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Abstract: Solving arithmetic word problems is a complex task that requires individuals to activate
their working memory resources, as well as the correct performance of the underlying executive
processes involved in order to inhibit semantic biases or superficial responses caused by the problem’s
statement. This paper describes a study carried out with 135 students of Secondary Obligatory Educa-
tion, each of whom solved 5 verbal arithmetic problems: 2 consistent problems, whose mathematical
operation (add/subtract) and the verbal statement of the problem coincide, and 3 inconsistent prob-
lems, whose required operation is the inverse of the one suggested by the verbal term(s). Measures
of reading comprehension, visual–spatial reasoning and deductive reasoning were also obtained.
The results show the relationship between arithmetic problems and cognitive measures, as well
as the ability of these problems to predict academic performance. Regression analyses confirmed
that arithmetic word problems were the only measure with significant power of association with
academic achievement in both History/Geography (β = 0.25) and Mathematics (β = 0.23).

Keywords: arithmetic word problems; reading comprehension; reasoning; academic performance;
secondary school

1. Introduction
1.1. Background

“Understanding a problem and solving it is practically the same thing”—Rumelhart [1].
Mathematics is a type of language through which we construct models that represent

the qualities and relationships of measurable reality. Considered the “language of science”,
the learning of its elementary rules is essential for the development of mathematical
thought and constitutes one of the fundamental objectives of formal education. This
learning process, not without its difficulties [2,3], often determines the academic and future
employability of its students, see [4–8], something well known to students whose level is,
in general terms, below the European average according to the Organisation for Economic
Co-operation and Development (OECD) [9].

The present paper addresses the relationship that reading comprehension and reason-
ing processes in arithmetic word problems (AWPs) have with academic achievement in
secondary school, focusing not only on classic abstract reasoning, but also on new cognitive
measures of verbal deduction. We argue that deduction and reading comprehension are
involved in arithmetic word problem solving and most of the complex learning tasks stu-
dents commonly face at school and constitute an important higher-order cognitive ability
that underlies academic achievement.

Different theoretical approaches have been proposed to explain the components and
processes involved in AWP solving. Among the most important theories, schema-based
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models [1,10], situational models [11,12], and contributions from the semantic field [13–16]
stand out. This paper is focused on the schema and situational contributions, Kintsch
and Greeno [10] and Kintsch’s comprehension model [11], as well as dual process theories
of thinking and reasoning [17,18]. Its aim is double. First, to analyze the relationship
that AWPs have with reading comprehension and abstract reasoning. To this end, we
deepen our understanding of cognitive processes involved in solving a particular kind of
mathematical reasoning problem: consistent and inconsistent change problems with two
or three arithmetic operations. The second objective is to check the capacity of students
to solve these AWPs to predict academic performance in two basic and different subject
matters: Mathematics and History/Geography.

Although some of the skills needed to solve these kinds of problems may be different
from those used in solving geometric problems or those of probabilistic reasoning, it is
possible to determine the existence of certain common features that underlie all math-
ematical problems. In particular, it is worth highlighting the implications of a kind of
general cognitive aptitude based on abstract reasoning, fluid intelligence [19–23], that is
identified with processes related to inductive reasoning (the search for rules or patterns that
relate stimuli in order to establish more general conclusions), deductive reasoning (those
that draw logical conclusions from a sequence of previous premises), and quantitative
reasoning (those that involve concepts of a quantitative type, such as AWPs) [24].

1.2. Arithmetic Word Problems (AWPs)

AWPs must be solved by combining the numbers mentioned in the text using ba-
sic arithmetic operations (addition, subtraction, multiplication, and division). Solving
AWPs is a complex task that demands individuals to activate the underlying working
memory executive processes in order to inhibit non-relevant information, semantic biases,
overlearned procedures (heuristics) or superficial responses induced by the statement of
the problem [25–31].

There are a diversity of mistakes that students commit when solving arithmetic prob-
lem [32–35]. Two of them are (1) errors in the calculation required to find the solution
(execution phase) and (2) errors derived from a poor understanding of the text and the
relationships described. By studying these errors, we can delineate two key aspects regard-
ing these kinds of problems. On the one hand, AWPs represent not only a demonstrative
exercise of the calculation skills necessary, but also a way to test a student’s textual compre-
hension and reasoning, as well as an associated measure of student academic performance.
This is the main hypothesis considered in the present study. Secondly, given the variety of
basic cognitive processes involved in their resolution, AWPs could be used as a screening
tool to detect signals of possible learning difficulties in reading and Mathematics.

There is a wide variety of AWPs, which can be classified according to values they can
adopt on a set of variables. We have tried to synthetize the most relevant ones in Table 1.

These criteria would affect to the global extension of AWP and the difficulty solving
them. The present study was carried out with 5 “change” AWPs (see Materials section for
more details), in which only the number of operations and the direction of verbal term
used (consistent vs. inconsistent) were manipulated to modulate the difficulty of the task.

1.3. AWP and Reading Comprehension

AWPs have led to numerous studies and explanatory models regarding the processes
involved in their resolution. Among the most outstanding is the work of Kintsch and
Greeno [10] and Kintsch [11], who applied the notion of schema and the construction–
integration model of text comprehension to solving AWPs. These authors showed that, in
the same way calculation skills are indispensable for solving these problems, it is equally
necessary to consider the different ways these problems can be understood in order to
be able to determine the way success occurs. This observation came from the growing
evidence that the most frequent errors committed in the resolution of AWPs resulted from
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the inadequate construction of the mental representation of the problem [31,43], which
could also be derived from semantic biases induced by the statement of the problem [15].

Table 1. Criteria and values used to classify arithmetic word problems (AWPs).

Criteria Values

General types of AWP Change, combine, compare or equalize
problems [36]

Items named in the problem

� Number of elements The more significant elements, the greater
number of steps needed for solving.

� Context of elements Familiar or non-familiar for solver [37,38]

� Semantic Align between elements Symmetric or asymmetric align (e.g., content
vs. container) [12]

Quantities related to elements

� Magnitude Large or small value size [39]

� Data type Integers or decimal magnitudes [14]

� How they are represented Cardinals (unordered entities) or Ordinals
(ordered entities) [40]

� How they are expressed Explicitly (e.g., x = 10) and/or relationally
(e.g.,: y = x + 2) [40]

� What they are connected with Verbal terms: “More than”, “Less than”,
“Equals to”, “As many as” [36]

� Sense of inserted verbal term Consistent or inconsistent with the suggested
operation [34,36]

Problem question

� Number of questions From 1, to above

� Location At start or end of the problem [41]

� Type of question Referring to the overall outcome of any specific
part, or to the whole of the parts involved

� Demanding data Numeric or qualitative data (comparative; e.g.,
“Who has more marbles?”)

Operations

� Types Addition, subtraction, multiplication and/or
division [42]

� Number or steps From 1, to above

Along this same line, numerous authors [34,36,44,45] have studied the resolution of
AWPs through the use of non-routine problems. The resolution of an AWP requires an
in-depth understanding of what is said in the text in order to realize what the question
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refers to, as well as to determine the meaning or direction of the verbal terms used to
connect the objects with the quantities and to show the changes or variations narrated in
the statement. Both are key conditions to allow the arithmetic formalization stage to be
executed following the reliable sense of the relationships reported in the problem statement.
However, participants might use two different types of resolution strategies on their way to
reach it. The first strategy is the direct strategy, one best summarized in the words of Siegler
and Jenkins [46]: “calculate first, think later.” In the same line, other authors related a
“compulsion to calculate” [47] due to children’s prior experience with arithmetic [48]. This
process would begin by identifying the numbers of each category with which participants,
subsequently, would perform the arithmetic operations they deem necessary based on the
literal relationships described within the problem. This strategy of direct translation often
leads to mistakes in the resolution of problems due to two reasons or errors: (1) that of
understanding, and (2) that of metacognition. The first is due to a poor understanding of
what the problem represents, that is, by focusing more on its quantitative aspects than on
its qualitative ones [49–51]. The second is due to an inadequate estimation of the problem’s
difficulty, perhaps as a consequence of identifying the problem as an ordinary exercise for
which a previous model and resolution plan are already available. This direct strategy
is, therefore, a strategy largely dominated by intuitive and automatic Type 1 processes,
whereas Type 2 reflexive processes appear absent.

The second strategy for solving arithmetic problems is called the problem model strategy.
It consists of several stages that, together, guide the participant toward the construction
of a mental representation of the problem based mainly on its underlying qualitative
aspects [14,50,52]. The first stage begins with understanding the premises of the problem,
a process in which each local piece of information is transformed into propositions that
represent the elements described in the text of the problem. The result of this transformation
forms a latent semantic network known as a “text base”, from which a situational model
of this problem is then constructed in a second phase [11]. This model is the result of
integrating the content of the text base with that of related content and experiences stored
in long-term memory. In this way, the characteristics of the objects described in the text, as
well as the key words of the problem, are integrated into differentiated entities, forming
a mental representation that is clearly more elaborate than that resulting from a direct
translation process [11]. In this phase, therefore, the ability to recover information available
from memory and relate it to newly acquired data in working memory (WM) takes on
special relevance. This phase requires a capacity to reason reflexively and inhibit any
automatic responses that may be generated during the process, given that their absence
could generate an inadequate representation of the problem.

The situational representation allows a participant to initiate a third phase whose
objective is to elaborate a plan to solve the problem posed, determining with exactitude
the arithmetical operations that are necessary given the relations between the different
objects in the problem. This is an especially relevant component in AWPs, given that one
of the elements by which problem difficulty is manipulated is through the use of adverbs
of quantity, such as “more”, “less” or “equal”. It is these adverbs that interrelate the objects
of the problem and allow people to infer the meaning of the established relationships. In
this way, the operations that are necessary in the process of calculating the response to the
problem—addition, subtraction, multiplication, and/or division—are determined. This
demonstrates the close relationship between the stage of generating a plan for resolving
the problem and the previous stage during which the text base within a situational model
is transformed. That is, the adverbs of quantity within the problem statement cannot
in themselves serve to identify the arithmetic calculations required for its resolution, a
contrary interpretation being similarly possible, the result of which would consequently
require the inhibition of any generated automatic response.

Regarding the problems used in this study, change problems are those in which
the problem statement narrates an initial state in which the objects/subjects described
are associated with some quantities, a transformation process that increases or decreases
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the quantities described, and a final question that motivates the purpose of the problem
and requires the calculation of final quantities. Looking at the sense of the verbal terms
inserted, we can distinguish two kinds of compare problems: (1) problems with a coherent
or consistent statement, when the adverb “more” or “less” coincides with the operation
of addition or subtraction, respectively, that must be performed to enact resolution; and
(2) non-coherent or inconsistent problems, when the adverb suggests performing an inverse
arithmetic operation to the literal one. That is, performing subtraction in the presence of
the term “more”, or addition in the presence of the term “less”. In this phase, a higher-
order ability would mediate a resolution strategy/plan that establishes the sequences of
operations necessary to respond to the problem posed. Ultimately, the resolution process
ends with a planned execution stage during which one consciously supervises the process
to minimize any calculation errors that may occur.

Although the same stages can be identified in both the “direct strategy” and the
“strategy of the problem model”, the fundamental difference between the two is found
in the second phase, that is, in the way in which information is integrated from the text
base. In the “direct strategy”, this integration is limited and focuses on the numbers and
keywords in the problem text. Conversely, in the other strategy, the situational model
is oriented toward the objects of the problem, and this allows for the integration of its
relevant characteristics as well as the sense of the relationships established within the
problem statement.

In the arithmetic problems of our study, the verbal problem statement may contain two
adverbs of quantity when describing the price of the objects in three different places. The
description of a greater number of relationships between the terms necessarily involves an
increase in the number of propositions in the text base that must be integrated, as well as a
greater number of steps or operations that must be planned and executed in the resolution.
There are, therefore, two types of problems based on this criterion: (1) problems of a
single operation, in which a relationship requires the operation of addition or subtraction
in order to solve it (e.g., “Juan has 5 cookbooks. Isabel has two books less than Juan.
How many cookbooks does Isabel have?”); and (2) problems of two operations, which
describe two chains of relationships that require partial calculations to obtain the final
result (e.g., Isabel has two books less than Juan. Marta has three more books than Isabel.
How many cookbooks does Marta have?”) [53].

The number of relationships described in the problem and the consistency or non-
consistency of the adverbs that provide information regarding their meaning are both
variables of enormous experimental potential. This is due to the close relationship they
have with basic cognitive processes and their high ability to modulate the difficulty of
the task.

1.4. AWP and Reasoning

Neither intelligence nor mathematical thought are limited to deduction. However,
this reasoning process has been correctly considered the essence of mathematical thought.
Deduction implies a process of sequential reflection through a series of steps that lead
to a conclusion. This conclusion can be considered the consequence of consolidating or
representing a mental model of the premises of the deductive task [54]. The tendency
to use deductive reflection, as opposed to intuition in the process of problem solving,
constitutes for many theorists one of the fundamental differences between expert and
novice arithmeticians [24]. Numerous studies have shown the differences between the
intuitive and analytical modes of thought, giving rise to a dual theory of processing in
which two types of systems are distinguished [17,18,55]. The first system, Type 1, is
intuitive, guided by data, and is therefore automatic. It acts quickly, and only its final
product is accessible to consciousness [52]. Thus, the particular modus operandi of the Type
1 system tends to provide answers based on heuristics [56,57] that reduce the complexity
involved in evaluating possibilities as well as the need for more cognitive resources, a fact
demonstrated by the low correlation this process has with measures of intelligence and
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working memory (WM) [58]. The Type 2 system, on the other hand, is slow, costly both
cognitively and motivationally, and guided by will and conscience: it is based on WM
performance [17,55,59–62]. The fundamental characteristic of the Type 2 system is its ability
to generate a cognitive decoupling in the process of solving problems by means of which
the automatic responses generated by Type 1 are inhibited and the most characteristic
abilities of the human being are enabled; that is to say, hypothetical deductive thought, or
mental simulation executed via the generation of different mental models of the problem,
and decision making itself [58,63]. The Type 2 system therefore requires an intensive use of
WM executive functions, such that tasks which necessitate its use tend to correlate clearly
with measures of WM and fluid intelligence.

Fletcher and Carruthers [64] propose three main characteristics that define Type 2
reasoning: (1) it is subject to intentional control, (2) it can be guided by normative beliefs
about appropriate reasoning methods (see, [65]), and (3) it cancels out, or in its case
confirms, the unreflective responses automatically generated by the Type 1 system. These
characteristics describing the supervision of inferential processes are skills that occur
later in development, emerge during preadolescence, and culminate their development in
youth [66–68]. Before its acquisition, children lack the ability to activate the Type 2 system
and control the interaction between both systems.

1.5. Aims

The purpose of this paper is to help to clarify the nature of mathematical thinking by
analyzing the relationship between some of the cognitive variables that underlie it and
to determine to what extent they are related to the academic achievement of Secondary
Obligatory Education. To do this, we compare 5 arithmetic problems of increasing dif-
ficulty (consistent or inconsistent, and of either one or two arithmetic operations, plus
a multiplication across all cases), as well as two measures of reasoning (Kaufman brief
intelligence test (KBIT) [69] and a deductive reasoning test (DRT) [70]) and two of reading
abilities (reading processes assessment battery (PROLEC-SE) [71] and The Spelling test for
secondary school (Spelling-SE) [72]). A detailed description of the problems used can be
seen in Table 2 and in the Supplementary Materials.

Table 2. Description of problems in terms of number of consistent or inconsistent operations (working
memory load), inconsistency, and need of inhibition of superficial responses.

WM Load
Number of Operations
(Add/Subtract + Mult.)

Inconsistency Superficial
Responses

Problem-1 1 + 1 No No
Problem-2 1 + 1 Yes Yes
Problem-3 2 + 1 No–No No
Problem-4 2 + 1 No–Yes Yes
Problem-5 2 + 1 Yes–Yes Yes

The first two problems require two operations, one addition or subtraction, and a
multiplication. Problem 2 differs in that the operation that must be applied (addition or
subtraction) is inconsistent with the adverb of quantity in the literal statement (“less” or
“more”, respectively). Consequently, Problem 2 will require the inhibition of a surface
representation in the text base created from the literal statement. When this inhibition does
not happen, it will produce a superficial response that we could define resulting from the
correct performance of a mistaken plan. This inhibition is needed in order to construct a
representation that allows the participant to apply the inverse arithmetic operation of that
indicated by the adverb of quantity [31]. Apart from correct and superficial responses, any
other response is also erroneous and involves either arithmetical mistakes or erroneous
answers probably produced by a low commitment of the participant to the task. Problems 3,
4, and 5 are problems of three arithmetic operations, because they describe two relationships
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between the terms involved, which implies a greater demand on WM resources, and a final
multiplication. These problems involve two addition or subtraction operations and may be
consistent (Problem 3), require a consistent and an inconsistent operation (Problem 4), or
require two inconsistent operations (problem 5). Consistent problems have no superficial
responses, inconsistent problems 2 and 4 have one possible superficial response, while
inconsistent problem 5 has three possible superficial responses: in the first operation, in the
second or in both.

The number of operations is a source of problem difficulty [34,73,74], and it would
be necessary to clarify whether the increase in the number of operations implies any
qualitative increase in the problem difficulty, and what kind of mistakes are the most
common, superficial or other error responses. In all cases, the same response schema is
applied, with each having one additional operation, involving just a temporary increase
in WM’s updating process required to solve the problem. In the same way, the final
multiplication required of all problems is nothing less than trivial, the calculation of which,
in principle, poses few difficulties. In this way, Problem 3 should be more difficult than
Problem 1, and Problem 4 more difficult than Problem 2.

When solving an AWP, we consider four possible scenarios as a response to these
problems, which define the three types of mistakes that solvers would incur. First, the
ideal scenario consists of correctly solving a correct plan; second, when solvers determine
correctly the arithmetic embedded in the problem, but makes computational mistakes, we
say that they are wrongly solving a correct plan; the reverse case, when a solver is able
to compute correctly the operations, but the type of operations are wrongly determined,
we says the solver is solving correctly a wrong plan; and last, when they are unable to
determine the arithmetic of the problem and its required computation, solvers are wrongly
solving a wrong drawn plan.

In terms of cognitive abilities, these mistakes can be caused, fundamentally, by ex-
ecutive functions’ poor combined performance, in particular, the inhibition of superficial
responses and the updating of base of text along the whole process. Thus, we might identify
four kinds of solvers’ patterns of performance, whose outcomes can be also identified by a
particular scenario and kind of response (see Table 3).

Table 3. Solvers profiles attending their Executive Functions (EF) performance, scenario, and outcomes.

Profiles
EF Performance Scenarios Response

Inhibition Updating Plan Execution

1 Good Good Correct Correct Correct
2 Good Bad Correct Incorrect Error
3 Bad Good Incorrect Correct Superficial
4 Bad Bad Incorrect Incorrect Error

An additional profile can be considered when participants are not willing to face the
task. In that case, results would be contaminated by a higher number of errors due to a
randomized response.

If our conception is correct, the main difficulty with the problems comes from the
process of reflection and inhibition involved in solving their non-consistency, as well as
the need to update the base of text with the partial results of each problem according to
a new interpretation of the relational magnitudes. Given the scenarios described above
and a good participant engagement with the task, it seems reasonable to think that there is
a higher probability of finding “errors” as a response (scenarios 2 or 4) than “superficial”
responses (3), due to the greater number of them (double) in which an “error” response
can be recorded as an outcome. However, we do not know whether such a claim can be
empirically substantiated. In any case, the increase in the difficulty in the inconsistent
compared to the consistent problems is an effect that has been confirmed by Verschaffel [75],
who in his study of 10–11-year-old children found a 71% success rate in the resolution of
inconsistent problems, versus 82% in consistent problems. Likewise, Lewis and Mayer [45]
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and Hegarty et al. [34] confirmed in adults that the non-consistency of the statements
caused a greater number of reversibility errors with two-step problems.

Our hypotheses were:

(1) We expect significant differences in AWP performance between two grades, 2nd and
3rd grade of Compulsory Secondary School courses.

(2) We also expect differences as a function of type of problem. Inconsistent AWPs
should be significantly more difficult than consistent problems. In the same way, the
arithmetic problems with two add/subtract operations should be significantly more
difficult than those of a single operation. The non-consistency effect of the problems
should increase the difficulty more than that of the number of operations.

(3) The cognitive measures of reasoning and linguistic comprehension should correlate
significantly and moderately with measures of effectiveness in the resolution of
AWPs. The correlations should be higher between the cognitive measures and those
of the inconsistent problems and the problems of two operations, due to their greater
cognitive demand, than with the consistent problems and those of a single operation.
All cognitive measures, including the resolution of arithmetic problems, should
correlate positively with academic performance.

(4) Given the previous relationship, our aim was to confirm the capacity of association
of the cognitive variables measured (reasoning and comprehension) on the score
obtained in solving arithmetic problems. Likewise, the various cognitive variables
and, in particular, the global arithmetic problems’ score, should show their capacity
for association with academic performance in History/Geography and Mathematics.

2. Materials and Methods
2.1. Participants

This study was carried out with a sample of 135 native Spanish speaking students
(53 female) of compulsory secondary education, without learning difficulties, of a public
institute (Madrid), of which 70 2nd grade students (24 female) and 65 3rd grade students
(29 female) voluntarily participated. The average age in the 2nd grade was 13.10 (SD = 0.85)
and in the 3rd grade 14.18 (SD = 0.80).

2.2. Task and Measures
2.2.1. Arithmetic Word Problems Task (AWP)

To measure the ability to solve arithmetic problems, we used a new test based on
the problems of Hegarty et al. [34]. It is formed by 5 AWPs: two consistent and three
inconsistent. The problems involve elementary arithmetic calculations consisting of addi-
tion or subtraction, as well as multiplication, and varying their number in each problem
(one addition or subtraction operation in problems 1 and 2, two addition or subtraction
operations in problems 3, 4 and 5, plus a final multiplication operation across all problems).
In order to control the possible semantic biases derived from the statement, the elements
within the same problem were always the same (semantic align), but varying some of their
characteristics: origin, size, color, material, price, and commercial areas where they can be
acquired. The question of each problem was always related to the global price that solvers
must pay (cardinality) for a specific quantity of objects in a particular store, so we can
consider this context as familiar to solvers. The quantities described in the statement were
some explicit and some relational. The problem’s questions were always located at the end
of the statement. The result of the operations necessary to calculate the requested response
were always integers and never bigger than three digits. Correct and error responses were
collected in all problems, as well as superficial responses for inconsistent problems. Two
parallel versions of the problems were used, where the adverbs of quantity “more” and
“less” were reversed, as were the place and object names. See the Supplementary Materials
for an example of the 5 problems employed. Its measurement range is between 0 and 5.
Cronbach’s alpha for internal consistency was 0.75.
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2.2.2. Reading Processes Assessment Battery (PROLEC-SE)

The participants completed the task number five of Reading processes assessment
battery [71]. This evaluates reading processes for secondary students and consist of two
expository texts. Questions are divided in two kinds: those with enquiries regarding literal
aspects of text and those which require making inferences. Their measurement range is
between 0 and 20. Cronbach’s alpha for internal consistency was 0.74.

2.2.3. Kaufman Brief Intelligence Test (KBIT)

Intelligence was evaluated through the matrix subtest of the Kaufman Intelligence
Brief Test [69], in its Spanish version. This test provides a measure of abstract and visu-
ospatial reasoning, and fluid (non-verbal) intelligence. Its measurement range is between
0 and 48. Cronbach’s alpha for internal consistency was 0.81.

2.2.4. Deductive Reasoning Test Simplified (DRTs)

The DRTs is a simplified version of the DRT [70] adapted to suit preadolescent par-
ticipants (12–15 years old). It consists of nine propositional and syllogistic deductive and
meta-deductive reasoning problems, divided into four types of inference problems: propo-
sitional deductive, propositional meta-deductive, syllogistic deductive, and syllogistic
meta-deductive. The propositional deductive inferences include two inclusive disjunction
problems (one affirmative and one negative). Participants must evaluate the possible
conclusions of these two inferences. Both require the construction of multiple models.
The propositional meta-deductive inferences include three truth-table problems in which
participants have to analyze the consistency of three problems, each consisting of a con-
ditional statement and an assertion. In the first problem, the assertion matched the first
initial model of the conditional. The second problem requires a participant to construct the
second conditional model in which antecedent and consequent are negated. Finally, the
last problem requires the construction of the third and most difficult conditional model in
which the antecedent is negated but the consequent is affirmed. The syllogistic deductive
task requires participants to generate and write the solution to one categorical syllogism.
Categorical syllogisms include the combinations of the four kinds of premises: universal
affirmative, universal negative, the particular affirmative, and particular negative. Categor-
ical syllogisms can be very difficult, often too difficult for preadolescents. Thus, we used
only an easy, single model categorical syllogism. Finally, in the syllogistic meta-deductive
necessity/possibility task, reasoners have to decide whether a given conclusion in three
syllogistic problems is necessarily true, possible, or impossible. Its measurement range is
between 0 and 9. Cronbach’s alpha for internal consistency was 0.73.

2.2.5. Spelling-SE for Secondary School

The spelling test for secondary school [72] is a lexical choice test in which participants
have 40 words represented orthographically, each next to two pseudo-homophones. For
example: abeja, abega, aveja (“abeja” means “bee”—the other two are meaningless words
but would be pronounced very similarly). The objective is to select the correct orthographic
form for each word. This test is based on the spelling subtest included in the Reading
Assessment Battery (BEL, [76]). Distinct levels of usage frequency (high, medium, and low),
described in Lexesp—a computerized lexicon of Spanish [77]—were taken into account
when selecting the words contained in this test. Its measurement range is between 0 and
40. Cronbach’s alpha for internal consistency was 0.76.

2.2.6. Academic Achievement

The final grades in Mathematics and History/Geography (from 1 to 10) at the end
of the school year were taken as a measure of academic achievement. As for the latter, it
is a discipline whose study requires the student to think critically about events, as well
as to contextualize and relativize them in terms of past culture and social organizations
in a way that allows drawing reasonable conclusions after evaluating alternative points



Educ. Sci. 2021, 11, 155 10 of 21

of view. The growing effort to promote such critical reflection skills in history teaching
is remarkable [78–81] because they can be used as a predictor of academic performance.
Moreover, participation of an adolescent sample seemed particularly relevant, as reasoning
skills are increasingly important during this developmental period [82], when learning
activities become more complex. The final scores are the average result obtained during
the three trimesters making up the school year. These scores reference the aptitude and
behavioral characteristics of the students.

2.3. Procedure

Each of the two symmetrical versions of the AWPs was randomly assigned to each of
the participants. The participants had to solve the tasks in two sessions distributed over
a week. The order of test presentation for the first session was PROLEC-SE, DRTs, and
arithmetic, while in the second session, they performed KBIT and Spelling-SE, in that order.
All the tests were completed digitally via online forms in the computer room during school
hours. The protocols of this study were approved by the ethics committee of the National
University of Distance Education (UNED).

2.4. Data Analyses

The analyses were carried out using the statistical package for social sciences, SPSS
v25. A winsorization procedure [83,84] on global and partial scales of the AWP task, as
well as on the global scores of the tasks, was performed in order to control the outliers.
Descriptive results on the tasks, ANOVAs, bivariate Pearson correlation coefficient and
hierarchical regressions among cognitive measures, AWPs, and academic achievement
were run in order to test the hypothesis regarding the relationship between the cognitive
measures with the performance on AWP, and the power of association of these variables
on the academic achievement.

3. Results
3.1. Descriptive Statistics and Comparisons

The first analysis aimed to determine if there was any difference between versions
(more or less) of AWPs. The results confirmed the non-existence of statistically significant
differences as a function of which arithmetic test version was carried out (F (1, 133) = 0.365,
p = 0.547).

The results of the tasks, including mean number of correct responses, standard devia-
tion, range, number of participants, and differences between scholar grades, are shown
in Table 4. The most difficult task in terms of percentage of correct responses was the
AWP task.

Table 4. Global descriptive statistics (mean of number of correct responses, range, standard deviation, and mean differences
between 2nd and 3rd grades).

N = 135 Mean Range Percentage SD Difference between 2nd (N = 56) and 3rd (N = 57)
M (SD)–M (SD) F p Cohen’s d

AWP-Global 2.22 0–5 44 1.47 1.66 (1.18)–2.83 (1.52) 25.41 0.001 0.80
PROLEC-SE 11.18 0–20 56 3.89 10.01 (4.38)–12.43 (2.81) 14.3 0.001 0.62
Spelling-SE 30.74 0–40 77 2.68 30.34 (2.68)–31.17 (2.64) 3.26 0.073 0.31

KBIT 35.10 0–48 73 4.55 34.24 (4.91)–36.02 (3.96) 5.28 0.023 0.39
DRTs-Global 4.74 0–9 53 1.37 4.6 (1.36)–4.89 (1.38) 1.54 0.217 0.21

Likewise, we can observe that the differences in mean correct response between the
two academic years were statistically significant, except for the DRTs and Spelling-SE.
Results in KBIT and PROLEC-SE were as expected for their age and educational level.

The descriptive statistics and results obtained for each of the AWPs, including mean
of correct and superficial responses for each problem, can be seen in detail in Table 5. The
results showed the expected pattern, depending on the number of operations involved
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and the consistency or non-consistency of the verbal statement. Likewise, results confirm
an increase in the number of correct answers in 3rd grade students compared to that of
students in the 2nd grade. The results showed a high standard deviation on each problem,
typical of a categorical variable where hit or miss was recorded, and similar to other studies
on AWP.

Table 5. Global descriptive statistics (range, mean, standard deviation) of arithmetic word problem
(AWP) measures (correct, superficial, and error responses).

Range
2nd (N = 70) 3rd (N = 65) Total (N = 135)

M (SD) M (SD) M (SD)

AWP-1 0–1 0.63 (0.49) 0.82 (0.39) 0.72 (0.45)
AWP-2 0–1 0.27 (0.45) 0.45 (0.50) 0.36 (0.48)

AWP-2-sup. 0–1 0.17 (0.38) 0.22 (0.41) 0.19 (0.40)
AWP-2-error 0–1 0.56 (0.50) 0.34 (0.48) 0.45 (0.50)

AWP-3 0–1 0.41 (0.50) 0.66 (0.48) 0.53 (0.50)
AWP-4 0–1 0.24 (0.43) 0.52 (0.50) 0.38 (0.49)

AWP-4-sup. 0–1 0.10 (0.30) 0.11 (0.31) 0.10 (0.31)
AWP-4-error 0–1 0.66 (0.48) 0.37 (0.49) 0.52 (0.50)

AWP-5 0–1 0.20 (0.40) 0.38 (0.49) 0.29 (0.46)
AWP-5-sup. (any) 0–1 0.09 (0.28) 0.12 (0.33) 0.10 (0.31)
AWP-5-error 0–1 0.71 (0.46) 0.49 (0.50) 0.61 (0.49)

AWP-one-op. 0–2 0.9 (0.73) 1.26 (0.64) 1.07 (0.71)
AWP-two-op. 0–3 0.77 (0.82) 1.57 (1.07) 1.16 (1.03)
AWP-Consistent 0–2 1.04 (0.73) 1.48 (0.66) 1.25 (0.73)
AWP-Inconsistent 0–3 0.61 (0.79) 1.35 (1.19) 0.97 (1.06)
AWP-Superficial 0–3 0.36 (0.61) 0.45 (0.73) 0.40 (0.67)
AWP-Error 0–3 2.03 (1.60) 1.20 (1.08) 1.63 (1.27)
AWP-Global 0–5 1.66 (1.18) 2.83 (1.52) 2.22 (1.47)

Sup.: superficial response. (any): all superficial responses (first, second or both operations).

A mixed ANOVA for repeated measures was performed in order to check the dif-
ferences among the problems’ difficulty considering, also, the students’ grades. The five
AWPs were englobed in a factor called “difficulty of problems”, while school grade was
introduced as an intersubject factor. Results confirmed an overall significant difference in
the difficulty of the problems (F (3.6, 135) = 24.12, MSE = 4.39, p < 0.001, η2p = 0.15), as
well as a significant difference in performance regarding the student’s grade, easier for 3rd
grade than 2nd grade (F (1, 135) = 18.86, MSE = 7.77, p < 0.001, η2p = 0.24). However, factors
did not interact significantly (F (3.6, 135) = 0.44, MSE = 0.08, p = 0.764). A post-hoc analysis
of the problems (Table 6) identified differences in difficulty among all the problems (Bonfer-
roni p < 0.05) except when comparisons were between AWP-2 (one inconsistent operation)
and AWP-4 (consistent then inconsistent operations), AWP-2 and AWP-5 (two inconsistent
operations), and AWP-4 and AWP-5; that is, there were no significant differences among
inconsistent problems in terms of the number of operations.
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Table 6. Post-hoc (Bonferroni) for performance comparison in AWP tasks.

(I) AWP (J) AWP
Mean

Dev. Error Sig. Cohen’s dDifferences
(I-J)

1 2 0.363 0.052 <0.001 0.77
3 0.184 0.053 0.007 0.40
4 0.339 0.051 <0.001 0.72
5 0.430 0.051 <0.001 0.94

2 3 −0.179 0.057 0.019 0.35
4 −0.024 0.044 >0.05
5 0.066 0.045 >0.05

3 4 0.155 0.052 0.032 0.30
5 0.246 0.051 <0.001 0.50

4 5 0.091 0.039 >0.05

Comparison between AWP-1 with AWP-2 problems revealed the differences in perfor-
mance between one consistent operation and one inconsistent operation problems. This
result could also be confirmed with the comparison between the problems with two opera-
tions. Thus, as expected, a consistent two-operation problem (AWP-3) was less difficult
to solve than an inconsistent two-operation problem (AWP-5). Regarding the number of
operations, we confirmed also significant differences in difficulty between one operation
problems and two operations problems, only when they were consistent operations (AWP-1
with AWP-3).

Regarding mistakes, we can observe that the proportion of superficial answers in
inconsistent problems 2, 4, and 5 is always lower than the proportion of other erro-
neous responses in each course. Likewise, the decrease in age and school level for the
other erroneous responses, but not the superficial ones, is remarkable (F (9, 135) = 2.06,
MSE = 0.48, p = 0.038, η2p = 0.13). Additionally, we looked at the differences among super-
ficial responses in problem 5. An ANOVA for repeated measures revealed non-differences
regarding the probability to commit a superficial mistake in the first step/operation of the
problem (superficial 1), or in the second step/operation of the problem (superficial 2) or
both (F (1.8, 135) = 0.99, MSE = 0.04, p = 0.366).

3.2. Interrelationships among Variables

All of the intercorrelations between the four cognitive measures are significant, even if
slight (see Table 7). The correlations between the global mean for arithmetic problems and
that of the cognitive variables were significant. A clearly increasing pattern of correlations
between the cognitive measures and the one- and two-operation problems can be observed,
as well as between the consistent and inconsistent problems, respectively. The correlations
are higher in the two-operation and inconsistent measures—for example, with KBIT and
the two-operation measures, as opposed to one-operation, and with inconsistent problems
versus consistent ones. We can find a similar effect with PROLEC-SE and two-operation
problems, as opposed to one-operation, and inconsistent versus consistent.

Regarding academic performance, Spelling-SE and KBIT showed slight correlational
relationships with performance on History/Geography, whereas DRTs did not reach sig-
nificance with academic performance. Academic performance on History/Geography
significantly correlated with the diverse AWP measures, except consistent problems; par-
ticularly, it correlated with inconsistent problems and the global mean measure. As for
Mathematics, the highest correlations were found with the global measure of arithmetic
problems and the fluid intelligence measure of KBIT. Academic achievement in Mathe-
matics and the AWP measures showed a relevant relationship, especially on the global
measure and the inconsistent problems. In addition, it was confirmed that Arithmetic
problems require both comprehension and reasoning abilities in the same mathematical
domain, and KBIT requires an abstract visuospatial reasoning ability also demanded in
mathematical learning.
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Table 7. Pearson correlations among academic achievement (History/Geography, Mathematics), reading comprehension (PROLEC-SE), reading decoding processes (Spelling-SE),
visuospatial reasoning (KBIT), Deductive Reasoning Test simplified (DRTs), and arithmetical word problems (AWPs; one and two-operation problems, consistent and inconsistent
problems, and global score).

1 2 3 4 5 6 7 8 9 10 11

1. History-Geo 1 0.61 ** 0.33 ** 0.32 ** 0.22 ** 0.04 0.26 ** 0.27 ** 0.14 0.35 ** 0.33 **
2. Mathematics 1 0.30 ** 0.19 * 0.39 ** 0.22 ** 0.34 ** 0.33 ** 0.24 ** 0.36 ** 0.38 **
3. PROLEC-SE 1 0.26 ** 0.38 ** 0.23** 0.20 ** 0.35 ** 0.24 ** 0.32 ** 0.35 **
4. Spelling-SE 1 0.17 * 0.11 0.19 * 0.23 ** 0.20 ** 0.23 ** 0.27 **

5. KBIT 1 0.20 * 0.22 ** 0.35 ** 0.19 * 0.34 ** 0.34 **
6. DRTs 1 0.21 ** 0.21 ** 0.08 0.27 ** 0.24 **

7. AWP-one-op. 1 0.42 ** 0.58 ** 0.65 ** 0.76 **
8. AWP-two-op. 1 0.61 ** 0.82 ** 0.90 **

9. AWP-Consistent 1 0.32 ** 0.73 **
10. AWP-Inconsistent 1 0.88 **

11. AWP-Global 1

** p < 0.01; * p < 0.05. PROLEC-SE: reading processes battery test; Spelling-SE: spelling test for secondary education; KBIT: Kaufman Brief Intelligence Test; DRTs: Deductive Reasoning Test simplified; AWP:
arithmetic word problem.
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Once the relationship between cognitive measures and academic achievement on
the sample had been confirmed, a linear regression analysis was run to check the power
of association of the cognitive measures on AWP (see Table 8). Results confirmed that
cognitive tasks were able to explain about 20% of the variance of the performance in the
AWP-Global in this sample. KBIT, PROLEC-SE, and Spelling-SE, in order of higher to
lower explanatory capacity, were the significant variables included in the model. DRTs was
not significant.

Table 8. Multiple linear regression among AWPs, cognitive measures (Spelling-SE, PROLEC-SE, AWP Global or AWP
Inconsistent, DRTs and KBIT), and academic achievement in secondary school (hierarchical regression).

Dependent Variable R2 R2 Adj F B Beta

AWP Global 0.22 0.20 9.101 ***
KBIT 0.07 0.22 t = 2.56, p = 0.012
PROLEC-SE 0.07 0.19 t = 2.24, p = 0.027
DRTs 0.14 0.13 t = 1.64, p = 0.103

Spelling-SE 0.09 0.17 t = 2.10, p = 0.038
History & Geography 0.23 0.20 7.774 ***

KBIT 0.02 0.04 t = 0.42, p = 0.673
PROLEC-SE 0.11 0.21 t = 2.34, p = 0.021
WP-Inconsistent 0.27 0.25 t = 2.92, p = 0.004
DRTs −0.16 −0.11 t = −1.30, p = 0.195
Spelling-SE 0.16 0.22 t = 2.68, p = 0.008

Mathematics Achievement 0.24 0.21 8.261 ***
KBIT 0.11 0.25 t = 2.93, p = 0.004
PROLEC-SE 0.04 0.09 t = 1.01, p = 0.314
AWP Global 0.31 0.23 t = 2.67, p = 0.009
DRTs 0.13 0.09 t = 1.15, p = 0.254
Spelling-SE 0.04 0.05 t = 0.61, p = 0.541

*** p < 0.001.

Similarly, a new hierarchical regression analysis allowed determining which variables
were associated with academic performance. Regression analysis on History/Geography
was performed by including the previous cognitive measures with the inconsistent AWPs.
The results indicated that the model was able to explain the 20% of the variance in His-
tory/Geography, of which AWP-Inconsistent, Spelling-SE, and PROLEC-SE, in order of
higher to lower explanatory power, were significant. KBIT and DRTs were not significant.
When looking at academic performance in Mathematics, the model explained 21% of the
variance in the Mathematics performance for both secondary grades levels; only KBIT and
AWP-Global, in this order, were significant.

4. Discussion

The goal of this work was to dig more deeply into the relationship between reasoning
and reading comprehension processes in AWPs and their relationship to academic perfor-
mance. The results confirm our first hypothesis: We found a reliable increase in the number
of correct responses between 2nd and 3rd grade participants. Participants in the 2nd year
of secondary school experienced greater difficulty solving the problems than did those of
3rd, who obtained a number of hits more than double that of younger students across the
various problems posed. As expected, adolescents are in the process of acquiring necessary
curriculum knowledge in diverse subjects at school while developing basic cognitive and
formal thinking abilities, as well as reading comprehension abilities.

As has been shown in other studies [34,53,73], the number of calculation operations
influences the difficulty in solving AWPs. This is because the increase in the number of
steps or operations required in solving the problem involves constructing a text base with
a greater number of propositions and a more complex situational model. The process
of understanding two-operation problems is therefore quantitatively more complex than
those of one consistent operation. This process requires, therefore, a greater number of
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resources dedicated to updating and integrating any new contents that constitute the
situational representation of the problem [29,85,86]. However, contrary to our predictions,
the effect on the difficulty generated by two-operation problems disappears in the presence
of inconsistences, reinforcing the idea that the difficulty core falls on the way solvers
interpret the key elements inserted on the problems. That is why Mathematics instruction
for problem solving must be focused not only on computational procedures (quantitative
skills), but also on reasoning abilities (qualitative skills) [87].

Our data also confirm the importance of comprehension processes that determine the
arithmetic operations that must be applied when resolving AWPs. Thus, the inconsistent
problems, in which the linguistic comparative does not coincide with the arithmetic opera-
tion necessary for its resolution, are significantly more difficult to solve than problems in
which the linguistic expression and the operation coincide. This increase in difficulty is
related to the need to inhibit the propositional microstructure referring to the comparative
and replacing it with the inverse term. This requires explicit reflection during the process
of constructing the situational model of the problem. The greater the number of non-
consistencies contained in the problem statement, the greater the number of interpretation
errors that can lead to an incorrect arithmetic formalization and, therefore, errors in calcula-
tion during the resolution phase. The results of our study are similar to those found in other
studies on consistent and inconsistent AWPs [34,44,45,75,88,89]. Inconsistent problems
require a greater number of sentence readings and, therefore, greater dedication in terms
of time and resources to be able to integrate the propositions relating the elements of the
text, and to inhibit the initial representational models that arise from a superficial reading
of the statements. As other studies have pointed out [31,85,86,90], a deficit in inhibitory
control capacity during the process of solving arithmetic problems predisposes a person to
adopt inadequate strategies for solving arithmetic problems.

We found that inconsistent one-operation problems were significantly more difficult
to solve than the same consistent one-operation problems, and even more than consistent
two-operation problems. These results confirm the importance of inhibition and updating
processes in reasoning [18,31,58,63,64]. Inconsistent problems require, unlike consistent
problems, the resolver’s ability to suppress one’s intuitive, automatic, and superficial
response tendency that is guided by the literal representation of utterances, and which
leads to the construction of an erroneous situational representation.

The analysis of mistakes allows us to confirm that the most common are not superficial
errors, defined as the result of the right performance of a mistaken plan, but other error
responses. We also observe that the number of superficial responses is low and shows
a stable ratio in both ages. As a matter of fact, correct responses increase in the same
proportion that error responses decrease, whereas superficial responses keep constant.
Other errors constitute a set of responses formed by calculation errors and other wrong
answers due to various factors, such as a low commitment of the participants with the task,
and the inability to understand the statement of the problem and difficulties in updating the
base of text. It will be very interesting in future studies to check participants’ metacognitive
assessment of problems difficulty.

Regarding superficial responses in inconsistent problems, they were never higher
than error responses, which were always the most frequent answer in the whole sample.
Although there is a significant increase in response accuracy between grades, this result
is evidence that even in 14-year-olds, there is a poor performance in the skills needed
to inhibit superficial responses and those that allow updating of the base of text content
as the problem-solving process takes place. Given the type of response recorded by
the participants, it is not possible to determine which of the two factors, inhibition or
updating, contributed more to the performance produced. However, recent studies would
point to a greater effect of updating as a main cause of poor performance for solving
these problems [89].

With regard to our second hypothesis, we have confirmed the relationship between
reasoning (KBIT and DRTs) and reading comprehension (PROLEC-SE and Spelling-SE)
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measures with arithmetic problems. We can observe, also, that the highest correlations
are found in two-operation and inconsistent problems, as opposed to single operation
and consistent problems. This confirms our prediction about the relationship between the
degree of complexity of a task and the processing requirements necessary to carry it out
successfully. The inconsistent problems require reflection and the controlled application of
WM executive processes. That is, they require the activation of Type 2 reasoning processes.
The processes of reflexive reasoning when solving inconsistent arithmetic problems take on
a special importance, and this is revealed in their relationship with measures of deductive
(DRTs) and visuospatial (KBIT) reasoning, both clearly superior with inconsistent problems
than with consistent ones.

The relationships between cognitive measures, arithmetic problems, and academic
performance are especially evident in the results obtained through regression analysis,
which allowed us to establish the associative capacity of the various variables (hypothesis
4). Thus, we verified that the reasoning and text comprehension measures explain about
20% of the variance toward the effective resolution of AWPs. The measure with the most
explanatory capacity was intelligence with KBIT, followed by the reading comprehension
test PROLEC-SE. These data confirm the importance of the cognitive processes of reading
comprehension and reasoning underlying the generation of situational models which
enables the discovery of correct answers in arithmetic problems.

On the other hand, we found that AWPs show a significant ability to explain academic
performance not only in Mathematics, but also in History/Geography. The measures of
performance in History/Geography were Spelling-SE, PROLEC-SE, and AWP-Inconsistent;
that is, two measures of reading abilities, one of superficial decoding and the other of
comprehension, and a measure of deep comprehension and reasoning in arithmetic. These
results confirm the basic linguistic nature of this subject and also show the sensitivity and
usefulness of AWPs to investigate in areas of knowledge not directly related to Mathematics.

The most significant measure in terms of explaining performance in Mathematics was
KBIT, followed by AWP-Global—that is, a measure of abstract reasoning and a measure
of comprehension, reasoning, and calculation in Arithmetic. This KBIT beta value is
somewhat lower than other studies on the predictive capacity of Mathematics performance
in primary school [91], and similar to others in secondary education using RAVEN as an
intelligence measure (β = 0.26; [92]).

A result deserving some comment is the lack of a significant involvement of DRTs in
both regression models. In fact, DRTs correlations are low with all variables. The highest
DRTs correlation is with AWP-Inconsistent (r = 0.27). Its correlation with Mathematics
performance is significant but low, and with History/Geography is very low and not
significant. A likely related result is the lack of reliable developmental differences between
2nd and 3rd grade students in DRTs: Deductive problems are equally difficult for students
in both grades. These results pose some doubts regarding the use of this simplified version
of DRT to assess preadolescents’ linguistic reasoning.

On the whole, regression analysis results account for the diverse but related nature
of the academic subjects, as well as the function of cognitive abilities, different in His-
tory/Geography than in Mathematics, required to be successful in both subjects. It is
important to emphasize that the AWP measures were the unique ones present signifi-
cantly in the regressions of both academic achievement measures. This interesting result
corroborates the capability and usefulness of arithmetic word problems at school.

A possible limitation of our work arises from the use of teacher evaluations as a
measure of academic performance. Being a summary of student academic achievement, it
may prove a biased measure when reporting progress made by the students during the
school year, thus compromising its validity and reliability [93]. However, the numerical
scores the educational center provided were individualized data obtained by students in
each of the subjects (History/Geography and Mathematics) as a result of the achievements
obtained over a prolonged period in time (i.e., an entire school year), and which included
other characteristics of the student themselves, such as their motivation regarding learning
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or their behavior in the classroom. For this reason, we consider it a good measure of
academic performance [94], something that we can also confirm based on its widespread
use in other studies [92,95].

There were some more limitations in this study. One of them stems from the number
of problems the test contains. This measure was designed to be a short screening test.
However, it would be advisable to consider increasing the number of problems in future
studies in order to give greater statistical strength to the measure provided by this test. On
the other hand, in problem number 4 (three operations and one inconsistency), we did not
take into account whether the performance of the participants could vary due to the fact
that the inconsistency was located in the second operation of the three necessaries to solve
it, instead of the first as in the present study. Therefore, these limitations should be taken
into account not only for future research projects, but also for the educational implications
they might have for student learning.

Concerning educational implications, the different stages of the resolution process
involve the need for relevant updating and inhibition resources. The results of this study
invite us to consider the AWP task as a valid and apparently simple instrument to measure
comprehension and reasoning aptitudes of secondary school students as a valid screen-
ing tool, particularly in the field of Mathematics. However, for this purpose, it would
be necessary to clarify in detail the role played by working memory (WM) and the ex-
ecutive functions that arbitrate this kind of task and introduce in future studies specific
measures of updating, inhibition, and WM span. These measures have frequently been
related to academic success and its associative capacity in both Mathematics and other
subjects [91,96–98].

As we have demonstrated, the intelligence measure KBIT provides a relevant but
limited explanatory role, and its explanatory capability is similar to the arithmetic problems
in Mathematics, and not reliable in History/Geography. This fact holds special relevance,
serving as an example to show that, apart from other contextual, motivational, and emo-
tional considerations, the academic success of students depends on cognitive processes
that are not reduced to classic fluid intelligence. Our AWP task might be included in the
educational world as a particularly useful and complementary tool for measuring general
capacity or screening learning difficulties. Its use would detect specific deficits in the
cognitive abilities involving comprehension and reasoning.

5. Conclusions

The resolution of AWPs continues to be an educational milestone that must be acquired
throughout a student’s academic life. In addition to being an educational mechanism for
the training and development of mathematical skills, AWPs stand out as an excellent tool
with enormous experimental potential due to the high and diverse number of cognitive
skills involved in solving them. This paper contributes to showing some of them. Another
aim of this work was to demonstrate how these problems could also be used as predictors
of academic performance, not only in closely related subjects such as Mathematics, but
also in other apparently distant subjects such as History/Geography. However, it would
be interesting to explore other psychoeducational applications as a measure for detecting
learning difficulties in order to prevent students’ academic failure.

Supplementary Materials: A detailed description of AWPs is provided in this section. It contains
the problem statements, arithmetic to solve them, the number of operations, the inconsistences
involved and the possible superficial responses. Details are available online at https://www.mdpi.
com/article/10.3390/educsci11040155/s1.
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