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Abstract 

This is a fundamental and pedagogical work in quantum physics/chemistry, where we try to illustrate 

the Mulliken’s question, “What are the electrons really doing in molecules?”. And we also briefly 

review the development of the most popular numerical approaches in computational chemistry. We 

examine in a novel approach, how we can overall describe the electronic interactions in atomic 

systems with the conceptual help of a space-time picture of quantum mechanics. This is not a research 

article initially looking for new numerical results, but for the imperative fundamental reinterpretation 

of the (non-classical and stabilizing) electronic exchange and correlation energies, from the point of 

view of space-time scattering events between electrons. Consistently, we introduce Feynman type 

diagrams as pictorial representation of the (abstract) enthalpic integrals, scattering mechanisms, in 

quantum chemistry. In atomic structures, it is almost impossible to fully understand, covalent 

bonding, electronic enthalpies, surface science, orbital magnetism, catalysis… without 

computational chemistry. How well do we know the physical meaning of the quantum mechanisms 

behind the numerical approaches? We give an educational hit to this question, following the 

philosophy of R.P. Feynman, “just recognizing old things from a new point of view”. The possibility 

of interpreting Coulomb and Fermi holes with space-time diagrams goes deep into the quantum 

behaviour of electrons, because the Coulomb forces in atomic systems create interreference patterns 
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and then electrons cannot fill the electrostatic potentials everywhere as in classical mechanics. 

Quantum mechanics also allows electrons in atoms to collide in scatting events, introducing 

(dynamic) space-time mechanisms that reduce their repulsion energy; and actual successful 

computational chemistry methods include an average approximation to these stabilization 

mechanisms.  

Keywords: Path integral formulation, space-time approach to quantum mechanics, computational 

chemistry, Feynman diagrams. 

 

 

INTRODUCTION 

There are several ways to comprehend quantum mechanics, and then of understanding 

computational chemistry. One method is to directly formulate an appropriate partial 

deferential equation, like the Schrödinger equation (Schrödinger, 1926), that describes the 

state (wave function, amplitude of probability) of the system. This undulatory formulation 

provides an efficient way to calculate the wave function and how it changes, however, it 

does not directly say how the electrons behave in the underlying reality behind the amplitude 

of probability. Another alternative to look at the same physical content is the path integral 

formulation, developed by P.M.A. Dirac and R.P Feynman (Dirac, 1933),(Feynman, 1948). 

Both approximations are to some extent completely equivalent; the classical quantum wave 

mechanics is typically the most useful for doing numerical calculations, but the path integral 

approach is the best way to gain intuition, physical insight, on what quantum mechanics 

means.i Our propose is to help to develop a novel and more intuitive and realistic picture to 

the question: what electrons are doing in atoms

 

Lagrangian Approach to Quantum Wave Mechanics 

In classical mechanics, particles and forces are exactly defined in space and time. 

The movement of particles obey Newtonian mechanics, the defined position, 𝑞0(𝑡), of a 

particle in a scalar field, 𝑈0(𝑞0), changes because of the action of the force field as 

 
i Reader must have an advanced knowledge of the numerical approaches in computational chemistry to 
follow the ideas. 
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−∇𝑈0(𝑞0) = 𝐹0(𝑞0) = 𝑚0 ⋅
𝜕2𝑞0(𝑡)

𝜕2𝑡
. The resulting defined path of the particle has minimum 

action, 𝑆0 = ∫ (
1

2
⋅ 𝑚0 ⋅ (

𝜕𝑞0(𝑡)

𝜕𝑡
)

2
− 𝑈0(𝑞0))𝜕𝑡

𝑡

0
; any other path 𝑞𝑖(𝑡) has 𝑆𝑖 > 𝑆0 (Bracken, 

2013). In the classical view (Bohr Atomic Model) for a defined energy, the electrons in an 

atom, with heavy immobile nuclei, under the Coulomb potential −
𝑍𝐴⋅𝑒2

4𝜋𝜖0𝑟1𝐴
 will orbit 

following exactly the black 𝑆0 lines (𝑞0
𝑒−(𝑡)) in Fig. 1 and 2. Any other path, 𝑞𝑖(𝑡), means 

that electrons do not follow exclusively the expected classical movement according to a 

defined (in space-time) position, kinetic and potential energy but other orbits with 𝑆𝑖.  

P.A.M. Dirac in 1933, introduced the concept that in quantum mechanics every 

possible path 𝑞𝑖(𝑡) with 𝑆𝑖 must be able of contributing to the movement of electrons with a 

factor 𝜙𝑖 = 𝐴 ⋅ 𝑒
𝑖

ℏ
𝑆𝑖[𝑞𝑖(𝑡)]

 (Dirac, 1933). In Fig. 2, it means that the electrons, with constant 

energy, most frequently follow the classical 𝑆0 orbits (black), but any other path (color lines) 

is also accessible but less probable. The factor 𝑒
𝑖

ℏ
𝑆𝑖[𝑞𝑖(𝑡)]

 indicates that the trajectory of 

electrons can deviate from the classical path if the difference in the action is roughly within 

ℏ. We can only know the probability of finding the electrons in space-time, because there 

are no uniquely define paths for the particles in quantum mechanics. 

Feynman following the Dirac expression, that every possible path should be able of 

contributing to go from 𝑞 to 𝑞 + 𝜕𝑞, derived the Schrödinger equation (Feynman, 1948). 

Then a wavefunction, 𝛹𝑒−(𝑞, 𝑡), solution of the 𝑖ℏ
𝜕

𝜕𝑡
𝛹𝑒−(𝑞, 𝑡) = �̂�𝛹𝑒−(𝑞, 𝑡) equation 

actually assign probabilities to different paths for the electrons according to the Dirac 

exponential factor over the action; and the Hamiltonian of the system consists of defined 

operators adapted from classical mechanics. 

 

A Novel Alternative View to The Wave-Particle Duality  

In a microwave oven, photons carry an individual energy associated with their 

frequency; while collectively photons create interreference patterns ligated with the resonant 

cavity, ‘Figure 1a: Standing energy waves determine the overall energy distribution in 

space-time’. At the darkest places of a cavity mode, the probability of finding photons is 
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practically null, no energy; while at the brightest areas a maximum number of photons 

reinforce the energy density (Yirmiyahu, Niv, Biener, Kleiner & Hasman, 2007).  Now, let 

us imagine that a hydrogen atom is a like a waveguide (microwave cavity); individual virtual 

photons carry the charge attraction between the proton (p+) and the electron (e-), and 

collectively these energy carriers create an interference pattern, standing electrostatic energy 

waves. Then in a hydrogen atom, there will be dark/bright areas in space-time where the 

probability of finding electrostatic (photons) attractions is null/maximum. Contrary to the 

classical approximation, the electrostatic potential is not everywhere in an atomic system, 

see Fig. 1; but the probability of finding the energy associated with the nuclei and electronic 

interactions (potentials) is determined by amplitudes of probabilities, functions 

Ψ𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒
𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦

. 

 In the reasonable Born–Oppenheimer (BO) approximation (Born & Oppenheimer, 

1927) even for hydrogen atoms, the proton is mainly static while the electron orbits around. 

According with Fig. 1, electrons do not feel/create the p+-e- attraction at every single point 

in space; if virtual (electrostatic) energy photons do not accumulate constructively, the 

electrons (in this picture imagined as classical charged particles) do not feel the Coulomb 

attraction: there is no Coulomb attraction at the destructive interreference zones. Figure 1 

represents that the energy density (ρ𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒
𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦

= (Ψ𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒
𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦

)
2
) is delocalized and 

create interreference patterns; but the electrons are localized, can have with specific 

coordinates [x,y,z,t], and evolve following multiple actual space-time trajectories according 

to ρ𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒
𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦

.  
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Figure 1. a) Examples of some cylindrical waveguide modes.(Yirmiyahu, Niv, Biener, Kleiner & 

Hasman, 2007). b) In a hydrogen atom, we represent with a black line the most probable orbit for an 

electron (Bohr radius). This actual space-time orbit is not unique, the electrons will occupy all the 

positions following the amplitude of probability of finding the virtual photons ligated to the quantized 

Coulomb energy field, 𝛹𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒
𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦

. Electrons (blue color) expend more time in those positions where 

they feel more the attraction of the proton; those places with a constructive interference pattern for the 

virtual photons that carry the energy. Contrary to the classical notion, electrons (with a define position 

in space-time) will not feel the attraction of the nucleus in the zones with a destructive interference pattern 

for the Coulomb field (in red in Fig. 1b). Electrons feel a quantized stabilizing Coulomb attraction 

according to 𝑣𝑝+𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = − 〈𝛹𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒

𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦 |
𝑍𝐴·𝑒2

4𝜋𝜖0𝑟1𝐴
| 𝛹𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒

𝑝+𝑒−𝑒𝑛𝑒𝑟𝑔𝑦 〉. c) The same concept of the 

standing energy wave for the Coulomb attractions applies to the electronic repulsions; electrons in this 

view are particles, with define position in space-time, that must follow in their trajectories the pattern 

created by the stable standing energy modes: orbitals. 

a

) 

c) 

b) 
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The actual standard interpretation of quantum wave mechanics is represented in Fig. 

2; the electrons are fully delocalized, with electron density ρ𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑒− = (Ψ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑒− )
2
; while 

the energy potentials are fully determined having a fix value in space-time according to the 

classical Coulomb formulas, −
𝑍𝐴⋅𝑒2

4𝜋𝜖0𝑟1𝐴
 and 

𝑒2

4𝜋𝜖0⋅r12
. The quantum wave–particle duality 

essentially means that Fig. 1 and 2 are equivalent, the electron amplitude of probability, 

Ψ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑒− , is identical to the energy amplitude of probability Ψ𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔.𝑤𝑎𝑣𝑒

𝑒𝑛𝑒𝑟𝑔𝑦
≡

Ψ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑒− : evolving electrons in space-time act as mirrors for the energy carriers to create 

certain standing energy waves. We can use the mathematical formulation of quantum wave 

mechanics and use the Feynman Path integrals to reinterpret it according to delocalized 

energy potentials (standing modes created by the virtual energy carries and not by the 

electron as a particle) and localized electrons, Figure 1.                

           

 

 

 

 

 

 

 

 

 

 

Figure 2. The black lines represent the most probable radius to find the delocalized electrons in the 

mono-electronic orbitals Φ1𝑒− and Φ2𝑒−, in an atom according to quantum wave mechanics. The 

electron densities are maximum for those trajectories with minimum action 𝑆0; however, any other 

alternative path (𝑆𝑖, color lines) also contributes. In pure wave mechanics, the path integral quantum 

representation applies to the delocalized electrons; however, the Coulomb potentials (the energy) 

are always defined in space-time. The interreference patterns are interpreted as created by the 

electrons.  
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The idea of introducing alternative ways to understand better the behaviour of 

electrons in chemical systems, looking for a brief overall pedagogical interpretation of 

modern Computational Chemistry, will only work if it reduces the complexity of the 

concepts to follow. We are going adapt the notion behind the Feynman diagrams to represent 

quantum electronic energy terms (Magnasco, 2009),(Feynman 2011), starting from the 

Schrödinger equation. This approach offers a space-time view of quantum events, to 

understand from another approach but necessarily equivalent the quantized electron-electron 

repulsions. It is important to make evident that the Coulomb field, created by the nuclei and 

the electrons, creates interference patterns with brighter and darker spots; and the multiple 

space-time paths of the electrons create and respond to these standing energy wave patterns. 

 

Feynman Diagrams 

In computational chemistry, Feynman type diagrams are already a useful tool for 

algorithmically constructing the kth order term of a perturbation series (Mattuck, 2012). In 

addition, we are interested in representing any matrix energy term (integral), 〈Φ𝐴 |�̂�|Φ𝐵 〉 

(scattering matrix), resulting from the introduction of a given electronic wavefunction (any) 

Ψ𝑒− = 𝑓(φ1 , … , φ𝑖 , … ) as solution to the non-relativistic Schrödinger Hamiltonian 

�̂�𝑒−
𝑆𝑐ℎ𝑟. = �̂�𝑒−

𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + �̂�𝑁+𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + �̂�𝑒−𝑒−

𝐶𝑜𝑢𝑙𝑜𝑚𝑏. The interacting potential �̂�, evolution operator 

between the vector states, can be any discrete operator in �̂�𝑒−
𝑆𝑐ℎ𝑟.; the kinetic energy of an 

electron (�̂�𝑒−
𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = −

ℏ2

2𝜇
∇1

2), a nucleus-electron attraction (�̂�𝑁+𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = −

𝑍𝐴⋅𝑒2

4𝜋𝜖0𝑟1𝐴
), or the 

electronic repulsion between two electrons (�̂�𝑒−𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 =

𝑒2

4𝜋𝜖0⋅r12
). Correspondingly, the Φ𝐴  

and Φ𝐵  state-vectors include one or two (for �̂� = �̂�𝑒−𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏) mono-electronic orbitals (φ𝑖 ). 

As in the Heisenberg picture (Weinberg, 1995), Φ𝐴  and Φ𝐵  are time-independent (then 

defined as real functions) mono- or bi- electronic states, formed by orthonormal φ𝑖 vectors 

in the same Hilbert space, indicating if the electrons change or remain in the same orbital 

after the quantum interaction mechanism. The total physical state Ψ𝑒−(wavefunction) is 

represented in the basis of the mono-electronic vectors; these orbitals, for instance φ𝑖, 

individually only represent a partial spacetime history of the electrons.  
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Imagine that the electrons move in defined multiple space-time trajectories, and 

because of the action of the quantized energy field all the possible paths contribute according 

to 𝐴 ⋅ 𝑒
𝑖

ℏ
𝑆𝑖(𝑡)

. For every matrix element in quantum wave mechanics, integrals in 

computational chemistry, we can draw an equivalent picture representing the space-time 

interaction/scattering events for moving electrons: Feynman diagrams serve to represent the 

possible scattering events, matter---virtual-photon---matter interactions (Ruggenthaler, 

Tancogne-Dejean, Flick, Appel & Rubio, 2018).  

In our interest of understanding better quantum chemistry; this analysis associates 

the abstract energy integrals with actual space-time propagation/scattering events between 

electrons in orbitals. Any possible interaction-event between the electrons in the quantized 

energy field, that will reduce the Coulomb repulsions (the total energy) will occur with a 

certain probability. The results of the quantum collision mechanisms are different than the 

expected classical action between delocalized electronic clouds: quantum electronic 

correlation energy-mechanisms.  

 

The Non-Relativistic Hydrogen Atom 

 

 

 

 

 

 

 

 

Figure 3. Feynman diagram that represent the propagation of an electron in the orbital 𝜑𝑎
𝛼(𝛽)

, the 

line is curved because of the influence of the attractive quantized Coulomb potentials formed with 

the nuclei: 𝑡𝑒−𝑎
𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝑣𝑁+𝑒−𝑎

𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = ⟨Ψ0| −
ℏ2

2𝜇
∇1

2| ⋅ Ψ0⟩  + ∑ Ψ0| −
𝑍𝐴 ·𝑒2

4𝜋𝜖0𝑟1𝐴
| ⋅ Ψ0⟩𝑀

𝐴 . 
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The time-independent Schrödinger equation for an electron in a hydrogen atom, 

according to the Born-Oppenheimer approximation (Born & Oppenheimer, 1927) is 

�̂�𝑒−
𝑆𝑐ℎ𝑟.(𝐻 ⋅) ⋅ Ψ𝑛(𝑥1) = E𝑛 ⋅ Ψ𝑛(𝑥1), with �̂�𝑒−

𝑆𝑐ℎ𝑟.(𝐻 ⋅) = −
ℏ2

2𝜇
∇1

2 −
𝑍𝐴·𝑒2

4𝜋𝜖0𝑟1𝐴
 (Schrödinger, 

1926). Now, we take the analytical wavefunction for the ground state Ψ0(𝐻 ⋅), and in our 

approximation, the “exact” contribution to the energy due to the proton-electron Coulomb 

attraction is 〈Ψ0(𝐻 ⋅)| −
𝑍𝐴·𝑒2

4𝜋𝜖0𝑟1𝐴
|Ψ0(𝐻 ⋅)〉.  

Figure 3 is a Feynman-type space-time diagram to represent a non-relativistic 

electron in the hydrogen atom. The proton is practically immobile, and the electron 

propagates in the quantized electrostatic field created together with the nucleus. We 

represent the evolution of the electron (in the orbitals φ𝑖 ) as curved lines, with an arrow 

indicating the direction; the time axis is in X, flowing from left to right, and the space in Y, 

bottom to top. Fig. 3 serves to represent any mono-electronic atomic system.  

 

Coulomb Electronic Repulsions 

Starting from the Schrödinger Hamiltonian, �̂�𝑒−
𝑆𝑐ℎ𝑟. = �̂�𝑒− + �̂�𝑁+𝑒−

𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + �̂�𝑒−𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏, 

for a multi-electronic system, the historical improvement in the theoretical descriptions 

evolved from the introduction of successive better wave-functions: 

 

1) �̂�𝑒−
𝑆𝑐ℎ𝑟.Ψ𝑒−

𝐻𝑎𝑟𝑡𝑟𝑒𝑒 = 𝐸𝑒−
𝐻𝑎𝑟𝑡𝑟𝑒𝑒 ⋅ Ψ𝑒−

𝐻𝑎𝑟𝑡𝑟𝑒𝑒, Ψ𝑒−
𝐻𝑎𝑟𝑡𝑟𝑒𝑒 = ∏ 𝜑𝑖

𝑒−𝑛
𝑖=1  (Hartree product) 

(Hartree, 1928); 

 

2) �̂�𝑒−
𝑆𝑐ℎ𝑟.Ψ𝑒−

𝑆𝑙𝑎𝑡𝑒𝑟 = 𝐸𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 ⋅ Ψ𝑒−

𝑆𝑙𝑎𝑡𝑒𝑟, Ψ𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 = |𝜑1

𝑒−, … , 𝜑𝑛
𝑒−⟩ (Slater determinant) 

(Heisenberg, 1926), (Dirac, 1926). 

  

The difference 𝐸𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 − 𝐸𝑒−

𝐻𝑎𝑟𝑡𝑟𝑒𝑒 = 𝑄𝑆𝐸𝐼 < 0, always stabilizing, defines exactly 

the Quantum Spin Exchange Interactions (QSEI) in the Hartree–Fock (HF) approximation 

(Schrödinger, 1926): a collision mechanism between electrons with the same spin that allows 
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to reduce the Coulomb repulsion energy. QSEI are the most relevant of the correlation 

effects in atomic systems. 

 

3) �̂�𝑒−
𝑆𝑐ℎ𝑟.Ψ𝑒−

𝑚𝑢𝑙𝑡𝑖.𝑐𝑜𝑛𝑓.
= 𝐸𝑒−

𝑚𝑢𝑙𝑡𝑖.𝑐𝑜𝑛𝑓.
⋅ Ψ𝑒−

𝑚𝑢𝑙𝑡𝑖.𝑐𝑜𝑛𝑓.
; Ψ𝑒−

𝑚𝑢𝑙𝑡𝑖.𝑐𝑜𝑛𝑓.
= ∑ 𝐶𝑖|Ψ𝑖

𝑆𝑙𝑎𝑡𝑒𝑟⟩∞
𝑖=0  

(Schrödinger, 1926).    

 

A multi-determinant expansion of the wavefunction again reduces the energy, 

𝐸𝑒−
𝑚𝑢𝑙𝑡𝑖.𝑐𝑜𝑛𝑓.

− 𝐸𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 = 𝐸𝑒−𝑒−

correlation < 0, generally defined as the stabilizing correlation 

energy.  

Electrons in atomic systems are indistinguishable fermions (with the Z-component 

of the angular momentum 𝑆𝑍 = ± ℏ 2⁄ ), and the traditional way to introduce such 

information in the Schrödinger equation is to force an anti-symmetric electronic 

wavefunction (Ψ𝑒−
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚.

) as solution to �̂�𝑒−
𝑆𝑐ℎ𝑟. (Slater, 1929). A Slater determinant, as the 

simplest antisymmetric wave function, appeared independently in 1926 in papers by 

Heisenberg (Heisenberg, 1926) and Dirac (Dirac, 1926). But the operators in �̂�𝑒−
𝑆𝑐ℎ𝑟. = �̂�𝑒− +

�̂�𝑁+𝑒−
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 + �̂�𝑒−𝑒−

𝐶𝑜𝑢𝑙𝑜𝑚𝑏 all have a classical origin and are spin independent, the imposed 

Ψ𝑒−
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚.

= 𝑓 (φ1
α(β)

, … , φn
α(β)

) amplitude of probability generates the (unexpected) non-

classical QSEI in multi-electronic systems.  

The Hartree Ψ𝑒−
𝐻𝑎𝑟𝑡𝑟𝑒𝑒 = ∏ 𝜑𝑖

𝑒−𝑛
𝑖=1 , but it is not antisymmetric, already introduces 

that for two electrons in the mono-electronic eigen-vectors φa
α(β)

 and φb
α(β)

 independently 

of the spin, their Coulomb repulsion contribute to the energy with the integral term: 

v𝑎𝑏
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 =  ⟨(φa

α(β)
)

2
|

𝑒2

4𝜋𝜖0⋅r12
| (φb

α(β)
)

2
⟩ > 0. Since φa(b)

α(β)
⋅ φa(b)

α(β)
 is the real probability 

of finding the electrons in space according to the stationary φa(b)
α(β)

 amplitude, we identify 

v𝑎𝑏
𝐶𝑜𝑢𝑙𝑜𝑚𝑏 as the classical Coulomb repulsions; every electron propagates continuously in its 

own orbital, see Fig. 4. 
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Feynman Diagram for The Classical Coulomb Repulsion 

 

 

 

 

 

 

 

 

Figure 4. Feynman diagram that represents the classical Coulomb repulsion between two electrons 

in the orbital 𝜑𝑎
𝛼. 

 

The classical electron-electron Coulomb repulsions are represented by a double 

vertex factor, Fig. 4; the electrons do not change their orbitals. Fig. 5 represents the energy 

terms that describe the HF ground state for the hydrogen molecule, H2, for Ψ𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 =

|𝜑𝑎
𝛼𝜑𝑎

𝛽
⟩. 

 

 

Figure 5. Feynman diagrams that represents the Hartree-Fock energy terms in the H2 molecule, 

�̂�𝑒−
𝑆𝑐ℎ𝑟.Ψ𝑒−

𝑆𝑙𝑎𝑡𝑒𝑟 = 𝐸𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟 ⋅ Ψ𝑒−

𝑆𝑙𝑎𝑡𝑒𝑟 .  

 

Quantum Spin Exchange Interactions 

What is the physical meaning and origin of the QSEI? If we look to the stabilization 

energy due to the QSEI, as described in the Hartree-Fock method (Szabo & Ostlund, 2018); 
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once a Slater determinant is introduced as solution to the �̂�𝑒−
𝑆𝑐ℎ𝑟., if two electrons have the 

same spin then there is an additional scattering matrix, 𝑄𝑆𝐸𝐼𝑎𝑏
𝛼𝛼(𝛽𝛽)

=

− ⟨𝜑𝑎
𝛼(𝛽)

𝜑𝑏
𝛼(𝛽)

|
𝑒2

4𝜋𝜖0⋅𝑟12
|𝜑𝑎

𝛼(𝛽)
𝜑𝑏

𝛼(𝛽)
⟩ < 0 (Szabo & Ostlund, 2018), because of the imposed 

anti-symmetric solution 𝛹𝑒−
𝑎𝑛𝑡𝑖−𝑠𝑦𝑚.

= 𝛹𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟. Contrary to the Coulomb repulsions, this 

exchange energy (𝑄𝑆𝐸𝐼𝑎𝑏
αα(ββ)

) is a stabilizing spin-dependent term. From the formulation 

of the exchange integrals, we can say that the quantum reality introduces the prospect that 

two electrons with the same spin (indistinguishable) can interchange their orbitals, position 

and momentum. In every side of the 𝑄𝑆𝐸𝐼𝑎𝑏
αα(ββ)

 integrals, the electrons occupy two orbitals, 

𝜑𝑎
𝛼(𝛽)

 and 𝜑𝑏
𝛼(𝛽)

, and this correlation mechanism reduces the Coulomb repulsions. This not 

intuitive spin phenomenon does not have an apparent classical interpretation; but a space-

time approach allows to understand better QSEI: how is possible for the electrons with the 

same spin to interchange orbitals to reduce their Coulomb repulsions? 

 

Feynman Diagrams for the QSEI 

 

 

 

 

 

 

 

 

 

Figure 6. Feynman diagram that represents the quantum spin exchange interaction between two 

electrons with the same spin in the orbitals 𝜑𝑎
𝛼 and  𝜑𝑏

𝛼. 

 

Figure 6 represents that the constructive accumulation of the repulsive energy in the 

quantified field is released by the interchange of the energy momentum between electrons 
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with the same spin, mechanism that they use to avoid coming closer (spin correlated 

movement). At the instant of the space-time scattering event the total energy of the system 

remains the same, it is an exchange.  

With Fig. 3 to 6 just counting electrons and spins, and by adding the Pauli Exclusion 

principle, we can get all the energy integrals derived in the Hartree-Fock approximation. By 

adding Feynman type diagrams, just paying attention to the (most likely) scattering events 

between electrons, we will obtain the energy terms without knowing (imposing) the 

wavefunction a priory. As we will see, probably the most popular computational chemistry 

methods are not based, do not have, an associated analytical wavefunction.   

 

Correlation Energy 

A convenient way for us to introduce 𝐸𝑒−
correlation is from perturbation theory. 

Starting from the single-orbital Hartree-Fock Hamiltonian, �̂�𝐻𝐹 = ∑ (ℎ̂𝑖 + �̂�𝑖
𝐻𝐹)𝑖 , we are 

interested in the obtaining a perturbation expansion for 𝐸𝑒−
correlation; which development 

associates with Rayleigh and Schrödinger (Schrödinger, 1926), (Szabo & Ostlund, 2018), 

(Mattuck, 2012). The actual effective Hamiltonian change to �̂�𝐻𝐹 + �̂�𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, the wave 

function Ψ0
𝑘𝑡ℎ = Ψ0

𝑆𝑙𝑎𝑡𝑒𝑟 + Ψ0
1 + Ψ0

2 + ⋯ and the energies Ε0
𝑘𝑡ℎ = ϵ0

𝐻𝐹 + ϵ0
1 + ϵ0

2 + ⋯ 

improves in an infinite convergent  expansion, 𝐸𝑒−
correlation =  ϵ0

1 + ϵ0
2 + ⋯. In this 

formulation ϵ0
1 = 0, and the first meaningful correction is ϵ0

2 =

1

2
∑ ∑

⟨𝜑𝑎 𝜑𝑏 |
𝑒2

4𝜋𝜖0⋅𝑟12
|𝜑𝑟 𝜑𝑠 ⟩⋅⟨𝜑𝑟 𝜑𝑠 |

𝑒2

4𝜋𝜖0⋅𝑟12
|𝜑𝑎 𝜑𝑏 ⟩

𝜀𝑟+𝜀𝑠−𝜀𝑎−𝜀𝑏
𝑟,𝑠𝑎,𝑏 ; where 𝜑𝑎  and 𝜑𝑏  are occupied 

orbitals and 𝜑𝑟  and 𝜑𝑠  are unoccupied orbitals in the HF approximation. For higher order 

corrections we refer to literature, since ϵ0
2 already indicates the concept that 𝐸𝑒−

correlation 

relates with excitations with respect to the Ψ0
𝑆𝑙𝑎𝑡𝑒𝑟 configuration,  that reduce the energy.    

If we want to understand better the meaning of 𝐸𝑒−
correlation using a space-time approach, 

we need the associated Feynman diagrams. Mono-electronic systems like the hydrogen atom 

are soluble analytically, a single orbital serves as perfect solution. There is no correlation 

energy since there is no need to include excites states to improve the wavefunction. In the 

hydrogen H2 molecule two electrons are spin-paired so there is no QSEI, however now the 
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𝐸𝑒−
correlation already appears. Then, the correlation energy is another reduction of the 

electronic Coulomb repulsions but independent of the spin of the electron. 

 

Feynman Diagrams for the Correlation Energy 

If we have chosen to start from previous perturbational convention is because Kelly 

in 1963 already introduced Feynman type diagrammatic techniques to represent the 

perturbation energies in atoms (Kelly, 1963), (Paldus & Čížek, 1975), (Ramirez, 1991), 

(Goldstone, 1957), (Møller & Plesset, 1934). Fig. 7 is an adaptation in our style of the second 

order energy correction.    

   

       

 

 

 

 

 

 

Figure 7. Feynman type diagram that represents the ϵ0
2 correlation energy between two 

paired electrons in the same orbital, 𝜑𝑎
𝛼 and 𝜑𝑎

𝛽
. As the two electrons come closer the 

quantized Coulomb field constructively accumulate repulsive energy between the electrons; 

if the Coulomb repulsions reduce in the empty state 𝜑𝑟 , the electrons adsorb energy from 

the field to propagate in 𝜑𝑟 . Once electrons are further apart their repulsion reduces and 

the exited configuration is not stable, the interreference energy pattern in the quantum field 

reorganizes and the electrons come back to their initial more compact orbitals. 

 

Figure 7 indicates that the electrons in the (occupied) orbital 𝜑𝑎  when they are 

coming closer, the quantized energy field at some point (in space-time) prefer to change so 

the Coulomb repulsions can locally reduce by promoting the electrons temporarily in empty 

orbitals 𝜑𝑟 . In other words, if the two electrons have opposite spins as their charge repulsion 

increase, QSEI is not possible, the accumulation of repulsive energy at some point changes 
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the quantized energy field to place electrons in larger empty orbitals where the Coulomb 

repulsion is less, 𝜑𝑎 𝜑𝑏 → 𝜑𝑟 𝜑𝑠 , and the total energy decreases. Once the electrons move 

away in space-time and the Coulomb repulsions reduce, that exited configuration is not 

stable, 𝜑𝑟 𝜑𝑠 → 𝜑𝑎 𝜑𝑏 . There is some provisional energy penalty due to the increase in the 

kinetic energy and due to the reduction in the attractive Coulomb nuclei attractions in these 

temporary-scatter excited states, represented by the energy factor (𝜀𝑟 + 𝜀𝑠 − 𝜀𝑎 − 𝜀𝑏) in the 

denominator.  

We hope that the physical meaning of the perturbation diagrams in literature 

associated with 𝐸𝑒−
correlation is now clearer; and that it is also apparent, there are multiple of 

this dynamic mechanisms leading to the infinite 𝐸𝑒−
correlation =  ϵ0

1 + ϵ0
2 + ⋯ expansion, in 

relation to multiple complex accessible excitations once the electronic repulsions create local 

interreferences too bright.  

But differences in the expansion of the wavefunction and formulation of the 

𝐸𝑒−
correlation, we could also have started from considering the superposition of electronic 

excitations, interferences, in multi-determinant (anti-symmetric) wavefunctions, eq. 3. Since 

�̂�𝑒−
𝑆𝑐ℎ𝑟. does not change to be closer to reality: multi-configurational wavefunctions include 

a better interpretation of the actual space-time interaction of the electrons in a quantized 

electromagnetic field. Conceptually, we can follow the same philosophy, and we can build 

(sum-over) the most relevant (multiple) Feynman energy terms associated with multi-

configurational approaches. 

 

Density Functional Theory 

We have seen that the pure �̂�𝑒−
𝑆𝑐ℎ𝑟. necessarily relates with precise wave functions; 

but we can also try to represent multi-electronic systems by enlarging �̂�𝑒−
𝑆𝑐ℎ𝑟., and then 

simplifying the wave functions. Why not to try to approximate QSEI and 𝐸𝑒−𝑒−
correlation by 

effective finite one-body operators, maintaining a single Ψ𝑒−
𝑆𝑙𝑎𝑡𝑒𝑟. We could try to assign to 

the Exchange and Correlation interactions an effective space factor, as in Fig. 8, because 

they introduce a correction that reduces the expected Coulomb repulsions because of the 

operative larger distance between electrons. This concept is equivalent to the Exchange-
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Correlation hole in Density Functional Theory (DFT). DFT actually shows much more, in 

principle an exact solution to molecular systems based on occupied mono-electronic orbitals 

is possible, without the need of including excitations (or knowing the exact wavefunction) 

(Kohn & Sham, 1965), (Pan & Sahni, 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 8. Feynman type diagram of the Correlation and Exchange holes, that in DFT effectively 

simulate the reduction in the Coulomb repulsions due to electronic correlation. 

 

In DFT, we are used to hear about the exchange-correlation hole (Přecechtělová, 

Bahmann, Kaupp & Ernzerhof, 2014). The definition inside DFT is more or less close to the 

quantum reality, electrons in orbitals have dynamical mechanisms to be further apart and 

avoid partially strong Coulomb repulsions. Each electron effectively creates a depletion, or 

hole, of electron density around itself as a direct consequence of exchange-correlation 

effects, Figure 8. We admire that the success of DFT (in its multiple approaches) is also 

compatible with a quantum space-time interpretation of collision mechanisms between 

electrons in orbitals. Related with the size-shape of the exchange and correlations holes, 

every system is going to be different; the DFT exchange-correlation holes must be defined 

iteratively and approximatively from the solutions. 
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CONCLUSIONS 

R.P. Feynman in 1948 derived the differential Schrödinger equation (Feynman, 1948) 

recognizing contributions from all possible particle classical paths. His path integral 

formulation of quantum mechanics offers a point of view that allows to interpret the 

interactions between electrons from space-time paths.  

The electromagnetic fields/interactions between nuclei and electrons are quantized 

and create interference energy patterns; electrons evolve in space-time following the 

standing energy-modes that they generate and then suffer scattering events. Feynman 

diagrams serve to give a visualization of computational chemistry in terms of particle 

interactions, correlated collision mechanisms in space-time; and that is the second main 

objective of this illustrative work.  

Coming back to the Mulliken’s question, what are the electrons really doing in 

molecules? Part of the wave–particle duality picture is that electrons are moving in defined 

paths in space-time in a quantized energy field, with brighter and darker spots created by the 

interference patterns of the energy carriers (virtual photons). As they move, electrons can 

encounter each other and the interference patterns in the quantum field evolve with them. At 

some point in space-time, if the electrons are too close the quantum field prefers to 

exchange/give energy: electrons scatter and relax the energy changing their orbitals. An 

electron as a particle feels and contributes to create a dynamic quantized field; and that is 

what creates the total vector state of electrons, made from orbitals, where all the possible 

paths contribute to the electron density as Dirac proposed. It is the awareness that the 

electrons move in multiple actual space-time paths acting as mirrors for the energy carriers, 

creating standing energy waves that they must follow when they move, what reconciles the 

wave-particle duality.    
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