score differencing, (b) a discussion on the choice of an appropriate

cutoff for the posterior probability, (c) a discussion on the choice of the prior

distributions while computing the posterior probability, and (d) an illustration

using a hypothetical data set.
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Definition and Computations

Let the joint posterior distribution of y1 and y2, given the item scores for an

examinee, be denoted as gðy1; y2jyÞ. Because of the local independence assump-

tion under IRT models, gðy1; y2jyÞ can be computed as

gðy1; y2jyÞ ¼
Lðy1; y1ÞLðy2; y2Þpðy1; y2ÞZ y1¼1

y1¼�1

Z y2¼1

y2¼�1
Lðy1; y1ÞLðy2; y2Þpðy1; y2Þdy1dy2

� ð8Þ

According to the recommendations of Gelman et al. (2014, p. 95), Robert

(2007, p. 226), and Stern (2005), a direct measure of the scientific evidence in

favor of a significant score difference can be obtained from the posterior prob-

ability Pðy2 � y1jyÞ, which, from Equation 8, can be computed as

Pðy2 � y1jyÞ ¼
Z y1¼1

y1¼�1

Z y2¼1

y2¼y1

gðy1; y2jyÞdy1dy2;

¼

Z y1¼1

y1¼�1

Z y2¼1

y2¼y1

Lðy1; y1ÞLðy2; y2Þpðy1; y2Þdy1dy2Z y1¼1

y1¼�1

Z y2¼1

y2¼�1
Lðy1; y1ÞLðy2; y2Þpðy1; y2Þdy1dy2

�
ð9Þ

In Equation 9, the integrands in the numerator and denominator are the same, but

the limits of integration are different.

The integrals in Equation 9 do not have closed forms—so one has to perform

numerical integration to compute them. For example, the numerator in Equation

9 can be approximated using simple Riemann approximation (e.g., Thisted, 1988,

p. 262), as Z y1¼1

y1¼�1

Z y2¼1

y2¼y1

Lðy1; y1ÞLðy2; y2Þpðy1; y2Þdy1dy2

�
XK

k¼1

XM
m¼1

y2m>y1k

Lðy1k ; y1ÞLðy2m; y2Þpðy1k ; y2mÞD1D2;
ð10Þ

where y11; y12; : : : ; y1k ; : : : ; y1K is a grid of K equispaced points,

y21; y22; : : : ; y2m; : : : ; y2M is a grid of M equispaced points,

D1 ¼ y1;kþ1 � y1k , and D2 ¼ y2;mþ1 � y2m. In the simulation study and real data

example discussed later, we used 101 equispaced points between �5 and 5 as

y1ks and y2ms to perform the numerical integrations.

The Choice of the Prior Distribution on y1 and y2

We constructed the joint prior distribution on y1 and y2, pðy1; y2Þ, as the

product of pðy1Þ, the prior distribution on y1, and pðy2jy1Þ, the prior distribution

of y2 given y1. We assumed that y1, which, for example, reflects the performance
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of an examinee under no test fraud, follows the standard normal distribution a

priori, that is,

pðy1Þ ¼ fðy1Þ; ð11Þ

where fðy1Þ ¼ 1ffiffiffiffi
2p
p exp�

y2
1
2 . The conditional prior distribution pðy2jy1Þ in an

investigation of score differencing, especially to detect test fraud, should ideally

incorporate the fact that y2 is considerably larger than y1 for the cheaters. There-

fore, we assumed that for the cheaters, y2, given y1 follows a normal distribution

with the mean of y1 þ m and standard deviation (SD) of sc, and is truncated to

the left at y1 a priori; that is, for the cheaters,

pðy2jy1Þ ¼ k

sc

f
y2 � ðy1 þ mÞ

sc

� �
Iðy2 > y1Þ; ð12Þ

where

k ¼
Z 1
y2¼y1

1

sc

f
y2 � ðy1 þ mÞ

sc

� �
dy2

� ��1

;

and Iðy2 > y1Þ is equal to 1 if y2 > y1 and zero otherwise, and m is a large

positive number. In addition, given the earlier framing of the score differencing

problem, in which the null hypothesis was stated as H0 : y1 ¼ y2, one may be

tempted to make the assumption that a priori, y2 is equal to y1 for the nonchea-

ters. However, we avoided making the assumption because, under a Bayesian

framework, y1 and y2 are continuous random variables so that the probability is 0

that y1 ¼ y2. Instead, we make the assumption that for the noncheaters, given y1,

y2 is not exactly equal to, but is practically equal to, y1, or, y2 � y1 is not exactly

equal to zero but is practically equal to zero a priori. Specifically, we assume that

for the noncheaters, given y1, y2 � y1 follows a normal distribution with mean of

0 and SD of snc a priori, or

pðy2jy1Þ ¼ 1

snc

f y2 � y1

snc

� �
� ð13Þ

The range of values of y2 � y1 over which the distribution provided by Equation

13 has nonnegligible mass represents the values that we think are practically

equivalent to zero. The concept of practically equal to is borrowed from the

concept underlying the region of practical equivalence (ROPE), indifference

zone, and region of equivalence (e.g., Carlin & Louis, 2008; Kruschke, 2018).

Each of ROPE, indifference zone, and region of equivalence refers to a range of

parameter values that are practically equivalent. For example, as Carlin and

Louis (2008) described, if one is testing the null hypothesis that the difference

between the mean for a treatment and a placebo is zero, then one typically does

not care whether to use the treatment or placebo if the difference in the means
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falls in the ROPE or indifference zone or region of equivalence that is of the form

(�E,E).

Information provided by Equations 12 and 13 (for the cheaters and nonchea-

ters, respectively) was utilized by assuming that the prior distribution of y2, given

y1 is a mixture of two normal distributions; the first is a normal distribution with

mean y1 and SD snc, and the second is a normal distribution with mean y1 þ m
and SD sc, truncated below at y1. The first and second components of the

mixture, respectively, represent the distribution of y2, given y1 for a noncheater

and a cheater. The joint prior distribution of y1 and y2 is therefore given by

pðy1; y2Þ ¼ fðy1Þ t 1

snc

f y2 � y1

snc

� �
þ ð1� tÞ k

sc

f
y2 � ðy1 þ mÞ

sc

� �
Iðy2 > y1Þ

� �
;

ð14Þ

where t represents the weight provided to the first component of the mixture. The

value of t should represent the investigator’s belief about the percentage of

noncheaters in the sample.

The top panel of Figure 1 shows the densities of the two components (pro-

vided by Equations 12 and 13) of the mixture in terms of the difference y2 � y1.

The bottom panel of the figure shows the kernel density estimates of the distri-

bution of a sample of 5,000 values of y2 � y1 simulated from the abovemen-

tioned mixture prior distribution (dashed line) and the values of ŷ2 � ŷ1 for the

real data set analyzed later in this article (solid line). The values of t, m, snc, and

sc in Equation 14 were set equal to 0.95, 2.0, 0.5, and 0.5, respectively, in the

computations leading to Figure 1 that was created using the R function “density”

(e.g., R Core Team, 2019). The closeness of the two curves in the bottom panel

indicates that the prior distribution reflects reality accurately.1 The solid line in

the bottom panel in Figure 1 also indicates that y1 is unlikely to be exactly equal

to y2 even for noncheaters (if it were equal, the corresponding density would

have had a sharp spike at 0), which lends support to the distribution assumed in

Equation 13.2 In the rest of the article, the prior distribution is assumed to be the

one given by Equation 14, with t ¼ 0.95, m ¼ 2.0, snc ¼ 0:5, and sc ¼ 0:5.

Appendix A includes a small simulation study to examine the sensitivity of the

posterior probability and the Bayes factor to various choices of t and m in

Equation 14 while fixing snc ¼ 0:5 and sc ¼ 0:5—the results in the appendix

indicate that the choices of these two constants have only a small effect on the

two statistics.

The Choice of an Appropriate Cutoff for the Posterior Probability

To use the posterior probability in score differencing, one needs an appropri-

ate cutoff value so that the individuals with values of the posterior probability

above this cutoff can be considered to have a statistically significant score dif-

ference. The choice of the cutoff should ideally be guided by (Bayesian) decision
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theory (e.g., Robert, 2007, p. 51) and the specific application at hand. For exam-

ple, Robert (2007, p. 225) and Johnson and Sinharay (2016, p. 249) noted that to

apply Bayesian decision theory to a hypothesis-testing problem, one should

assign losses of c1 and c2 to false positive and false negative (or Type I and

Type II) errors. Then, one should minimize the “posterior expected loss” to

obtain the “Bayes rule” or “Bayes estimator,” which, in our context, is given by

Reject the null hypothesis if Pðy2 � y1jyÞ > c1

c1 þ c2

¼
c1

c2

c1

c2
þ 1
�

Therefore, in an application, the choice of the cutoff for the posterior probability

would ideally depend on c1

c2
, which is the comparative severity of the false pos-

itive and false negative errors. For example, if the test administrators think that a

false positive error is 19 times as costly as a false negative error, then the cutoff

Two Components of the Mixture
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FIGURE 1. The components of the prior distribution and the theoretical prior versus the

empirical values.
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would be .95, whereas if the test administrators think that a false positive error is

99 times as costly as a false negative error, then the cutoff would be .99. Given

the observation by, for example, Wollack et al. (2015) that methods for detection

of test fraud are typically applied with conservative levels, it is more likely that a

large value of c1

c2
would be used in determining a cutoff for the posterior

probability.

Reconcilability of Evidence From Posterior Probability and Frequentist

Approaches

Berger and Sellke (1987), Casella and Berger (1987), and Pratt (1965) dis-

cussed the issue of reconcilability (or the lack of it) of frequentist test statistics/p

values and posterior probabilities for testing against one-sided alternative

hypotheses and two-sided alternative hypotheses. Berger and Sellke (1987)

showed that frequentist p values and posterior probabilities are usually irrecon-

cilable, or appear to provide different extents of evidence for the same data set,

when the alternative hypothesis is two sided, that is, of the type H1 : y 6¼ 0. In

contrast, Casella and Berger (1987) and Pratt (1965) showed that the two prob-

abilities are often reconcilable when the alternative hypothesis is one-sided and

of the type H1 : y > 0. In the context of score differencing, the findings of Berger

and Sellke (1987), Casella and Berger (1987), and Pratt (1965) imply that a

posterior probability would be reconcilable with the (frequentist) LS statistic

because the alternative hypothesis underlying LS is H1 : y2 > y1, which is a

one-sided alternative hypothesis. Therefore, our suggested posterior probabilities

are expected to provide evidence that is mostly reconcilable with the evidence

provided by the p value corresponding to the LS statistic.

A Simple Illustration

Consider a test with 20 items. Let us consider that the Rasch model fits the

data from the test and that the estimated item difficulty is 0 for all items. Let us

consider that score differencing has to be performed with the first 10 items and

the last 10 items as the two item sets and that the alternative hypothesis is that the

performance is better on the second set. Consider seven examinees all of whom

obtain a raw score of 3 on the first 10 items on test but obtained raw scores of 3, 4,

5, 6, 7, 8, and 9 on the last 10 items on the test.

Table 3 provides the difference in raw score between the second half and the

first half, ŷ1, ŷ2, ŷ, the SLR statistic, the p value for the SLR statistic ( p value),

the predictive p value (PrP), the Bayes factor given by Equation 5 (BF), and the

posterior probability given by Equation 9 (PP) for the examinees. The R code for

computing the posterior probability for Examinee 1 in Table 3 is provided in

Appendix B.

Posterior Probability in Score Differencing
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As the score difference (shown in Column 2 of Table 3) increases, the methods

are expected to find stronger evidence in favor of a large score difference. So, it is

not surprising that each statistic provides strong evidence of a significant score

difference in the bottom rows of the table. One using the SLR statistic would not

reject the null hypothesis of no performance difference between the two halves of

the test for Examinees 1 through 4 and would reject the null hypothesis for

Examinees 5 through 7 at 5% level. If one uses the cutoff of .95 for the posterior

probability, then one would conclude that there is no evidence of a performance

difference for Examinees 1–6 and some evidence of a performance difference for

Examinee 7. Thus, the SLR statistic (or, equivalently, the frequentist p value) and

the posterior probability may lead to different conclusions for some examinees.

Simulations

Simulated data that involved different extents of score differences were used

to compare the properties of the posterior probability to those of three existing

approaches for score differencing. It was assumed in the simulations that the

score differences originated from preknowledge of compromised items.

Design

All simulations involved a nonadaptive assessment that includes 100 dichot-

omous items. The true item parameters were randomly drawn from the estimated

item parameters of the item pool of one subject of a state test.3 The true abilities

of the examinees were simulated from a standard normal distribution.

The following two factors were varied in the simulations:

� the number of compromised items (10, 20, or 30 items)4; for each simulated data

set, the compromised items were randomly selected out of the 100 items and

TABLE 3.

Results for Seven Examinees

Examinee Score Diff. ŷ1 ŷ2 ŷ SLR p Value PrP BF PP

1 0 �.76 �0.76 �.80 0.00 .50 .60 0.71 .44

2 1 �.76 �0.37 �.59 0.45 .32 .45 0.82 .54

3 2 �.76 0.0 �.39 0.91 .18 .28 1.10 .65

4 3 �.76 0.37 �.19 1.35 .09 .19 2.30 .74

5 4 �.76 0.76 .00 1.81 .04 .07 2.44 .83

6 5 �.76 1.22 .19 2.29 .01 .04 4.13 .90

7 6 �.76 1.85 .39 2.84 .00 .01 9.74 .96

Note. Score Diff. ¼ difference in the raw score; p Value ¼ p value for the SLR statistic;

PrP ¼ predictive p value; BF ¼ Bayes factor; PP ¼ posterior probability.
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� the number of examinees who had item preknowledge (the cheaters) as a percent-

age of those who did not have preknowledge (5%, 10%, or 20%).

The simulation factors were crossed with each other. Thus, the number of

simulation conditions was nine. For each simulation condition, 100 data sets

were simulated; the number of noncheaters in each data set was 2,000 so that

the number of cheaters in a data set was 100, 200, or 400 in the various simulation

conditions. The item scores of the noncheaters (or those without item preknow-

ledge) on all items and of the cheaters (those with item preknowledge) on the

uncompromised items were simulated from the 2PLM. The item scores of each

cheater on a compromised item was simulated using the 2PLM but using a value

of ability that is obtained by adding 2.0 on the y scale to the true ability of the

cheater or by shifting the ability of the cheater to the right by 2.0. Item response

data under aberrant responding has been simulated after shifting the examinee

ability (or a “y shift”) by researchers such as Glas and Dagohoy (2007). The

simulation of item scores after a y shift recreates the scenario that item preknow-

ledge leads to a boost in the ability.

For each simulated data set, the following computational steps were

performed:

1. Compute the estimated item parameters using the marginal maximum likelihood

estimation procedure.

2. For each examinee, compute the SLR statistic. The MLE of ability, restricted to

the range �4.0 and 4.0, was used to compute the SLR statistic. The item para-

meters computed in the previous step were used in these calculations.

3. For each examinee, compute the Bayes factor (Sinharay & Johnson, 2020), poster-

ior probability, and the predictive p value (Wang et al., 2017) using Equations 6, 9,

and 7, respectively.

For each simulation condition, the values of the four statistics over the 100

simulated data sets were used to compare their performances.

Results

Figure 2 shows a scatterplot of the posterior probability (y-axis) versus 1 � p

value for the SLR statistic (x-axis) for the examinees in the simulation case with

30 compromised items and 10% examinees with preknowledge. We decided to

plot the posterior probability versus 1 � p value because an increasing value of

each of these statistics indicates an increasing score difference. Each circle in the

plot corresponds to one examinee. The gray circles correspond to the examinees

who are true noncheaters, and the black circles correspond to the examinees who

are true cheaters. The figure includes horizontal and vertical dashed lines repre-

senting cutoffs of .95 for the two statistics and also includes a diagonal line. The

cutoff of .95 was used for 1 � p value because a p value smaller than .05 is

equivalent to 1 � p value being larger than .95. The two plotted quantities seem

Posterior Probability in Score Differencing
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to be good agreement. Both are mostly smaller than the cutoff for the true

noncheaters, and both are often larger than the cutoff for the true cheaters. This

agreement is not a surprise, given the finding of Casella and Berger (1987) of

reconcilability of evidence from posterior probabilities and frequentist p values

for testing a one-sided null hypothesis. The posterior probability shows a ten-

dency to be smaller than 1 � p value for both the true cheaters and true non-

cheaters in the right side of the figure and larger than 1 � p value in the left side

of figure, which means that if the same cutoff (of, say, .95 or .99) is used for both,

then the use of the posterior probability (rather than the frequentist statistic) will

lead to a more conservative detection of item preknowledge.

The comparison of the power of statistics for detecting aberrant examinees has

been performed using receiver operating characteristics (ROC) curves at least

since Drasgow et al. (1985). Given the values of a statistic (whose larger value

indicates more aberrance) from a data set for which the identities of the true

aberrant and nonaberrant examinees are known, an ROC curve requires the

computation of the following two quantities for several values of y:

� the false alarm rate (or “false positive rate” or “Type I error rate”), FðyÞ, which is

the proportion of times when the statistic for a nonaberrant examinee is larger than

y and

� the hit rate (or “true positive rate” or “power”), HðyÞ, which is the proportion of

times when the statistic for an aberrant examinee is larger than y.

Then, a graphical plot is created in which FðyÞ is plotted along the x-axis, HðyÞ is

plotted along the y-axis, and a line joins fFðyÞ;HðyÞg for several values of y.
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FIGURE 2. A scatterplot of 1 � p value versus posterior probability for the simulations.
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These lines together constitute the ROC curve. Appendix C shows the ROC curve

from one condition of the simulation study.

The area under the ROC Curve (AUROC; e.g., Sinharay, 2017b) of a statistic

is a measure of how powerful the statistic is. In the context of detecting aberrant

examinees, researchers such as Sinharay (2017b) used truncated ROC areas, or

areas under the ROC curves truncated between 0 and .1 and divided by .10—that

is because false positive rates larger than .10 are hardly employed in the context

of detecting aberrant examinees (Wollack et al. 2015). The truncated ROC area

of a very powerful statistic is expected to be close to 1. The truncated ROC

areas of all the statistics were computed for all the simulation conditions.

When the number of compromised items was fixed, the truncated ROC area of

the statistics was not affected by the percentage of examinees benefiting from

preknowledge—so the truncated ROC areas were averaged over the three levels

of this percentage. The average truncated ROC areas of the statistics for the

various number of compromised items are shown in Figure 3. In the figure, the

x-axis represents the number of compromised items and the y-axis represents

the average truncated ROC area. The average truncated ROC area for the poster-

ior probability, SLR statistic, Bayes factor, and predictive checking are joined by

a solid line, dashed line, dotted line, and a dotted dashed line, respectively. The

figure shows that the average truncated ROC area increases as the number of

compromised items increases.

The average truncated ROC areas of the four statistics are very close for any

given number compromised items, all lying in a narrow interval of width about

.02. The average areas of the posterior probability are the largest by a small

margin followed by that of the SLR statistic. The average truncated ROC area

of the SLR statistic is the largest among the four statistics for 10 compromised

items but close to the smallest for 30 compromised items. The average truncated

ROC areas of the posterior probability, SLR statistic, Bayes factor, and predic-

tive checking method, averaged over all simulation cases, are .87, .86, .86, and

.85, respectively.

Note that the comparative performance of the approaches was very similar

(results not reported) in another set of simulations that were very similar to the

above except that the item parameters were not estimated in each iteration.

Real Data Example

Data

We analyzed item response data from one form of a nonadaptive licensure

assessment. The source of the data set is Cizek and Wollack (2017, p. 14).

Researchers such as Sinharay (2017a), Sinharay and Jensen (2019), and Zopluo-

glu (2017) analyzed the same data set to detect various types of test fraud. The

test form comprises 170 operational items that are dichotomously scored. The

sample size for the form is 1,644. A total of 61 items on the form were identified

Posterior Probability in Score Differencing
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as compromised by the organization that provided the data. In addition, 48

examinees were flagged by the organization as possible cheaters from a variety

of statistical analysis and a rigorous investigative process that brought in other

information; given the rigor of the investigative process, it is reasonable to treat

these examinees as true cheaters. As in Sinharay (2017a) and Sinharay and

Jensen (2019), the interest here is in detecting item preknowledge, that is, detect-

ing the examinees who may have benefited from the preknowledge of the 61

compromised items.

Analysis and Results

Although the Rasch model is operationally used in the assessment, the 2PLM

was found to fit the data better and was used for the analysis here. The item

parameters were estimated using the marginal maximum likelihood estimation

procedure from the data set using the R package ltm Version 1.1-1 (Rizopoulos,

2006) and were used in the computation of the SLR statistic and the posterior

probability. We then computed the values of the SLR statistic, Bayes factor,

predictive probability, and posterior probability for each examinee in the data

set. The MLEs of the abilities, truncated between �4 and 4, were used to com-

pute the SLR statistic. To perform score differencing, the first set of items (I 1)

comprised the set of 109 noncompromised items and the second set of items (I 2)

comprised the set of 61 compromised items.

Figure 4 shows a scatterplot of the posterior probability versus 1� the p value

for the SLR statistic for the examinees in the data set. The black and gray circles

correspond to examinees who were flagged (48 of them) and not flagged (1,596
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FIGURE 3. Average truncated receiver operating characteristics areas for the four

statistics for the simulation study.
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of them), respectively, by the licensure organization. The figure includes hor-

izontal and vertical dashed lines representing cutoffs of .95 for the two statistics.

A diagonal line is also provided. The two plotted quantities are mostly in agree-

ment with each other; that is, the posterior probability is mostly large for the

examinees for whom the p value is small. As in Figure 2, there is a tendency for

the posterior probability to be smaller than 1� p value in the right side of Figure 4

and larger than 1 � p -value in the left side of Figure 4. Also, among the flagged

examinees, the posterior probability is larger than .95 whenever the p value is

smaller than .05 (or 1 � p value is larger than .95) except for one examinee.

However, an interesting pattern is visible toward the right of the plot. All of the

gray circles to the right of the vertical dashed line and below the horizontal

dashed line belong to examinees who are not flagged by the licensure organiza-

tion, but the frequentist p value is smaller than .05 and the posterior probability is

smaller than .95 for them. Thus, a frequentist using a p value at 5% level would

conclude that these examinees benefited from item preknowledge while a Baye-

sian using a posterior probability with a cutoff of .95 would not.

It is possible to draw an ROC curve and compute the truncated ROC areas for

the statistics for the licensure data sets by treating the flagged and nonflagged

examinees as true cheaters and noncheaters, respectively. These areas for the

posterior probability, Bayes factor, SLR statistic, and predictive checking were

.62, .61, .60, and .60, respectively, so that the area for the SLR statistic is slightly

larger than those for the other statistics for the data set. Figure 5 shows the ROC

curves for the posterior probability and SLR statistic, truncated to show the false

alarm rates between 0 and .10.
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FIGURE 4. A scatterplot of 1 � p value versus posterior probability for the real data

example.
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Conclusions

In this article, we suggested posterior probabilities as an alternative tool for

score differencing (Wollack & Schoenig, 2018). These probabilities are less

likely to be misinterpreted than frequentist p values and are intended to provide

direct evidence in favor of a significant score difference. In a simulation study

and in a real data application, the posterior probability was found to have a

slightly larger AUROC curve compared to several existing approaches.

Although only nonadaptive tests were considered in the simulations and the

real data example of this article, the posterior probability can be computed for

adaptive tests as well. Sinharay (2017a) discussed how to apply the LS statistic for

adaptive tests—the application involved the computation of the likelihood over a

set of items received by an examinee. Once the likelihood is computed, Equation

9 can be applied to compute the posterior probability for an adaptive test when,

for example, a subset of items administered to an examinee is found to have been

compromised. However, the number of compromised items that each examinee

receives on an adaptive test will most often be very small (possibly with the

exception of multistage tests where one or more first- or second-stage unit/mod-

ule was compromised) and the posterior probability will not be a powerful tool

for score differencing for adaptive tests.

While the posterior probability has the natural interpretation of being a prob-

ability and is bounded between 0 and 1, it is possible to convert it to posterior

odds that is given by

Posterior odds ¼ Posterior probability

1 � posterior probability
;

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

False Alarm Rate

H
it 

R
at

e

PP
SLR

FIGURE 5. The receiver operating characteristics curve for the posterior probability

(PP) and the signed likelihood ratio (SLR) statistic for the real data example.
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and use the posterior odds instead of the posterior probability (e.g., Edwards

et al., 1963). For example, the posterior odds are equal to 1, 9, 19, and 99, when

the posterior probability is equal to .5, .9, .95, and .99, respectively.

There exist several approaches that are somewhat similar to the posterior

probability suggested in this article. van der Linden and Lewis (2015) sug-

gested the posterior odds of cheating for detecting various types of cheating

on tests. They provided details on the computation of the posterior odds to

detect fraudulent erasures, but the computation was predicated on a specia-

lized IRT model that applies only to fraudulent erasures and cannot be

easily extended to score differencing in general. The posterior probability

of answer copying, suggested by Allen and Ghattas (2016), is conceptually

similar to the posterior probability suggested in this article but cannot be

used for score differencing.5 Skorupski and Wainer (2017) suggested the

posterior probability of cheating (PPoC) of an individual as PðCjT � tÞ,
where C is the event that the examinee is a true cheater, T is the random

variable corresponding to the test statistic, and t denotes the value of T for

the individual. The PPoC is conceptually similar to the posterior probability

suggested in this article. Skorupski and Wainer (2017) showed that the

PPoC can be expressed as

PPoC ¼ 1 � Frequentist p-value � Pðnon-cheaterÞ
PðT � tÞ ;

where P(noncheater) is the prior probability of noncheaters in the population.

Table 18.4 of Skorupski and Wainer (2017) showed that the choice of P(non-

cheater) may be fairly influential on the PPoC. In contrast, the posterior prob-

ability suggested in this article is less dependent on the prior distributions. The

quantity t in the prior distribution in this article is like P(noncheater) in the

expression of PPoC, but Appendix A of this article shows that the extent of

sensitivity of the posterior probability to t is considerably smaller than that of

PPoC on P(noncheater).

The new approach can be applied only in the context of one set of

statistical methods (score differencing) out of six mentioned by Wollack and

Schoenig (2018). In addition, the approach can be used to detect preknow-

ledge only when the set of compromised items is known as in the real

example discussed earlier. The new approach should not be used as the sole

source evidence of test fraud in operational testing. Instead, as recommended

by, for example, Hanson et al. (1987) and Holland (1996), the new approach

should be employed as a part of quality control and/or as secondary evi-

dence, along with other statistics and nonstatistical evidence, in investiga-

tions of test fraud.

Although the research reported in this article represents one of the first appli-

cations of Bayesian methods to score differencing, the article has several limita-

tions and it is possible to extend the research in several ways. First, more
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simulated data and real data should be analyzed using the method. Second, it is

possible to compare the suggested Bayesian approach to other frequentist meth-

ods and to other (potentially new) Bayesian methods for score differencing.

Third, although the results in Appendix A provide some evidence that the poster-

ior probability is not influenced much by the joint prior distribution on the ability

parameters, especially for large I 1 and I 2, it is possible to perform a more

detailed examination of the influence of the joint prior distribution on the poster-

ior probability. Fourth, it is possible to extend the approach to utilize both item

scores and response times on computerized tests; such an approach would

involve an examination of whether the examinees perform better and faster

on a subset of items and may be more powerful than one based only on

item scores. Similarly, it is possible to extend this approach to multivariate

ability—the computations are likely to be more involved, especially in the

presence of within-item multidimensionality. Fifth, it is possible to perform

more research on the choice of an appropriate cutoff for the posterior

probability. Sixth, although a simple Riemann approximation was used to

approximate the integrals in Equation 9, it is possible to explore the use of

other numerical integration approaches (e.g., Givens & Hoeting, 2013, pp.

129–195). Finally, although this article focuses on Pðy2 � y1jyÞ, a more

direct measure of the scientific evidence in favor of a significant score

difference would be PðCjy;ZÞ where C is the event that the examinee is

a true cheater and Z quantifies other information (like test center informa-

tion, proctor report etc.). However, the computation of PðCjy;ZÞ would be

extremely difficult as argued by experts such as Holland (1996)—one rea-

son of the difficulty is the lack of, for example, a statistical model for the

behavior of an examinee who commits test fraud. So, we focus on Pðy2 �
y1jyÞ rather than PðCjy;ZÞ in this article and believe to have demonstrated

that Pðy2 � y1jyÞ may provide useful evidence regarding test fraud and

should be considered for inclusion in the practitioner’s toolkit for detecting

test fraud.

Appendix A

Sensitivity to the Prior Distributions

To examine the sensitivity of the Bayes factor and the posterior probability to the

prior distribution, we computed these two quantities for five different test length

conditions. The size of I 1 was 10, 20, 40, 40, and 40 in the five conditions while

that of I 2 was 10, 20, 10, 20, and 40. Thus, the total number of items on the test is

20, 40, 50, 60, and 80 in the five cases. The set I 1 included the first several items

in all the cases.

The Rasch model was assumed to hold with all item difficulties being equal to

0. The scores yi; i ¼ 1; 2; : : : ; I were set so that the raw scores on I 1 and I 2 in
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the five test length conditions were (5, 7), (10, 15), (20, 7), (20, 15), and (20, 30),

respectively. Thus, there were score differences of various extent in all the cases.

The frequentist p values for the five test length conditions do not depend on the

joint prior distribution for y1 and y2 and were equal to .18, .05, .13, .03, and .01,

respectively. Six joint prior distributions of y1 and y2, all special cases of Equa-

tion 14, were considered, with the values of snc and sc set equal to .5, and the

values of t and m given by (a) .9 and 1.0, (b) .9 and 2.0, (c) .95 and 1.0, (d) .95 and

2.0, (e) .99 and 1.0, and (f) .99 and 2.0.

Table A1 shows the values of the Bayes factor and posterior probability for all

the above-mentioned prior distributions for all test length conditions. Each row

of the table shows the values of these two statistics for one prior distribution for

the five test length conditions. Table A1 shows that the joint prior distribution has

a small effect on Bayes factor and posterior probability, with both statistics

becoming more conservative as either of t or m increases. For the fifth test length

condition (that involves the largest I 1 and I 2), the joint prior distribution has a

very small effect on Bayes factor and posterior probability and especially on the

posterior probability. This finding implies that the posterior probability is not

likely to be influenced much by the prior distribution for large I 1 and I 2, which

is the case of the real data example in this article.

Appendix B

The R Code Used in the Illustration

The R code for computing the posterior probability for Examinee 1 in Table 3 is

provided below. The code makes use of the R function integral2 in the R package

pracma (Borchers, 2019).

TABLE A1.

The Bayes Factor and Posterior Probability for Different Prior Distributions

Values of t and m

Sizes of I 1 and I 2

(10, 10) (20, 20) (40, 10) (40, 20) (40, 40)

BF PP BF PP BF PP BF PP BF PP

.9, 1 1.84 .74 6.40 .89 1.36 .79 5.09 .92 46.3 .97

.9, 2 1.69 .72 5.78 .88 1.24 .77 4.51 .92 38.7 .97

.95, 1 1.75 .72 5.88 .88 1.29 .77 4.63 .91 41.1 .97

.95, 2 1.68 .71 5.56 .87 1.23 .76 4.34 .91 37.3 .96

.99, 1 1.68 .70 5.45 .86 1.24 .75 4.27 .90 36.9 .96

.99, 2 1.66 .70 5.39 .86 1.23 .75 4.21 .90 36.2 .96

Note. BF ¼ Bayes factor; PP ¼ posterior probability.
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library(pracma)
pr2pl=function(t,a,b){return(1/(1+exp(a*(b-t))))}
logpr1=function(u,t,a,b) {p=pr2pl(t,a,b)

return(ifelse(u==1,log(p),log(1-p)))}
u=rep(c(rep(1,3),rep(0,7)),2)
a=rep(1,20)
b=rep(0,20)
s1=1:10
Joint=function(t1,t2){LL=0
for (j in s1)

{LL=LL+logpr1(u[j],t1,a[j],b[j])}
for (j in setdiff(1:length(u),s1))

{LL=LL+logpr1(u[j],t2,a[j],b[j])}
p2=0.95*dnorm(t2,mean=t1,sd=0.5)+0.05*dnorm(t2,mean=t1+2,sd=0.5)*ifelse(t2>t1,1,0)
return(exp(LL)*dnorm(t1,mean=0,sd=1)*p2)}
min=-5
max=5
ymin=function(t1) t1
num=integral2(Joint,min,max,ymin,max,vectorized=FALSE)
den=integral2(Joint,min,max,min,max,vectorized=FALSE)
PostProb=num$Q/den$Q

Appendix C

An Example ROC Curve

Figure C1 shows the ROC curve for the posterior probability (solid line), signed

likelihood ratio (SLR) statistic (dashed line), Bayes factor (dotted line), and the
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FIGURE C1. The receiver operating characteristics curve for the four statistics for one

simulation case.
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predictive checking method (dotted dashed line) for the simulation case with 10

compromised items and 5% examinees having preknowledge. The curve is trun-

cated between the values of 0 and .01 of the false alarm rate (x-axis). The curve

for the posterior probability is the highest, followed by that of the SLR statistic.
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Notes

1. In similar plots with these values of t, m, snc, and sc for two other test data

sets for which a set of items was known to be compromised (these plots are not

included in this article and can be obtained from the authors upon request), the

prior distribution reflected reality accurately.

2. Although the solid line in the bottom panel of Figure 1 is created from the

estimates of y1 and y2, the estimates are expected to be very close to the

corresponding true values given that both I 1 and I 2 include a large number of

items.

3. The use of two other sets of estimated item parameters and a set of simulated

item parameters did not affect the comparative performance of the statistics

(results not included here and can be obtained from the authors).

4. Thus, the number of uncompromised items was 90, 80, or 70.

5. Wollack and Schoenig (2018) included the methods to detect answer copying

in a separate category than those for score differencing.
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