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Linking score scales across different tests is considered speculative and fraught,

even at the aggregate level. We introduce and illustrate validation methods for

aggregate linkages, using the challenge of linking U.S. school district average

test scores across states as a motivating example. We show that aggregate

linkages can be validated both directly and indirectly under certain conditions

such as when the scores for at least some target units (districts) are available on

a common test (e.g., the National Assessment of Educational Progress). We

introduce precision-adjusted random effects models to estimate linking error,

for populations and for subpopulations, for averages and for progress over time.

These models allow us to distinguish linking error from sampling variability and

illustrate how linking error plays a larger role in aggregates with smaller

sample sizes. Assuming that target districts generalize to the full population of

districts, we can show that standard errors for district means are generally less

than .2 standard deviation units, leading to reliabilities above .7 for roughly

90% of districts. We also show how sources of imprecision and linking error

contribute to both within- and between-state district comparisons within versus

between states. This approach is applicable whenever the essential counter-

factual question—“what would means/variance/progress for the aggregate

units be, had students taken the other test?”—can be answered directly for at

least some of the units.
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Introduction

As educational testing programs proliferate, nonoverlapping populations and

incomparable scales can limit the scope of research about the correlates and

causes of educational achievement. Linking is the psychometric solution to this
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problem. Common persons, common populations, or common items across tests

form the basis for estimated linking functions (Kolen & Brennan, 2014). These

functions can enable mappings of scores from various tests to a common scale,

enabling large-scale research about educational achievement. However, the

bases for these linkages—common persons, populations, or items—are not

always available at a large scale. When they are available, methods for evaluat-

ing the linkage for the purpose of large-scale research, rather than student-level

uses like diagnosis and selection, are still in development (Thissen, 2007).

Dorans and Holland (2000) outline five requirements for equating (1) equal

constructs, (2) equal reliability, (3) examinee indifference between tests, and (4)

a symmetrical linking function that is (5) invariant across populations. These

requirements are only realistically met within testing programs, not across them.

For linkages that do not meet the stringent conditions of equating, the appropri-

ateness of the linkage becomes dependent on the interpretations and uses of the

linked scores.

We present a case of aggregate-level linking whose purpose is to support

education research. First, we show how a common assessment at one level of

aggregation (the state, in our example) can serve as the basis for a common-

population linkage. Second, we demonstrate how the assessment can directly

validate the linkage on which it is based, if the assessment also reports scores

at a lower level of aggregation (the school district, here). Third, we show how to

validate inferences about progress over time in addition to inferences about

relative achievement. Fourth, we show how additional assessments that are com-

mon across a subset of the lower level units can provide indirect validation of the

linking. Although none of the methods we present are new on its own, the logic

and methods in this validation approach is likely to be useful in other aggregate

linking scenarios.

A Case Comparing U.S. School District Achievement Across States

To understand how a “patchwork” administration of tests can support aggre-

gate linking, we present the case of linking U.S. school district average scores to

a common scale. U.S. school districts differ dramatically in their socioeconomic

and demographic characteristics (Reardon, Yun, & Eitle, 1999; Stroub &

Richards, 2013), and districts have considerable influence over instructional and

organizational practices that may affect academic achievement (Whitehurst,

Chingos, & Gallaher, 2013). Nonetheless, we have relatively little rigorous

large-scale research describing national patterns of variation in achievement

across districts, let alone an understanding of the factors that cause this variation.

Such analyses generally require district-level test score distributions that are

comparable across states. No such nationwide, district-level achievement data

set currently exists because school districts do not administer a common set of

assessments to all districts across states.
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Existing assessments enable some comparisons of academic performance

across states or school districts, but none provides comprehensive comparisons

across grades, years, and all school districts. At the highest level, the National

Assessment of Educational Progress (NAEP) provides comparable state-level

scores in odd years, in reading and mathematics, in Grades 4 and 8. NAEP also

provides district-level scores, but only for a small number of large urban districts

under the Trial Urban District Assessment (TUDA) initiative: TUDA began with

6 districts in 2002 and slowly grew to 27 districts by 2017. Within individual

states, we can compare district achievement within a given grade and year using

state math and reading/English language arts (ELA) tests federally mandated by

the No Child Left Behind act, administered annually in Grades 3 through 8.

Comparing academic achievement across state lines requires either that districts

administer a common test or that the scores on the state tests can be linked to a

common scale. However, state accountability tests generally differ across states.

Each state develops and administers its own tests; these tests may assess some-

what different content domains; scores are reported on different, state-

determined scales; and proficiency thresholds are set at different levels of

achievement. Moreover, the content, scoring, and definition of proficiency may

vary within any given state over time and across grades.

As a result, direct comparisons of average scores or percentages of proficient

students across states (or in many cases within states, across grades and years) are

unwarranted and misleading. Average scores may differ because scales differ and

because performance differs. Proficiency rates may differ because proficiency

thresholds differ (Bandeira de Mello, Blankenship, & McLaughlin, 2009; Braun

& Qian, 2007) and because performance differs. The ongoing rollout of common

assessments developed by multistate assessment consortia (such as the Partner-

ship for Assessment of Readiness for College and Careers and the Smarter

Balanced Assessment Consortium) is certainly increasing comparability across

states, but only to the extent that states use these assessments. Customization of

content standards by states may also discourage the reporting of results on a

common scale across states (Gewertz, 2015; U.S. Department of Education,

2009). Given the incomplete, divided, and declining state participation in these

consortia, comprehensive, directly comparable district-level test score data in the

United States remain unavailable.

In some cases, districts also administer voluntarily chosen assessments, often

for lower stakes purposes. When two districts adopt the same such assessments,

we can compare test scores on these assessments among districts. One of the most

widely used assessments, the Measures of Academic Progress (MAP) test from

Northwest Evaluation Association (NWEA), is voluntarily administered in sev-

eral thousand school districts, over 20% of all districts in the country. However,

the districts using MAP are neither a representative nor comprehensive sample of

districts.
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In this article, we present a validation strategy for comparisons of district-

level test scores across states, years, and grades. We rely on a combination of (a)

population-level state test score data from NAEP and state tests, (b) linear trans-

formations that link state test scores to observed and interpolated NAEP scales,

and (c) a set of validation checks to assess the accuracy of the resulting linked

estimates. In addition, we provide formulas to quantify the uncertainty in both

between- and within-state comparisons. Together, this represents a suite of

approaches for constructing and evaluating linked estimates of test score

distributions.

We use data from the EDFacts Initiative (U.S. Department of Education,

2015), NAEP, and NWEA. We obtain population-level state testing data from

EDFacts; these data include counts of students in ordered proficiency categories

for each district–grade–year–subject combination. We fit heteroskedastic

ordered probit (HETOP) models to these district proficiency counts, resulting

in estimated district means and variances on a state standardized (zero mean and

unit variance) scale (Reardon, Shear, Castellano, & Ho, 2016). We then apply

linear linking methods that adjust for test reliability (reviewed by Kolen &

Brennan, 2014) to place each district’s estimated score distribution parameters

on a common national scale. Our linking methods are similar to those that

Hanushek and Woessman (2012) used to compare country-level performance

internationally. At the district level (Greene & McGee, 2011) and school level

(Greene & Mills, 2014), the Global Report Card maps scores onto a national

scale using proficiency rates, using a somewhat different approach than ours.1

What we add to these standard linear linking methods are direct and indirect

validation methods that take advantage of patchwork reporting of test scores at

the target levels of aggregation. We also develop an approach to assessing the

uncertainty in linked estimates resulting from both measurement error and link-

ing error.

Although some have argued that using NAEP as a basis for linking state

accountability tests is both infeasible and inappropriate for high-stakes

student-level reporting (Feuer, Holland, Green, Bertenthal, & Hemphill, 1999),

our goal here is different. We do not attempt to estimate student-level scores, and

we do not intend the results to be used for high-stakes accountability. Rather, our

goal is to estimate transformations that render aggregate test score distributions

roughly comparable across districts in different states so that the resulting

district-level distributions can be used in aggregate-level research. We grant that

NAEP and state tests may differ in many respects including content, testing

dates, motivation, accommodations for language, accommodations for disabil-

ities, and test-specific preparation. While accepting these sources of possible

linking error, we focus on the counterfactual question that linking asks: How

well do our linked district scores from state tests recover the average NAEP

scores that these districts would have received had their students taken NAEP?

In this way, we treat the issue of feasibility empirically, by using validation
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checks to assess the extent to which our methods yield unbiased estimates of

aggregate parameters of interest.

In any situation where states have some subset of districts with common

scores on an alternative test, it is unlikely that those districts will be representa-

tive given their selection into the alternative test. When districts are representa-

tive, the methods we introduce will provide estimates of linking errors for the full

population of districts. When districts are not representative, these methods

provide estimates of linking errors for the particular subpopulations of districts

they represent. In these latter cases, these methods provide evidence about the

validity of the linkage for a subpopulation, a recommended step in the validation

of any linking (Dorans & Holland, 2000).

Data

We use state accountability test score data and state NAEP data to link scores,

and we use NAEP TUDA data and NWEA MAP data to evaluate the linkage.

Under the EDFacts Initiative (U.S. Department of Education, 2015), states report

frequencies of students scoring in each of several ordered proficiency categories

for each tested school, grade, and subject (mathematics and reading/ELA). The

numbers of ordered proficiency categories vary by state, from 2 to 5, most

commonly 4. We use EDFacts data from 2009 to 2013, in Grades 3 through 8,

provided to us by the National Center for Education Statistics under a restricted

data use license. These data are not suppressed and have no minimum cell size.

We also use reliability estimates collected from state technical manuals and

reports for these same years and grades.2

Average NAEP scores and their standard deviations are reported for states and

participating TUDA districts in odd years, in Grades 4 and 8, in reading and

mathematics. In each state and TUDA district, these scores are based on an

administration of the NAEP assessments to representative samples of students

in the relevant grades and years. We use years 2009, 2011, and 2013 as a basis for

linking, which include 17 TUDA districts in 2009 and 20 TUDA districts in 2011

and 2013.3 The NAEP state and district means and standard deviations, as well as

their standard errors, are available from the NAEP Data Explorer (U.S. Depart-

ment of Education, n.d.). To account for NAEP initiatives to expand and stan-

dardize inclusion of English learners and students with disabilities over this time

period, we rely on the Expanded Population Estimates (EPE) of means and

standard deviations provided by the National Center of Education Statistics (see

Braun, Zhang, & Vezzu, 2010; McLaughlin, 2005; National Institute of Statis-

tical Sciences, 2009).4

Finally, we use data from the NWEA MAP test that overlaps with the years,

grades, and subjects available in the EDFacts data: 2009 through 2013, Grades 3

through 8, and in reading/ELA and mathematics. Student-level MAP test score

data (scale scores) were provided to us through a restricted-use data-sharing
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agreement with NWEA. Several thousand school districts chose to administer the

MAP assessment in some or all years and grades that overlap with our EDFacts

data. Participation in the NWEA MAP is generally binary in districts adminis-

tering the MAP; that is, in participating districts, either very few students or

essentially all students are assessed. We exclude cases in any district’s grade,

subject, and year, where the ratio of assessed students to enrolled students is

lower than 0.9 or greater than 1.1. This eliminates districts with scattered

classroom-level implementation as well as very small districts with accounting

anomalies. Excluded districts comprise roughly 10% of the districts using the

NWEA MAP tests. After these exclusions, we estimate district–grade–subject–

year means and standard deviations from student-level data reported on the

continuous MAP scale.

Linking Methods

The first step in linking the state test scores to the NAEP scale is to estimate

district-level score means and standard deviations and corresponding standard

errors. If individual scale score data or district-level means and standard

deviations were available, one could simply use these to obtain the necessary

district-level parameter estimates. For this case study, such data were not readily

available in most states. Instead, we estimate the district score means and stan-

dard deviations from the coarsened proficiency count data available in EDFacts,

using the methods described in detail by Reardon, Shear, Castellano, and Ho

(2016). These parameters are scaled relative to the statewide standardized score

distribution on the state assessment. We do this in each state, separately for each

grade, year, and subject. Appendix A, available in the online version of the

journal, reviews the HETOP procedure. Nonetheless, the method of constructing

district-level score means and standard deviations is not central to the linking

methods we discuss. The following methods are applicable whenever district

means and standard deviations are available with corresponding standard errors.

Fitting the HETOP model to EDFacts data yields estimates of each district’s

mean test score, where the means are expressed relative to the state’s student-

level population mean of 0 and standard deviation of 1, within each grade, year,

and subject. We denote these estimated district means and standard deviations as

m̂state
dygb and ŝstate

dygb, respectively, for district (d), year (y), grade (g), and subject (b).

The HETOP model estimation procedure also provides standard errors of these

estimates, denoted seðm̂state
dygbÞ and seðŝ state

dygbÞ, respectively (Reardon et al., 2016).5

The second step of the linking process is to estimate a linear transformation

linking each state/year/grade/subject scale (standardized to a student-level mean

of 0 and standard deviation of 1—the scale of m̂state
dygb) to its corresponding NAEP

distribution. Recall that we have estimates of NAEP means and standard devia-

tions at the state (denoted s) level, denoted by m̂naep
sygb and ŝnaep

sygb , respectively, as
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well as their standard errors. To obtain estimates of these parameters in grades (3,

5, 6, and 7) and years (2010 and 2012) in which NAEP was not administered, we

interpolate and extrapolate linearly.6 First, within each NAEP-tested year, 2009,

2011, and 2013, we interpolate between Grades 4 and 8 to Grades 5, 6, and 7 and

extrapolate to Grade 3. Next, for all Grades 3 through 8, we interpolate between

the NAEP-tested years to estimate parameters in 2010 and 2012. We illustrate

this below for means, and we apply the same approach to standard deviations.7

Note that this is equivalent to interpolating between years first and then inter-

polating and extrapolating to grades:

m̂naep
sygb ¼ m̂naep

sy4b þ
g � 4

4
ðm̂naep

sy8b � m̂naep
sy4bÞ; for g 2 3; 5; 6; 7f g; y 2 2009; 2011; 2013f g; and 8 s; b;

m̂naep
sygb ¼

1

2
ðm̂naep

s½y�1�gb
þ m̂naep

s½yþ1�gb
Þ; for g 2 3; 4; 5; 6; 7; 8f g; y 2 2010; 2012f g; and 8 s; b:

ð1Þ

We evaluate the validity of linking to interpolated NAEP grades and years

explicitly later in this article.

Because the estimated district test score moments m̂ state
dygb and ŝstate

dygb are

expressed on a state scale with mean 0 and unit variance, the estimated mapping

of the standardized test scale in state (s), year (y), grade (g), and subject (b) to the

NAEP scale is given by Equation 2. Given m̂state
dygb, this mapping yields an estimate

of the of the district average performance on the NAEP scale, denoted by m̂cnaep
dygb .

Given this mapping, the estimated standard deviation, on the NAEP scale, of

scores in district (d), year (y), grade (g), and subject (b) is given by Equation 3:

m̂cnaep
dygb ¼ m̂naep

sygb þ m̂ state
dygb � ŝ

naep
sygb ; ð2Þ

ŝcnaep
dygb ¼ ŝ state

dygb � ŝ
naep
sygb : ð3Þ

The intuition behind Equation 2 is straightforward: Districts that belong to

states with relatively high NAEP averages, m̂naep
sygb , should be placed higher on the

NAEP scale. Within states, districts that are high or low relative to their state

(positive and negative on the standardized state scale) should be relatively

high or low on the NAEP scale in proportion to that state’s NAEP standard

deviation, ŝnaep
sygb .

From Equations 2 and 3, we can derive the (squared) standard errors of the

linked means and standard deviations for noninterpolated grades and years,

incorporating the imprecision from the estimates of state and NAEP means and

standard deviations. In these derivations, we assume that the linking assumption

is met. Later in this article, we relax this assumption and provide expressions for

the standard errors of the linked means that include the linking error. For

Validation Methods for Aggregate-Level Test Scale Linking

144



simplicity in these derivations, we assume m̂naep
sygb and ŝnaep

sygb are independent ran-

dom variables,8 which yields:

varðm̂cnaep
dygb Þ ¼ varðm̂naep

sygb Þ þ ðŝ
naep
sygb Þ

2
varðm̂ state

dygbÞþ ðm̂ state
dygbÞ

2
varðŝnaep

sygb Þ þ varðŝnaep
sygb Þvarðm̂state

dygbÞ; ð4Þ

varðŝcnaep
dygbÞ ¼ varðŝ state

dygbÞ varðŝnaep
sygb Þ þ ðŝ

naep
sygb Þ

2
h i

þ ðŝ state
dygbÞ

2
varðŝnaep

sygb Þ: ð5Þ

The linking Equations 2 and 3 and the standard error formulas (Equations 4

and 5) here are accurate under the assumption that there is no linking error—the

assumption that the average performance of students in any given district relative

to the average performance of students in their state would be the same on the

NAEP and state assessments. This is a strong and untested assumption. We next

provide a set of validation analyses intended to assess the accuracy of this

assumption. We then provide modifications of the standard error formulas here

that take the linking error into account.

Validation Checks and Results

The linking method we use here, on its own, is based on the untested assump-

tion that districts’ distributions of scores on the state accountability tests have the

same relationship to one another (i.e., the same relative means and standard

deviations) as they would if the NAEP assessment were administered in lieu

of the state test. Implicit in this assumption is that differences in the content,

format, and testing conditions of the state and NAEP tests do not differ in ways

that substantially affect aggregate relative distributions. This is, on its face, a

strong assumption.

Rather than assert that this assumption is valid, we empirically assess it using

the patchwork reporting and administration of district results by NAEP and

NWEA. We do this in several ways. First, for the districts participating in the

NAEP TUDA assessments over these years, we compare m̂cnaep
dygb—the estimated

district mean based on our linking method—to m̂naep
dygb—the mean of NAEP TUDA

scores from the district. This provides a direct validation of the linking method,

since the TUDA scores are in the metric that the linking method attempts to

recover but are not themselves used in any way in the linking process. We repeat

this linkage for demographic subgroups to assess the population invariance

of the link.

Second, we assess the correlation of our linked district estimates with district

mean scores on the NWEA MAP tests. This provides the correlation across a

larger sample of districts. However, the NWEA MAP test has a different score

scale, so it does not provide direct comparability with the NAEP scale that is the

target of our linking.
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Third, for the relevant TUDA districts, we assess whether within-district

differences in linked scores across grades and cohorts correspond to those dif-

ferences observed in the NAEP data. That is, we assess whether the linking

provides accurate measures of changes in scores across grades and cohorts of

students, in addition to providing accurate means in a given year.

Fourth, we conduct a set of validation exercises designed to assess the validity

of the interpolation of the NAEP scores in non-NAEP years and grades. For all of

these analyses, we present evidence regarding the district means; corresponding

results for the standard deviations are in the appendices.

Validation Check 1: Recovery of TUDA Means

The NAEP TUDA data provide estimated means and standard deviations on

the actual “naep” scale, m̂naep
dygb and ŝnaep

dygb for large urban districts in 2009 and 20 in

2011 and 2013. For these particular large districts, we can compare the NAEP

means and standard deviations to their linked means and standard deviations. For

each district, we obtain discrepancies m̂cnaep
dygb � m̂naep

dygb and ŝcnaep
dygb � ŝnaep

dygb. If there

were no sampling or measurement error in these estimates, we would report the

average of these discrepancies as the bias and would report the square root of the

average squared discrepancies as the root mean square error (RMSE). We could

also report the observed correlation between the two as a measure of how well the

linked estimates align linearly with their reported TUDA values. However,

because of the imprecision in both the NAEP TUDA and linked estimates the

RMSE will be inflated and the correlation will be attenuated as measures of

recovery. Instead, we report measurement error–corrected RMSEs and correla-

tions that account for imprecision in both the linked and TUDA parameter

estimates.

To estimate the measurement error–corrected bias, RMSE, and correlation in

a given year, grade, and subject, we fit the model below using the sample of

districts for which we have both estimates m̂cnaep
dygb and m̂naep

dygb (or ŝcnaep
dygb and ŝnaep

dygb as

the case may be; the model is the same for the means or standard deviations):

m̂idygb ¼ a0dygbðLINKEDiÞ þ a1dygbðTUDAiÞ þ eidygb;
a0dygb ¼ b00 þ u0dygb;
a1dygb ¼ b10 þ u1dygb;
eidygb*Nð0;o2

idygbÞ; udygb*MVNð0; τÞ;
ð6Þ

where i indexes source (linked or NAEP TUDA test), o2
idygb is the estimated

sampling variance (the squared standard error) of m̂idygb (which we treat as

known), and τ ¼ t00 t01

t01 t11

� �
is the variance–covariance matrix of the linked

and TUDA parameter values which must be estimated. Given the model
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estimates, we estimate the bias, B̂ ¼ b̂00 � b̂10, and dRMSE ¼ ½B̂2 þ bτ̂b0�1=2

where b ¼ ½ 1 �1 � is a 1� 2 design matrix. Finally, we estimate the correla-

tion of a0dygb and a1dygb as r̂ ¼ t̂ 01ffiffiffiffiffiffiffiffiffiffi
t̂ 00 t̂ 11

p .9

Table 1 reports the results of these analyses in each subject, grade, and year in

which we have TUDA estimates (see online Table A1 for the corresponding table

for standard deviations). Although we do not show the uncorrected estimates

here, we note that the measurement error corrections have a negligible impact on

bias and reduce the (inflated) RMSE by around 8% on average. On average, the

TABLE 1.

Recovery of NAEP TUDA Means Following State-Level Linkage of State Test Score

Distributions to the NAEP Scale, Measurement Error Adjusted

Subject Grade Year n

Recovery

RMSE Bias Correlation

Reading 4 2009 17 3.95 2.12 .96

2011 20 3.69 1.25 .96

2013 20 2.62 0.20 .98

8 2009 17 2.92 1.12 .95

2011 20 2.20 0.63 .97

2013 20 3.62 1.67 .93

Math 4 2009 17 6.09 4.10 .93

2011 20 4.97 2.60 .94

2013 20 3.60 1.46 .95

8 2009 14 5.21 3.40 .95

2011 17 3.77 2.09 .96

2013 14 4.54 1.47 .94

Average 2009 14-17 4.70 2.69 .95

2011 17-20 3.79 1.64 .96

2013 14-20 3.66 1.20 .95

Reading 17-20 3.23 1.17 .96

Math 14-20 4.77 2.52 .95

All 14-20 4.07 1.84 .95

Subgroup average Male 14-20 4.14 1.84 .97

Female 14-20 3.95 1.70 .98

White 11-19 3.89 0.66 .98

Black 13-19 4.11 1.80 .96

Hispanic 12-20 4.07 2.08 .94

Source. Authors’ calculations from EDFacts and NAEP TUDA Expanded Population Estimates data.

Note. RMSE and bias are measured in NAEP scale score points. Estimates are based on Equation 7 in

text. Subgroup averages are computed from a model that pools across grades and years within subject

(like Equation 9 in text); the subject averages are then pooled within subgroup. NAEP ¼ National

Assessment of Educational Progress; TUDA ¼ Trial Urban District Assessment.
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linked estimates overestimate actual NAEP TUDA means by roughly 1.8 points

on the NAEP scale or around .05 of a standard deviation unit, assuming an NAEP

scale standard deviation of 35 (NAEP standard deviations vary from roughly 30–

40 across subjects, years, and grades). The bias is slightly greater in earlier years

and in mathematics.

This positive bias indicates that the average scores of students in the TUDA

districts are systematically higher in the statewide distribution of scores on the

state accountability tests than on the NAEP test. This leads to a higher-than-

expected NAEP mapping. Table 1 also shows that the average estimated

precision-adjusted correlation (disattenuated to account for the imprecision in

the observed means) is .95 (note that the simple unadjusted correlation is .94;

measurement error in the means is relatively minor relative to the true variation

in the means of the TUDA districts). Figure 1 shows scatterplots of the estimated

linked means versus the observed TUDA means, separately for grades and sub-

jects, with the identity lines displayed as a reference.

Note that under a linear linking such as Equation 2, our definition of bias

implies that the weighted average bias, among all districts within each state, and

across all states, is 0 by design. If we had all districts, the bias in Table 1 would be

0; it is not 0 because Table 1 summarizes the bias for only the subset of NAEP

urban districts for which we have scores. The RMSE similarly describes the

magnitude of error (the square root of average squared error) for these districts

and may be larger or smaller than the RMSE for other districts in the state.

We review here four possible explanations for discrepancies between a dis-

trict’s average scores on the state accountability test and on the NAEP assess-

ments. These are not meant to be exhaustive explanations; they illustrate possible

substantive reasons for linking error and variance. First, the population of stu-

dents assessed in the two instances may differ. For example, a positive discre-

pancy may result if the target district excluded low-scoring students from state

tests but not from NAEP. If this differential exclusion were greater in the target

district, on average, than in other districts in the state, the target district would

appear higher in the state test score distribution than it would in the NAEP score

distribution, leading to a positive discrepancy between the district’s linked mean

score and its NAEP mean scores. Likewise, a positive discrepancy would result if

the NAEP assessments excluded high-scoring students more in the TUDA

assessment than in the statewide assessment or if there were differential exclu-

sion of high-scoring students in other districts on the state test relative to the

target district and no differential exclusion on NAEP. In other words, the dis-

crepancies might result from a target district’s scores being biased upward on the

state test or downward on the NAEP assessment relative to other districts in the

state and/or from other districts’ scores being biased downward on the state test

or upward on the NAEP assessment relative to the target district.

Second, the discrepancies may result from differential content in NAEP and

state tests. If a district’s position in the state distribution of skills/knowledge
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measured by the state test does not match its position in the statewide distribution

of skills measured by the NAEP assessment, the linked scores will not match

those on NAEP. The systematic positive discrepancies in Table 1 and Figure 1

may indicate that students in the TUDA districts have disproportionately higher

true skills in the content areas measured by their state tests than the NAEP

assessments relative to other districts in the states. In other words, if large dis-

tricts are better than other districts in their states at teaching their students the
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FIGURE 1. Comparison of reported means from National Assessment of Educational

Progress (NAEP) Trial Urban District Assessment and NAEP-linked state test score

distributions, Grades 4 and 8, reading and mathematics, in 2009, 2011, and 2013. DAL

¼ Dallas; ATL¼ Atlanta; DET¼ Detroit; BAL¼ Baltimore; LAN¼ Los Angeles; CHI¼
Chicago; HOU ¼ Houston. District–years with a greater than 8-point discrepancy are

labeled.
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specific content measured by state tests, relative to their effectiveness in teaching

the skills measured by NAEP, we would see a pattern of positive discrepancies

like that in Table 1 and Figure 1.

Third, relatedly, students in the districts with a positive discrepancy may have

relatively high motivation for state tests over NAEP compared to other districts.

Fourth, the bias evident in Table 1 and Figure 1 may indicate differential score

inflation or outright cheating. For example, some of the largest positive discre-

pancies among the 20 TUDA districts illustrated in Figure 1 are in Atlanta in

2009, where there was systematic cheating on the state test in 2009 (Wilson,

Bowers, & Hyde, 2011). The discrepancies in the Atlanta estimates are substan-

tially smaller (commensurate with other large districts) in 2011 and 2013, after

the cheating had been discovered. In this way, we see that many possible sources

of bias in the linking are sources of bias with district scores on the state test itself

rather than problems with the linking per se.

We also address the population invariance of the linking (e.g., Dorans &

Holland, 2000; Kolen & Brennan, 2014) by reporting the average direction and

magnitude (RMSE) of discrepancies, m̂cnaep
dygb � m̂naep

dygb, for selected gender and

racial/ethnic subgroups in Table 1. The number of districts is lower in some

grade–year cells due to insufficient subgroup samples in some districts.10 The

RMSEs are only slightly larger for subgroups than the RMSE for all students, and

bias is similar in magnitude for all groups. We conclude from these comparable

values that the linking functions recover NAEP district means similarly, on

average, across subgroups.

Validation Check 2: Association With NWEA MAP Means

The NWEA MAP test is administered in thousands of school districts across

the country. Because the MAP tests are scored on the same scale nationwide,

district average MAP scores can serve as a second audit test against which we can

compare the linked scores. As noted previously, in most tested districts, the

number of student test scores is very close to the district’s enrollment in the

same subject, grade, and year. For these districts, we estimate means and stan-

dard deviations on the scale of the MAP test. The scale differs from that of

NAEP, so absolute discrepancies are not interpretable. However, strong correla-

tions between linked district means and standard deviations and those on MAP

represent convergent evidence that the linking is appropriate.

We calculate disattenuated correlations between the observed MAP means

deviations and both the HETOP estimated means (prior to linking them to the NAEP

scale) and the linked means from Equation 2. The improvement from the correlation

of MAP means and HETOP estimates to the correlation of MAP means and NAEP-

linked estimates is due solely to the move from the “state” to the “dnaep” scale,

shifting all districts within each state according to NAEP performance.
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Table 2 shows that correlations between the linked district means and MAP

district means are .93 on average when adjusting for imprecision (see online

Table A2 for the corresponding table for standard deviations). This is larger than

the average correlation of .87 between the MAP means and the (unlinked)

HETOP estimates. Figure 2 shows a bubble plot of district MAP scores on linked

scores for Grade 4 mathematics in 2009 as an illustration of the data underlying

these correlations. Note that the points plotted in Figure 2 are means estimated

with imprecision. The observed (attenuated) correlations are generally .03 to .10

points lower than their disattenuated counterparts.

Validation Check 3: Association of Between-Grade and Between-Cohort Trends

An additional assessment of the extent to which the linked state district means

match the corresponding NAEP district means compares not just the means in a

given grade and year but the within-district differences in means across grades

TABLE 2.

Precision-Adjusted Correlations of Linked District Means With NWEA MAP District

Means Before and After State-Level Linkage of State Test Score Distributions to the NAEP

Scale

Subject Grade Year N

Precision-Adjusted Correlations

With HETOP Estimates With Linked Estimates

Reading 4 2009 1,139 .90 .95

2011 1,472 .87 .93

2013 1,843 .92 .95

8 2009 959 .84 .91

2011 1,273 .87 .91

2013 1,597 .88 .92

Math 4 2009 1,128 .86 .93

2011 1,467 .82 .90

2013 1,841 .87 .93

8 2009 970 .83 .93

2011 1,279 .84 .92

2013 1,545 .87 .95

Average 2009 4,196 .86 .93

2011 5,491 .85 .91

2013 6,826 .88 .94

All Years 16,513 .87 .93

Source. Authors’ calculations from EDFacts and NWEA MAP data.

Note. Sample includes districts with reported NWEA MAP scores for at least 90% of students.

NWEA MAP ¼ Northwest Evaluation Association Measures of Academic Progress; NAEP ¼
National Assessment of Educational Progress; HETOP ¼ heteroskedastic ordered probit.
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and years. If the discrepancies evident in Figure 1 are consistent across years and

grades within a district, then the linked state estimates will provide accurate

measures of the within-district trends across years and grades, even when there

is a small bias in in the average means.

To assess the accuracy of the across-grade and across-year differences in

linked mean scores, we use data from the 20 TUDA districts from the grades

and years in which we have both linked means and corresponding means from

NAEP. We do not use the NAEP data from interpolated years and grades in this

model. We fit the same model for both means and standard deviations and

separately by subject. For each model, we fit precision-weighted random coeffi-

cients models of this form:

m̂idygb ¼ a0dygbðLINKEDiÞ þ a1dygbðTUDAiÞ þ eidygb;
a0dygb ¼ b00d þ b01dðyeardygb � 2011Þ þ b02dðgradedygb � 6Þ þ u0dygb;
a1dygb ¼ b10d þ b11dðyeardygb � 2011Þ þ b12dðgradedygb � 6Þ þ u1dygb;
b00d ¼ g00 þ v00d ;
b01d ¼ g01 þ v01d ;
b02d ¼ g02 þ v02d ;
b10d ¼ g10 þ v10d ;
b11d ¼ g11 þ v11d ;
b12d ¼ g12 þ v12d ;
eidygb*Nð0;�2

idygbÞ; udygb*MVNð0;�2Þ; ; vd*MVNð0; τÞ;

ð7Þ

where i indexes source (linked or NAEP TUDA test) and o2
idygb is the sampling

variance of m̂idydb (which we treat as known and set equal to the square of the
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FIGURE 2. Example of an association between linked means and Northwest Evaluation

Association Measures of Academic Progress means, Grade 4 math, 2009. Correlation of

.87; precision-adjusted correlation of .93. Bubble size corresponds to district enrollment.
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estimated standard error of m̂idydb). The vector Γ ¼ g00; : : : ; g12f g contains the

average intercepts, year slopes, and grade slopes (in the second subscript, 0, 1,

and 2, respectively) for the linked values and the target values (in the first sub-

script, 0 and 1, respectively). The differences between the corresponding ele-

ments of Γ indicate average bias (i.e., the difference between g00 and g10

indicates the average deviation of the linked means and the NAEP TUDA means,

net of district-specific grade and year trends). Unlike Table 1, where we esti-

mated bias separately for each year and grade and descriptively averaged

them, the bias here is estimated by pooling over all years and grades of TUDA

data, with district random effects. If the linking were perfect, we would

expect this to be 0.

The matrix of random parameters τ includes, on the diagonal, the between-

district variances of the average district means and their grade and year trends;

the off-diagonal elements are their covariances. From τ, we can compute the

correlation between the within-district differences in mean scores between

grades and years. The correlation corrðv01d ; v11dÞ, for example, describes the

correlation between the year-to-year trend in district NAEP scores and the trend

in the linked scores. Likewise the correlation corrðv02d ; v12dÞ describes the cor-

relation between the Grade 4 through 8 differences in district NAEP scores and

the corresponding difference in the linked scores. Finally, the correlation

corrðv00d ; v10dÞ describes the correlation between the NAEP and linked inter-

cepts in the model—that is, the correlation between linked and TUDA mean

scores. This correlation differs from that shown in Table 1 because the former

estimates the correlation separately for each grade and year; the model in Equa-

tion 7 estimates the correlation from a model in which all years and grades are

pooled.

Table 3 shows the results of fitting this model separately by subject to the

district means (see online Table A3 for the corresponding table for standard

deviations). When comparing the linked estimates to the NAEP TUDA esti-

mates, several patterns are evident. First, the estimated correlation of the TUDA

and linked intercepts is .98 (for both math and reading), and the bias in the means

(the difference in the estimated intercepts in Table 3) is small and not statistically

significant. The linked reading means are, on average, 1.1 points higher (SE of

the difference is 3.0; not statistically significant) than the TUDA means, and the

linked mathematics means are, on average, 2.4 points higher (SE of the differ-

ence is 3.3, not statistically significant) than the TUDA means. These are, not

surprisingly, similar to the average bias estimated from each year and grade

separately and shown in Table 1.

Second, the estimated average linked and TUDA grade slopes (ĝ02 and ĝ12,

respectively) are nearly identical to one another in both math and reading. The

estimated bias in grade slopes (�.04 in reading and �.10 in math) is only 1% as

large as the average grade slope. The implied RMSE from the model is .56 in
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TABLE 3.

Estimated Comparison of Linked and TUDA District Means, Pooled Across Grades and

Years, by Subject

Parameter Reading Math

Linked EDFacts parameters

Intercept (g00) 228.53*** 250.59***

(2.00) (2.10)

Year (g01) 0.91*** 0.43*

(0.17) (0.19)

Grade (g02) 10.81*** 9.58***

(0.27) (0.29)

TUDA parameters

Intercept (g10) 227.41*** 248.14***

(2.12) (2.49)

Year (g11) 1.03*** 0.91***

(0.10) (0.11)

Grade (g12) 10.84*** 9.68***

(0.22) (0.17)

L2 intercept SDs: linked (s0) 2.51 2.66

L2 intercept SDs: TUDA (s1) 0.82 1.26

Correlation: L2 residuals 1.00 0.36

L3 intercept SDs: linked (t1) 8.87 9.27

L3 intercept SDs: TUDA (t4) 9.79 11.10

L3 year slope SDs: linked (t2) — —

L3 year slope SDs: TUDA (t5) — —

L3 grade slope SDs: linked (t3) 1.06 1.03

L3 grade slope SDs: TUDA (t6) 0.93 0.61

Correlation: L3 intercepts 0.98 0.98

Correlation: L3 year slopes — —

Correlation: L3 grade slopes 0.85 0.98

Reliability L3 intercept: linked 0.98 0.98

Reliability L3 year slope: linked — —

Reliability L3 grade slope: linked 0.76 0.73

Reliability L3 intercept: TUDA 1.00 1.00

Reliability L3 year slope: TUDA — —

Reliability L3 grade slope: TUDA 0.87 0.72

N: observations 228 204

N: districts 20 20

Note. Estimates are based on Equation 9 in text. The Level 3 random errors on the year slope were not

statistically significant and so were dropped from the model. L2¼ “Level 2”; L3¼ “Level 3.” NAEP

¼ National Assessment of Educational Progress; TUDA ¼ Trial Urban District Assessment.

Source. Authors’ calculations from EDFacts and NAEP TUDA Expanded Population Estimates data.

***p � .001; **p � .01; *p � .05.
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reading and .46 in math, roughly 5% of the average grade slope.11 The estimated

correlation of the TUDA and linked grade slopes is .85 for reading and .98 for

math. Finally, the reliability of the grade slopes of the linked estimates is .76 in

reading and .73 in math.12 Together these indicate that the linked estimates

provide unbiased estimates of the within-district differences across grades and

that these estimates are precise enough to carry meaningful information about

between-grade differences.

Third, there is little or no variation in the year trends in the TUDA districts; for

both math and reading, the estimated variation of year trends is small and not

statistically significant. As a result, neither the TUDA nor the linked estimates

provide estimates of trends across years that are sufficiently reliable to be useful

(in models not shown, we estimate the reliabilities of the TUDA year trends to be

.28 and .53 and of the linked year trends to be .45 and .72 in reading and math,

respectively). As a result, we dropped the random effects on the year trends and

do not report in Table 3 estimates of the variance, correlation, or reliability of the

year trends.

Validation Check 4: Recovery of Estimates Under Interpolation

Between Years and Grades

Using the interpolated state means and standard deviations in Equation 1 for

the linking establishes an assumption that the linkage recovers district scores that

would have been reported in years 2010 and 2012 and Grades 3, 5, 6, and 7.

Although we cannot assess recovery of linkages in interpolated grades with only

Grades 4 and 8, we can check recovery for an interpolated year, specifically,

2011, between 2009 and 2013. By pretending that we do not have 2011 NAEP

state data, we can assess performance of our interpolation approach by compar-

ing linked estimates to actual 2011 TUDA results. For each of the TUDAs that

participated in both 2009 and 2013, we interpolate, for example,

m̂naep0
s2011gb ¼

1

2
ðm̂naep

s2009gb þ m̂naep
s2013gbÞ;

ŝnaep0
s2011gb ¼

1

2
ðŝnaep

s2009gb þ ŝnaep
s2013gbÞ:

ð8Þ

Applying Equations 2 through 5, we obtain estimates, for example, m̂cnaep
0

d2011gb,

and we compare these to actual TUDA estimates from 2011. We estimate bias

and RMSE for discrepancies m̂cnaep
0

d2011gb � m̂naep
d2011gb using the model from Validation

Check 1. Table 4 shows results in the same format as Table 1 (see online Table

A4 for the corresponding table for standard deviations). We note that the average

RMSE of 3.8 and bias of 1.4 in Table 4 are approximately the same as the average

RMSE of 3.8 and bias of 1.6 shown for 2011 in Table 1. Note that the
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interpolations we use in our proposed linking are those between observed scores

that are only 2 years apart rather than 4 years apart as in the validation exercise

here. The 2-year interpolations should be more accurate than the 4-year inter-

polation, which itself is accurate enough to show no degradation in our recovery

of estimated means. We conclude that the between-year interpolation of state

NAEP scores adds no appreciable error to the linked estimates for TUDA

districts.

We next investigate the viability of interpolation by comparing correlations of

linked district estimates with MAP scores at different degrees of interpolation.

Some grade–year combinations need no interpolation, others are singly interpo-

lated, and others are doubly interpolated. Table 5 shows that, on average,

precision-adjusted correlations between linked NAEP means and MAP means

are almost identical across different degrees of interpolation, around .93 (see

online Table A5 for the corresponding table for standard deviations). This lends

additional evidence that interpolation adds negligible aggregate error to recovery

between years as well as grades.

Quantifying the Uncertainty in Linked Estimates

The validation analyses above suggest that the linked estimates correspond

quite closely to their target values on average. But, as is evident in Table 1 and

Figure 1, the degree of discrepancy varies among districts. NAEP and state

assessments do not locate districts identically within states, implying linking

error in the estimates. In this section, we provide a framework for quantifying

TABLE 4.

Recovery of Reported 2011 NAEP TUDA Means Following State-Level Linkage of State

Test Score Distributions to an NAEP Scale Interpolated Between 2009 and 2013,

Measurement Error Adjusted

Subject Grade Year N

Recovery

RMSE Bias Correlation

Reading 4 2011 20 3.78 0.89 .95

8 2011 20 2.14 1.47 .99

Math 4 2011 20 4.67 2.25 .94

8 2011 14 3.81 1.66 .96

Average Reading 20 3.07 1.18 .97

Math 14-20 4.26 1.95 .95

All 14-20 3.72 1.57 .96

Note. Using NAEP Expanded Population Estimates. Adjusted correlations account for imprecision in

linked and target estimates.
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the magnitude of this linking error. This in turn allows us to construct approx-

imate standard errors for cross-state comparisons based on the linking.

We begin by rewriting Equation 2, omitting the ygb subscripts and using

superscripts n and s in place of “naep” and “state” for parsimony. Here, we

distinguish the linked mean for a district d (estimated using Equation 2 and

denoted here as m̂ link
d ) from the mean NAEP score we would observe if all

students in a district took the NAEP assessment (this is the target parameter,

denoted here as mn
d):

m̂ link
d ¼ m̂n

s þ m̂s
d � ŝ

n
s ;

¼ ðmn
s þ vn

s Þ þ ðms
d þ vs

dÞ � ðsn
s þ wn

s Þ;
¼ ðmn

s þ ms
ds

n
s Þ þ ðms

dwn
s þ sn

s vs
d þ vs

dwn
s þ vn

s Þ;
¼ mlink

d þ ðms
dwn

s þ sn
s vs

d þ vs
dwn

s þ vn
s Þ;

¼ mn
d þ dd þ ðms

dwn
s þ sn

s vs
d þ vs

dwn
s þ vn

s Þ:

ð9Þ

Equation 10 shows that the estimated linked mean has two sources of error:

linking error (dd) and sampling/estimation error (the term in parentheses) that

results from error in the estimated state mean and standard deviation on the

NAEP assessment and from estimation error in the district mean on the state

TABLE 5.

Precision-Adjusted Correlations Between NWEA MAP District Means and NAEP-Linked

Estimates

Subject Grade 2009 2010 2011 2012 2013

Reading 3 .95 .94 .93 .93 .94

4 .95 .94 .93 .94 .95

5 .94 .94 .93 .93 .94

6 .92 .94 .92 .93 .93

7 .92 .93 .92 .92 .92

8 .91 .91 .91 .91 .92

Math 3 .91 .89 .91 .91 .91

4 .93 .92 .90 .92 .93

5 .91 .90 .92 .91 .93

6 .93 .93 .94 .93 .94

7 .94 .95 .95 .95 .95

8 .93 .93 .92 .94 .95

No interpolation (plain text) .93

Single interpolation (italics) .93

Double interpolation (boldface) .93

Note. Linked using NAEP Expanded Population Estimates. Sample includes districts with reported

NWEA MAP scores for at least 90% of students. NWEA MAP ¼ Northwest Evaluation Association

Measures of Academic Progress; NAEP ¼ National Assessment of Educational Progress. All

correlations are statistically significant, p < .001.
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assessment. The variance of the sampling/estimation error term is given by

Equation 4. The variance of the linking error is not known for the full population,

but we can illustrate its magnitude using the RMSEs for TUDAs reported in

Table 1. The average root mean squared linking error in Table 1 is about 4 points

on the NAEP scale. Because the standard deviation of national NAEP scores

within a grade, year, and subject is typically 28 to 38 points, the RMSE is roughly

4/33�.12 student-level standard deviation units. To the extent that the RMSE of

the linking errors across the TUDA districts is representative of the standard

deviation of the linking errors in the full population, we can then approximate

the standard deviation of dd as .12.

We can now compute approximate standard errors of the linked estimates that

take into account linking error as well as sampling and estimation error. The

variance of the linked mean will be

varðm̂ link
d Þ ¼ varðddÞ þ ðms

dÞ
2
varðwn

s Þ þ ðsn
s Þ

2
varðvs

dÞ þ varðvs
dÞ � varðwn

s Þ þ varðvn
s Þ: ð10Þ

We have estimates of sn
s , varðvn

s Þ, and varðwn
s Þ from NAEP; we have estimates

of ms
d and varðvs

dÞ from the state assessment data, and we have an approximation

of varðddÞ from Table 1. Using appropriate estimates of these parameters, we can

compute standard errors of the linked assessments from Equation 10.

How large is the linking error relative to the other sources of error in the linked

estimate? We can get a sense of this from Figure 3, which shows the standard

error of the linked estimate as a function of the magnitude of the standard error of

the state assessment mean, SDðvs
dÞ, and the linking error variance, SDðddÞ. The
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FIGURE 3. Reliabilities and standard errors (in National Assessment of Educational

Progress [NAEP] national standard deviation units) of linked means on the NAEP scale

across a range of specifications.
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standard errors of the state assessment means in our data range from roughly

.01 to .25, with a median of roughly .10 (the cumulative distribution function of

the distribution of standard errors is shown in Figure 3 for reference). The figure

includes four lines describing the standard error of the linked means under four

different assumptions about the magnitude of the linking error:

SDðddÞ 2 f0; :06; :12; :18Þ. The scenario SDðddÞ ¼ 0 corresponds to the

assumption that there is no linking error (an unrealistic assumption but useful

as a reference). The TUDA analyses in Table 1 suggest a value of SDðddÞ ¼ :12;

we include higher and lower values for SDðddÞ in order to describe the plausible

range. The other terms in Equation 10 are held constant at values near their

empirical medians: ms
d ¼ 0, sn

s ¼ :98, varðvn
s Þ ¼ :001, and varðwn

s Þ ¼ :0004.

The computed standard errors are very insensitive to these terms across the full

range of their empirical values in the NAEP and state assessment data we use.

Figure 3 shows that the standard errors of the linked estimates are meaning-

fully larger when we take into account the linking error than when we assume it is

0, but this is more true for districts with small standard errors on the state

assessment. In terms of standard errors, linking error plays a larger role when

other sources of error are small.

Figure 3 also describes the implied reliability of the linked estimates. We

estimate the standard deviation of the district means (excluding measurement

error) across all districts to be roughly .34 national student-level standard devia-

tions. Using this, we compute the reliability as r ¼ :34

:34þvarðm̂ link
d Þ

. Under the

assumption of linking error with SDðddÞ ¼ :12, the reliability of the linked

means is lower than if we assume no linking error (as expected). However, it

is still about .70 for the roughly 91% of districts with state standard errors less

than .19. This suggests that, even in the presence of linking error, there is enough

signal in the linked estimates to be broadly useful for distinguishing among

districts.

We can also compute standard errors of the difference between two districts’

means. The formula will differ for districts in the same state versus different

states. For two districts in the same state

var m̂ link
d1 � m̂ link

d2

� �
� 2varðdÞ þ ðms

d1 � ms
d2Þ

2
varðwn

s Þ þ ðsn
s Þ

2½varðvs
d1Þ þ varðvs

d2Þ�: ð11Þ

For two districts in different states, however,

var m̂ link
d1 � m̂ link

d2

� �
� 2varðdÞ þ ðms

d1Þ
2
varðwn

s1Þ þ ðms
d2Þ

2
varðwn

s2Þ þ ðsn
s1Þ

2
varðvs

d1Þ
þ ðsn

s2Þ
2
varðvs

d2Þ þ varðvn
s1Þ þ varðvn

s2Þ: ð12Þ

Assuming the sampling variances of the state means and standard deviations

are the same in both states (which is approximately true in this case, given that

NAEP sample sizes and standard deviations are similar among states), this is
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var m̂ link
d1 � m̂ link

d2

� �
� 2varðdÞ þ ½ðms

d1Þ
2 þ ðms

d2Þ
2�varðwn

s Þ þ ðsn
s Þ

2½varðvs
d1Þ þ varðvs

d2Þ�
þ 2varðvn

s Þ:
ð13Þ

We ignore the varðvs
dÞ � varðwn

s Þ terms because they are very small relative to

the other terms in the formula. The difference in the variance of a between-state

and a within-state comparison, holding all other terms constant, will be

2m2
d1m

2
d2varðwn

s Þ þ 2varðvn
s Þ. The same-state and different-state formulas differ

because the within-state comparisons share the same sampling error in the state

NAEP means and standard deviations. As a result, there is generally more uncer-

tainty in between-state comparisons than within-state comparisons on the NAEP

scale. However, the difference is generally small. Both between-state and within-

state comparisons share the linking error variance
�

2varðdÞ
�

and the sampling/

estimation error variance in the district means
�

varðvs
d1Þ þ varðvs

d2Þ
�

. In addi-

tion, varðwn
s Þ and varðvn

s Þ are small relative to these two sources of error in the

case we examine here. The result is that the errors in within- and between-state

differences in linked means are generally similar.13

Discussion

We present validation methods for aggregate-level linking that applies when-

ever some subset of groups has scores on both tests. We motivate the method

with the goal of constructing a U.S.-wide district-level data set of test score

means and standard deviations. We demonstrate that test score distributions on

state standardized tests can be linked to a national NAEP-linked scale in a way

that yields district-level distributions that correspond well—but not perfectly—to

the absolute performance of TUDA districts on NAEP and the relative perfor-

mance of available districts on MAP. The correlation of district-level mean

scores on the NAEP-linked scale with scores on the NAEP TUDA and NWEA

MAP assessments is generally high (averaging .95 and .93 across grades, years,

and subjects). Nonetheless, we find some evidence that NAEP-linked estimates

include some small, but systematically positive, bias in large urban districts

(roughly þ.05 standard deviations, on average). This implies a corresponding

small downward bias for other districts in the same states, on average.

Are these discrepancies a threat to the validity of the linked estimates of

district means? The answer depends on how the estimates will be used. Given

evidence of the imperfect correlation and small bias, the linked estimates should

not be used to compare or rank school districts’ performance when the estimated

means are close and when the districts are in different states. As we noted, there

are several possible sources of error in a cross-state comparison, including dif-

ferences in content, motivation, sampling, and inflation. Our methods cannot
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identify the presence of any one type of error but do allow us to quantify the total

amount of error in cross-state TUDA comparisons. This error is small relative to

the distribution of test scores and the variation in average district scores. Of

course, relative comparisons within states do not depend on the linking proce-

dure, so these are immune to bias and variance that arises from the linking

methods.

On the basis of these results, we believe the linked estimates are accurate

enough to be used to investigate broad patterns in the relationships between

average test performance and local community or schooling conditions, both

within and between states. The validation exercises suggest that the linked

estimates can be used to examine variation among districts and across grades

within districts. It is unclear whether the estimates provide unbiased estimates

of within-grade trends over time, given that there is little or no variation in the

NAEP district trends over time against which to benchmark the linked trend

estimates. This is true more generally even of within-grade national NAEP

trends, which are often underpowered to detect true progress over shorter time

spans of 2 to 4 years.

Validation methods must begin with an intended interpretation or use of

scores (Kane, 2013). An operational interpretation of the linked aggregate esti-

mates is the result of monotonic transformations of district score distributions on

state tests. They are state score distributions with NAEP-based adjustments, with

credit given for being in a state with relatively high NAEP performance and, for

districts within the states, greater discrimination among districts when a state’s

NAEP standard deviation is high. Our contribution is to provide a strategy and

methods for answering the essential counterfactual question: What would district

results have been, had district scores on NAEP or MAP been available? When

patchwork administrations of district tests are available, we can obtain direct and

indirect answers to this question.

Because some combination of testing conditions, purpose, motivation, and

content of NAEP and state tests differ, we find that district results do differ across

tests. But our validation checks suggest that these differences are generally small

relative to the variation among districts. This is evident in the high correspon-

dence of the linked and NAEP TUDA estimates and of the linked and NWEA

MAP estimates. This suggests that our set of estimated NAEP-linked district test

score results may be useful in empirical research describing and analyzing

national variation in local academic performance. When data structures with

patchwork administrations of tests are available in other U.S. and international

testing contexts, our strategy and methods are a road map to not only link scores

at the aggregate level but to validate interpretations and uses of linked scores.
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Notes

1. Our data and methods are more comprehensive than those used in the Global

Report Card (GRC; Greene & McGee, 2011; Greene & Mills, 2014; http://

globalreportcard.org/). First, we provide grade-specific estimates (by year),

allowing for estimates of measures of progress. Second, instead of the sta-

tistical model we describe below (Reardon, Shear, Castellano, & Ho, 2016),

which leverages information from three cut scores in each grade, the GRC

uses only one cut score and aggregates across grades. This assumes that

stringency is the same across grades and that district variances are equal.

Third, our methods allow us to provide standard errors for our estimates.

Fourth, we provide both direct and indirect validation checks for our

linkages.

2. From 2009 to 2013, 63% of 3,060 state(51)–grade(6)–subject(2)–year(5)

reliability coefficients were available. Consistent with Reardon and Ho

(2015), the reported reliabilities have a mean of .905 and a standard devia-

tion of .025. Missing reliabilities were imputed as predicted values from a

linear regression of reliability on state–grade–subject and state–year fixed

effects. The residuals from the model have a standard deviation of .010. This

suggests that imputation errors based on the model have a standard deviation

of .010, which is very small compared to the mean value of the reliabilities
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(.905). As a result, imputation errors in reliability are not likely to be

consequential.

3. In 2009, the 17 districts are Atlanta, Austin, Baltimore, Boston, Charlotte,

Chicago, Cleveland, Detroit, Fresno, Houston, Jefferson County, Los

Angeles, Miami, Milwaukee, New York City, Philadelphia, and San Diego.

Albuquerque, Dallas, and Hillsborough County joined in 2011 and 2013.

Washington, D.C., is not included for validation, as it has no associated state

for linking. California districts (and Texas districts in 2013) did not have a

common Grade 8 state mathematics assessment, so the California and Texas

districts lack a linked district mean for Grade 8 mathematics.

4. Note that the correlation of Expanded Population Estimates and regular

National Assessment of Educational Progress (NAEP) estimates are near

unity; as a result, our central substantive conclusions are unchanged if we

use the regular NAEP estimates in the linking.

5. Note that, because there is measurement error in the state accountability test

scores, estimates of mdygb and sdygb that are standardized based on the

observed score distribution will be biased estimates of the means and stan-

dard deviations expressed in terms of the standardized true score distribution

(the means will be biased toward 0; the standard deviations will be biased

toward 1). Before linking, we adjust m̂state
dygb and ŝstate

dygb to account for measure-

ment error using the classical definition of reliability as the ratio of true score

variance over observed score variance. We adjust the means and their stan-

dard errors by dividing them by the square root of the state test score relia-

bility (r) in the relevant year, grade, and subject. We adjust the standard

deviations and their standard errors by multiplying them by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ 2þr�1

rŝ 2

q
. After

these adjustments, m̂state
dygb and ŝ state

dygb are expressed in terms of the standardized

distribution of true scores within the state. We do not adjust NAEP state

means and standard deviations, as NAEP estimation procedures account for

measurement error due to item assignment to examinees (Mislevy, Muraki,

& Johnson, 1992).

6. Interpolation relies on some comparability of NAEP scores across grades.

Vertical linking was built into NAEP’s early design via cross-grade blocks of

items (administered to both fourth and eighth graders) in 1990 in mathe-

matics and in 1992 in reading (Thissen, 2012). These cross-grade blocks act

as the foundation for the bridge spanning Grades 4 and 8. At around that

time, the National Assessment Governing Board that sets policy for NAEP

adopted the position that, as Haertel (1991) describes, “NAEP should

employ within-age scaling whenever feasible” (p. 2). Thissen notes that

there have been few checks on the validity of the cross-grade scales since

that time. One exception is a presentation by McClellan, Donoghue, Glad-

kova, and Xu (2005) who tested whether subsequent vertical linking would

have made a difference on the reading assessment. They concluded that “the
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current cross-grade scale design used in NAEP seems stable to the alternate

design studied” (p. 37). We do not use interpolation between grades to

explore growth trajectories on an absolute scale but rather identify relative

position of districts, which are very consistent across grades. Our fourth

validation check provides evidence that this interpolation is justified.

7. Note that the sampling variances of the interpolated means and standard

deviations will be functions of the sampling variances of the noninterpolated

values. For example,

varðm̂naep
sygb Þ ¼

8� g

4

0
@

1
A2

varðm̂naep
sy4bÞ þ

g � 4

4

0
@

1
A2

varðm̂naep
sy8bÞ;

for g 2 3; 5; 6; 7f g; y 2 2009; 2011; 2013f g; and 8 s; b;

varðm̂naep
sygb Þ ¼

1

4
½varðm̂naep

s½y�1�gb
Þ þ varðm̂naep

s½yþ1�gb
Þ�;

for g 2 3; 4; 5; 6; 7; 8f g; y 2 2010; 2012f g; and 8 s; b:

8. This is not strictly true, since m̂naep
sygb and ŝnaep

sygb are estimated from the same

sample. However, the NAEP samples are large within each state–year–grade–

subject, so the covariance of the estimated means and standard deviations is

very small relative to other sources of sampling variance in Equation 4.

9. Note that this model assumes the errors eidygb are independent within each

district–grade–year–subject. The error in the NAEP Trial Urban District

Assessment (TUDA) estimate arises because of sampling variance (because

the NAEP assessment was given to only a random sample of students in each

TUDA district). The error in the linked estimate arises because of (a) error in the

estimated district mean score and (b) sampling error in the NAEP estimates of

the state mean and standard deviation (see Equation 4). The error in the esti-

mated state mean arises from the fact that the heteroskedastic ordered probit

model estimates the mean score from coarsened data not from sampling var-

iance (because the state assessments include the full population of students); the

error in the NAEP state mean and standard deviation arises from sampling

variance in the state NAEP samples. Both the coarsening error and the state

sampling error are independent of the sampling error in the NAEP district mean

estimate.

10. Our model for subgroups pools across grades (4 and 8) and years (2009,

2011, and 2013) to compensate for smaller numbers of districts in some

grade–year cells. We describe this model in Validation Check 3. On average,

across grades and years, the results are similar to a model that does not use

pooling. We also calculate bias and root mean square error (RMSE) for

Asian student populations but do not report them due to small numbers of

districts: 5 to 10 per cell. However, bias and RMSE of linked district
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estimates were higher for Asians, suggesting caution against conducting a

separate linkage for Asian students.

11. We compute the RMSE of the grade slope from the model estimates as

follows. Let Ĉ ¼ ĝ02 � ĝ12 be the bias in the grade slopes; then, the

RMSE of the grade slope will be dRMSE ¼ ½Ĉ 2 þ dτ̂2
d0�1=2

, where

d ¼ ½0 0 1 0 0� 1�.
12. The reliability of the Level 3 slopes and intercepts is computed as described

in Raudenbush and Bryk (2002).

13. To illustrate this, suppose we assume a low value for the linking error

variance (say varðdÞ ¼ :0036, one quarter of what is implied by the RMSE

of the NAEP TUDA means). Let us compare two districts with small stan-

dard errors (say varðm̂d1Þ ¼ varðm̂d1Þ ¼ :0025, which is smaller than 90% of

districts; see Figure 3). If both districts have estimated means two standard

deviations from their state means (so m̂d1 ¼ m̂d2 ¼ 2, an extreme case), then

Equation 11 indicates that the error in a within-state comparison will have

variance of :0122, while Equation 13 indicates that a between-state compar-

ison will have a modestly larger error variance of :0174. In most compar-

isons (where the error variances of the estimated district means are larger,

where the district means are not so far from their state averages, or when the

linking error variance is larger), the difference in the error variance of

between- and within-state comparisons will be much smaller.
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