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Abstract 

In an attempt to address the need for an alternative presentation of the quantum mechanical position 

and momentum spaces, we provide a presentation that is more constructive and less calculative than 

those found in literature. Our approach is based on a simple, intuitively understood relation that 

expresses the physical equivalence of the quantum mechanical state space to the position and 

momentum spaces. With this work, we hope to offer a perspective complementary to those found in 

standard quantum mechanics textbooks. 
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INTRODUCTION 

In 1926, Schrödinger developed wave mechanics, a formulation or representation of 

quantum mechanics which is based on the idea that the quantum systems are 

described by wave functions satisfying a wave equation, which is known as the 

Schrödinger equation (Aspect & Villain, 2017; Gieres, 2000). Schrödinger also 

demonstrated the physical equivalence of wave mechanics to matrix mechanics, the 

other known at that time formulation of quantum mechanics, that Heisenberg, Born, 

and Jordan had developed (Aspect & Villain, 2017; Gieres, 2000). In the following 

years until 1931, Dirac, Jordan, and von Neumann developed a representation-free or 

invariant formalism of quantum mechanics, according to which each quantum system 

is associated with a separable, infinite-dimensional, complex Hilbert space, which is 

known as state space (Gieres, 2000; Van Hove, 1958). The elements of the state space 
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are Dirac kets of finite norm representing possible bound states of the examined 

system (Gieres, 2000). 

In the framework of the Hilbert space formulation of quantum mechanics, the 

wave functions of Schrödinger’s wave mechanics are square-integrable functions 

belonging to a Hilbert space that is isomorphic1, thus physically equivalent, to the 

state space, and it is known as position or momentum space, depending on whether 

the wave functions are expressed in terms of position or momentum, respectively. The 

position and momentum spaces are also referred to as position and momentum 

representations, respectively. 

 Apart from their significance in the historical development of quantum 

mechanics, the position and momentum spaces play important role in the process of 

teaching – thus of learning too – and also of applying the quantum theory to physical 

systems, as it can be seen by referring to standard quantum mechanics textbooks 

(Griffiths, 2005; Merzbacher, 1998; Sakurai & Napolitano, 2011). 

 However, as demonstrated in (Marshman & Singh, 2013 & 2015), students 

face difficulties when practicing quantum mechanics in different spaces. Therefore, a 

need exists for an alternative presentation of the quantum mechanical position and 

momentum spaces. To this end, we reformulate the physical equivalence of the state 

space to the position and momentum spaces in terms of a simple relation and provide 

an intuitively geometric presentation of the latter spaces starting from the former 

space. For simplicity and clarity, we examine a one-particle system, and the emphasis 

is given on the one dimensional case2, i.e. the case where the particle moves on the 

real line, as the generalization to three dimensions is straightforward. 

 

From the State Space to the Position Space through a Simple Relation 

We consider a particle moving, under the influence of a potential, on the real 

line. The state space of our system is an abstract Hilbert space of Dirac kets. The 

position space is then realized by taking projections of ket states on the directions – on 

the axes – defined by the position eigenstates of the particle. Each position eigenstate 

x , x , defines a direction – an axis – by means of the projection operator x x . 

We call this axis the x -axis. We note that the x -axis does not belong either to the 

state space or to the position space. It belongs to a hyperspace, i.e. a bigger space, of 

the state space (see below). In physical space, the x -axis corresponds to a point x  on 

the real line, along which the particle moves. Another position eigenstate, say x , 

x x  , defines, by means of the projection operator x x  , another axis, the x -axis, 

 
1 Two Hilbert spaces 1 2,H H   are isomorphic if there exists an isomorphism relating them, i.e. a linear mapping U  from 1H  

to 2H  that it is everywhere defined on 1H , it is onto on 2H , and it preserves the scalar product, i.e. U  is a unitary operator 

from 1H  to 2H . Two isomorphic Hilbert spaces are considered as physically equivalent. 

2 We note that the position and momentum spaces of a particle moving in one dimension are often referred to as one-dimensional 

position and momentum spaces, respectively, and similarly for a particle moving in three dimensions, but this does not mean that 

the two spaces are one dimensional (or three dimensional, respectively). They are infinite-dimensional, as is the state space. 
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which, in physical space, corresponds to the point x x   on the real line, along which 

the particle moves. The position of the particle is an observable quantity, thus the 

position operator for the particle is Hermitian, and then its eigenstates belonging to 

different eigenvalues are orthogonal (Dirac, 1947; Griffiths, 2005; Merzbacher, 1998). 

As a result, the x -axis is orthogonal to the x -axis. 

We consider an element of the state space, say the state  , and the state 

Â  , where Â  is an operator acting on the state space and   belongs to the 

domain of Â . The states   and Â   are respectively projected on the x -axis as 

x x  and ˆx A x . The signed magnitudes of the two projections are, 

respectively, x   and ˆx A  . We identify the element x   as the value of the 

position-space wave function at the point x , i.e. 

 

 ( )
def.

x x =  (1)  

 

The element ˆx A   is the projection of the state Â   on the x -axis. The 

state space is isomorphic to the position space, thus the description of the particle in 

state space is equivalent to its description in position space. 

We express the equivalence of the state space to the position space by the 

following relation 

 

 ( )ˆ ˆx A A x x =  (2)  

 

where the operator ( )Â x  is the expression of the operator Â  in position 

space. Since the element x   is the position-space wave function (1), (2) is also 

written as 

 

 ( ) ( )ˆ ˆx A A x x =  (3)  

 

Thus, if the state-space operator Â  is expressed, in position space, by the 

operator ( )Â x , then the state Â   is described, in position space, by the wave 

function ( ) ( )Â x x , where ( )x  is the wave function describing the state  . 

 

Position and Momentum in Position Space 

The expression ( )x̂ x  of the position operator x̂  in position space can be 

derived by considering the element ˆx x  , which, by means of (3), is written as 
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 ( ) ( )ˆ ˆx x x x x =  (4)  

 

Since the position is an observable quantity, the position operator has a 

complete set of eigenstates (Dirac, 1947; Griffiths, 2005; Merzbacher, 1998). Thus, 

the set  
x

x


  spans the state space, and also consists of orthogonal eigenstates, 

because the position operator is Hermitian. As a result, it holds the closure relation 

 

 1̂dx x x



−

   = ,  

 

i.e. the sum of all projection operators x x  , x , is equal to the identity 

operator. Besides, the orthogonality of two arbitrary position eigenstates x  and x  

is expressed by the relation3 

 

 ( )x x x x = − ,  

 

where ( )x x  −  is the delta function with support at x x = . 

The arbitrary position eigenstate x  corresponds, in position space, to the 

wave function x x , which is the delta function ( )x x − . Since the state and 

position spaces are isomorphic, the norms of x  and ( )x x −  are equal. The norm 

of ( )x x −  is infinite, since 

 

 ( ) ( ) ( ) ( )
2

dx x x dx x x x x x x   
 

− −

    − = − − = − =     

 

Then, the position eigenstates have infinite norm and thus they do not belong 

to the state space, because, as we have mentioned, the state space contains states of 

finite norm, which correspond to square-integrable position-space wave functions 

describing physical states. This means that the position eigenstates are not physical 

states. They are meant as generalized kets that span the state space as elements of a 

hyperbasis, i.e. a basis belonging to a bigger space that contains the state space and is 

accommodated in a construction called rigged Hilbert space (de la Madrid, 2005). 

By means of the closure relation of the position eigenstates, the element 

ˆx x   is written as 

 

 ˆ ˆ ˆx x x x dx x x dx x x x x  
 

− −

 
     = = 

 
  ,  

 
3 The spectrum of the position operator is continuous, thus the place of the Kronecker delta, which is 

used to express the orthogonality of discrete-basis states, has been taken by the delta function. 
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i.e. 

 

 ˆ ˆx x dx x x x x 


−

  =   (5)  

 

Since x  is a position eigenstate with eigenvalue x , x̂ x x x  = , and thus 

  

( )ˆx x x x x x x x x x x x      = = = −  

 

Also, the element x   is the wave function ( )x   at x . Thus, (5) reads 

 

 ( ) ( ) ( )ˆx x dx x x x x x x   


−

   = − = ,  

 

i.e. 

 

 ( )ˆx x x x =   

 

Comparing the last equation with (4) yields 

 

 ( ) ( ) ( )x̂ x x x x = ,  

 

and since the wave function is arbitrarily chosen, 

 

 ( )x̂ x x=   

 

Thus, in position space, the position operator is the position coordinate. The 

expression ( )p̂ x  of the momentum operator p̂  in position space can then be derived 

by the canonical commutation relation for position and momentum 

 

  ˆ ˆ,x p i=  (6)  
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which, in position space, reads 

 

 ( ) ( )ˆ ˆ,x x p x i=    (7)  

 

The momentum operator ( )p̂ x  is linear and Hermitian. We observe that a 

“solution” for ( )p̂ x  to (7) is 

 

 ( )ˆ
d

p x i
dx

= −  (8)  

 

If there exists another solution to (7), say ( )P̂ x , then 

 

 ( ) ( ) ( ) ( )ˆˆ ˆ ˆ, ,x x p x x x P x =    
  

 

or 

 

 ( ) ( ) ( )ˆˆ ˆ, 0x x p x P x − =
 

,  

 

i.e. the operator ( ) ( )ˆp̂ x P x−  commutes with the position operator. Then, 

since ( )x̂ x x= , the operator ( ) ( )ˆp̂ x P x−  must be a function of x , i.e. 

 

 ( ) ( ) ( )ˆp̂ x P x f x− =   

 

Besides, if ( )p x  is a momentum eigenfunction in position space, with 

momentum p , then 

 

 ( ) ( ) ( )p̂ x p x pp x=  

 

and 

  

 ( ) ( ) ( )P̂ x p x pp x=   

 



 European J of Physics Education Volume 11 Issue 2 1309-7202 Konstantogiannis    

 41 

and thus, subtracting the two previous equations, 

 

 ( ) ( ) 0f x p x =   

 

As an eigenfunction, ( )p x  cannot be the zero function, and then from the last 

equation we derive that ( )f x  is the zero function, and thus ( ) ( )ˆ ˆP x p x= , which 

means that the solution (8) is unique. 

To summarize, in position space, the position operator is the position 

coordinate, while the momentum operator is the differential operator (8). 

The momentum eigenfunctions ( )p x  in position space are then derived by 

solving the momentum eigenvalue equation in position space, which, by means of (8), 

reads 

 

 ( ) ( )i p x pp x− =  (9)  

 

and it is easily solved by separation of variables and integration, to give 

 

 ( ) exp
ipx

p x A
 

=  
 

 (10)  

 

where A  is a complex constant that does not depend either on x  or on p 4. 

Since ( )p x  is not square-integrable, as ( )p x  is constant, the constant A  cannot be 

calculated by a normalization condition. 

To calculate the constant A , we proceed as follows: similarly to the wave 

function (1), we write the momentum eigenfunction ( )p x  in position space as 

 

 ( )
def.

p x x p=  (11)  

 

where p  is a momentum eigenstate. Since the wave function ( )p x  is not 

square integrable, the ket p  has infinite norm. As it happens with the position 

eigenstates, the momentum eigenstates are also meant as generalized kets not 

belonging to the state space, but since the momentum operator represents an 

observable quantity, i.e. the momentum, the momentum eigenstates span the state 

space and also, they are orthogonal, which means that ( )p p p p = − . 

 
4 We note that, in position space, the position x  is a variable, while the momentum p  is a parameter. 

In momentum space, the opposite holds. 
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Using the closure relation of the position eigenstates, the element p p  is 

written as 

 

 
*

p p p dx x x p dx p x x p dx x p x p

  

− − −

 
   = = = 

 
   ,  

 

where, in the last equality, we used the conjugate symmetry of the scalar 

product (the asterisk denotes complex conjugation). Thus, 

 

 
*

p p dx x p x p



−

 =  ,  

 

By means of (11) and then (10), the last equality reads 

 

 
( )2

exp
i p p x

p p A dx



−

− 
 =  

 
 ,  

 

and then by the orthogonality of the eigenstates p  and p , we obtain 

 

 
( )

( )
2

exp
i p p x

A dx p p


−

− 
= − 

 
  (12)  

 

To proceed, we’ll use the following integral representation of the delta 

function 

 

 ( ) ( )
1

exp
2

du ivu v




−

= ,  

 

where   is a real parameter. Setting p p = − , the previous equation reads 

 

 ( )( ) ( )
1

exp
2

du i p p u p p




−

 − = −  (13)  

 

The delta function is even, i.e. ( ) ( )p p p p  − = − , thus comparing (12) 

and (13) yields 

 

 
( )

( )( )
2 1

exp exp
2

i p p x
A dx du i p p u



 

− −

− 
= − 

 
   (14)  
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Finally, changing the variable x  to y x= , the integral on the left-hand side 

reads 

 

 ( )( )expdy i p p y



−

− ,  

 

which is equal to the integral on the right-hand side of (14) times the reduced 

Planck constant, as the integration variable is dummy and can be renamed to u . Thus, 

(14) finally gives 

 

 
1

2
A


= ,  

 

and up to a constant phase, we end up to 

 

 
1

2
A


=   

 

The momentum eigenfunction (10) then reads 

 

 ( )
1

exp
2

ipx
p x



 
=  

 
 (15)  

 

or, using the definition (11), 

 

 
1

exp
2

ipx
x p



 
=  

 
 (16)  

 

Besides, from the conjugate symmetry of the scalar product, we have 
*

p x x p= , and then, by means of (16), we obtain 

 

 
1

exp
2

ipx
p x



 
= − 

 
 (17)  

 

The element p x  is the projection of the arbitrary position eigenstate x  on 

the arbitrary momentum eigenstate p . Then, similarly to (11), we identify the 

element p x  as the position eigenfunction ( )x p  in momentum space, i.e. 

 

 ( )
1

exp
2

ipx
x p



 
= − 

 
 (18)  
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The Momentum Space 

Similarly to the position space, the momentum space of our particle is realized 

by taking projections of kets on the directions – on the axes – defined by the 

momentum eigenstates p , p , by means of the projection operators p p . 

Then, similarly to (1), the momentum-space wave function ( )p  describing a state 

  in momentum space is defined as 

 

 ( )
def.

p p =  (19)  

 

As the position space, the momentum space is also physically equivalent to the 

state space. Thus, similarly to (3), if Â  is an operator acting on state space, then the 

physical equivalence of the state space to the momentum space implies that 

 

 ( ) ( )ˆ ˆp A A p p =  (20)  

 

where the operator ( )Â p  is the expression of the operator Â  in momentum 

space. 

We can now express the momentum-space wave function in terms of the 

position-space wave function. Indeed, inserting the closure relation of the position 

eigenstates on the right-hand side of (19), between the bra p  and the ket  , we 

obtain 

 

 ( ) ( )
1

exp
2

ipx
p p dx x x dx p x x dx x   



  

− − −

   
= = = −   

  
   ,  

 

where, in the last equality, we used (1) and (17). Thus, the momentum-space 

wave function is the Fourier transform of the position-space wave function, i.e. 

 

 ( ) ( )
1

exp
2

ipx
p dx x 





−

 
= − 

 
   

 

In the same way, inserting the closure relation of the momentum eigenstates5 

on the right-hand side of (1), and using (16) and (19), we write the position-space 

wave function as the inverse Fourier transform of the momentum-space wave 

function, i.e. 

 

 
5 As the position eigenstates, the momentum eigenstates also satisfy a closure relation. 
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 ( ) ( )
1

exp
2

ipx
x dp p 





−

 
=  

 
   

 

As we did to find the expression of the position operator in position space, the 

expression ( )p̂ p  of the momentum operator in momentum space can be derived by 

considering the element ˆp p  , where   is an arbitrary state of our particle. 

Using (20), the previous element is written as 

 

 ( ) ( )ˆ ˆp p p p p =  (21)  

 

Also, using the closure relation of the momentum eigenstates, the element 

ˆp p   is written as 

 

 ˆ ˆ ˆp p p p dp p p dp p p p p  
 

− −

 
     = = 

 
   

 

The ket p  represents a momentum eigenstate, with momentum p , thus 

p̂ p p p  = , and the element ˆp p p  reads p p p  , and since the momentum 

eigenstates are orthogonal, the last expression reads ( )p p p − . Also, from (19), the 

element p   is the momentum-space wave function ( )p  . Then, performing the 

delta-function integration, we end up to 

 

 ( )ˆp p p p =   

 

Comparing the last equation with (21) and taking into account that the wave 

function ( )p  is arbitrary, we obtain 

 

 ( )p̂ p p= ,  

 

i.e. in momentum space, the momentum operator is the momentum coordinate. 

To derive the expression ( )x̂ p  of the position operator in momentum space, 

we can use the reasoning we employed to derive the momentum operator in position 

space. Alternatively, we can use the position eigenfunctions we have already 

calculated in (18). Thus, the position eigenvalue equation in momentum space reads 

 

 ( )ˆ exp exp
ipx ipx

x p x
   
− = −   
   

,  
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with a solution for ( )x̂ p  

 

 ( )ˆ
d

x p i
dp

=  

 

It can be easily seen that the operators i d dp  and p  satisfy the canonical 

commutation relation (6) in momentum space. Therefore, in momentum space, the 

position operator is the differential operator i d dp , while the momentum operator is 

the momentum coordinate. 

 

Example 

As an example, we’ll show that the stationary Schrödinger equation is the 

energy eigenvalue equation in position space. 

Considering a particle of mass m  in a one-dimensional potential, its 

Hamiltonian in state space reads 

 

 ( )
2ˆˆ ˆ

2

p
H V x

m
= + ,  

 

where ˆ ˆ,x p  are, respectively, the position and momentum operators. Then, the 

energy eigenvalue equation for the particle reads 

 

 ˆ
E EH E = ,  

 

where E  is an eigenstate of energy E . Projecting both sides of the previous 

equation on the axis defined by the position eigenstate x  yields 

 

 ( )ˆ
E E E Ex H x E E x E x   = = = ,  

 

where, in the last equality, we used the definition of the position-space wave 

function (see eq. (1)). Thus 

 

 ( )ˆ
E Ex H E x =   

 

By means of (2), the element ˆ
Ex H   reads 
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 ( ) ( ) ( )ˆ ˆ
E EH x x H x x = ,  

 

where ( )Ĥ x  is the expression of the previous Hamiltonian in position space. 

Thus 

 

 ( ) ( ) ( )ˆ
E EH x x E x =  (22)  

 

In position space, the position operator is the position coordinate, while the 

momentum operator is the differential operator i d dx− . Thus, the Hamiltonian of 

the particle in position space is 

 

 ( ) ( )
2 2

2
ˆ

2

d
H x V x

m dx
= − + ,  

 

and (22) is then written as 

 

 ( ) ( ) ( ) ( )
2

2
E E Ex V x x E x

m
  − + =   

 

or 

 

 ( ) ( )( ) ( )2

2
0E E

m
x E V x x  + − = ,  

 

which is the stationary Schrödinger equation (also known as the time-

independent Schrödinger equation). 

 

The Three-Dimensional Case 

For a particle moving in three dimensions, using the same reasoning as in the 

one-dimensional case, the position space is realized by projecting ket states   on 

the particle’s position eigenstates r , where r  is a vector in 
3
. The position-space 

wave function is then defined as 

 

 ( )
def.

r r =   

 

Similarly to (3), if Â  is a state-space operator and the state   belongs to its 

domain, then 
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 ( ) ( )ˆ ˆr A A r r = ,  

 

where ( )Â r  is the expression of the operator Â  in position space. 

The orthogonality of the position eigenstates r  and r  is expressed by the 

relation 

 

 ( )r r r r = − ,  

 

where, in Cartesian coordinates, the three-dimensional delta function is 

 

 ( ) ( ) ( ) ( )r r x x y y z z      − = − − −   

 

The closure relation for the position eigenstates now reads 

 

 3 1̂d r r r



−

=   

 

In three dimensions, the canonical commutation relations for position and 

momentum read, in state space, 

 

 ˆ ˆ[ , ]i j ijr p i = ,  

 

where the indices ,i j  take the values 1,2,3, with 1 standing for the coordinate 

x , 2 for y , and 3 for z . 

Using the same reasoning as in the one-dimensional case, we find that the 

expressions of the position and momentum operators in position space are, 

respectively, 

 

 ( ) ( )ˆ ˆ and r r r p r i= = −  ,  

 

where   is the del operator. That is, the position operator is the position 

vector, while the momentum operator is the del operator times i− , which is an 

obvious generalization from the one-dimensional case. 
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The momentum eigenfunctions in position space are then derived by solving 

the momentum eigenvalue equation 

 

 ( ) ( )i p r pp r−  = ,  

 

which, in Cartesian coordinates, reads 

 

 
( ) ( ) ( )

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ
x y z x x y y z z

p r p r p r
i e e e p e p e p e p r

x y z

   
− + + = + + 

   
 (23)  

 

where ˆ ˆ ˆ, ,x y ze e e  are the unit vectors on the axes , ,x y z , respectively. We note 

that the momentum eigenfunctions are, actually, wave functions, thus they are scalar 

functions. We can easily solve (23) by separating the variables, i.e. by writing the 

momentum eigenfunction as 

 

 ( ) ( ) ( ) ( )p r X x Y y Z z=   

 

Then, substituting into (23), we obtain three differential equations with the 

same form as (9), thus the momentum eigenfunction ( )p r  is the product of three 

eigenfunctions with the form (15), i.e. 

 

 ( )
1 1 1

exp exp exp
2 2 2

yx z
ip yip x ip z

p r
  

    
=     

    
  

 

or 

 

 ( )
( )

3 2

1
exp

2

ip r
p r



 
=  

 
 (24)  

 

We note that with the same reasoning, in n  spatial dimensions, the momentum 

eigenfunctions are, in position space, 

 

 ( )
( )

2

1
exp

2
n

ip r
p r



 
=  

 
,  

 

where ( )1,..., nr r r=  and ( )1,..., np p p= . 

Since ( )p r r p= , (24) is also written as 
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( )

3 2

1
exp

2

ip r
r p



 
=  

 
  

 

The description in momentum space is completely analogous. The momentum-

space wave function is defined as 

 

 ( )
def.

p p =   

 

Similarly to (3), if Â  is a state-space operator and the state   belongs to its 

domain, then 

 

 ( ) ( )ˆ ˆp A A p p = ,  

 

where ( )Â p  is the expression of the operator Â  in momentum space. 

The orthogonality relation of the momentum eigenstates reads 

 

 ( )p p p p = − ,  

 

where, in Cartesian momentum coordinates, 

 

 ( ) ( ) ( ) ( )x x y y z zp p p p p p p p      − = − − −   

 

The momentum eigenstates satisfy the closure relation 

 

 3 1̂d p p p



−

=   

 

The expressions of the position and momentum operators in momentum space 

are, respectively, 

 

 ( ) ( )ˆ ˆ and pr p i p p p=  = ,  

 

where p  is the del operator in momentum, i.e. in Cartesian momentum 

coordinates, 
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 ˆ ˆ ˆ
x y zp p p p

x y z

e e e
p p p

  
 = + +

  
  

 

Since 

 

 ( ) ( )
* *r p p r r p p r= = = ,  

 

the position eigenfunctions in momentum space are the complex conjugates of 

the momentum eigenfunctions in position space, as it happens in one-dimension too. 

Then, by means of (24), 

 

 ( )
( )

3 2

1
exp

2

ip r
r p



 
= − 

 
  

 

The relation between the position and momentum space wave functions ( )r  

and ( )p  is derived in the same way as in the one-dimensional case, and we obtain 

 

 ( )
( )

( )3

3 2

1
exp

2

ip r
p d r r 





−

 
= − 

 
 ,  

 

i.e. the momentum-space wave function is the three-dimensional Fourier 

transform of the position-space wave function. The three-dimensional inverse Fourier 

transform then relates the position-space wave function to the momentum-space wave 

function, i.e. 

 

 ( )
( )

( )3

3 2

1
exp

2

ip r
r d p p 





−

 
=  

 
   

 

CONCLUSIONS 

We have reformulated the physical equivalence of the quantum mechanical state 

space to the position and momentum spaces in terms of a simple relation and we have 

provided a presentation of the position and momentum spaces that is intuitively 

geometric in that it is more constructive and less calculative than the presentations 

found in standard quantum mechanics textbooks, and thus it is deprived of such 

mathematical subtleties as the presence of the delta function derivative, which, 

although well defined, is not well understood by physics students. 
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By the present work, we hope to offer a perspective complementary to those 

given in literature, which will help students to acquire functional knowledge of the 

quantum mechanical position and momentum spaces. 
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