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Abstract: The purpose of this randomized experimental study is to apply two socio-cognitive models
to understand possible ways to improve students’ learning outcomes in an online introductory
chemistry learning environment. Specifically, the social presence theory suggested that students’
sense of relatedness and learning motivation can be increased by a real or imagined interaction
with others. On the other hand, self-regulated learning theory and self-determination theory both
suggested that students learn best when they direct their focus to self, rather than others. Using
these two theoretical perspectives as the basis, two experimental conditions (social presence vs.
self-regulated) were developed in the context of chemistry learning. Participants of the study were
randomly assigned to one of the experimental conditions. Both groups were presented with a pre-test,
an online micro-lecture on balancing equations, i.e., a subtopic of stoichiometry, and a post-test. Linear
mixed model analysis revealed that participants in the self-regulated learning condition had higher
improvement in quiz scores than had participants in the social presence condition. Implications of
the study and future directions were discussed.

Keywords: chemical education research; introductory chemistry; stoichiometry; distance learning

1. Introduction

Learning science online can be challenging to students, especially students in intro-
ductory level courses. When students learn science in an online learning environment,
they may be placed in an isolated situation, especially when they need to watch video
lectures and take notes by themselves [1]. Online learning environment may be drastically
different from a classroom situation where students may interact with the instructor and
other classmates in real time. Therefore, students’ learning outcomes could be impacted
negatively when learning in isolation and instructors’ efforts in preventing such a sense
of isolation is crucial in increasing students’ success in online learning [2,3]. In addition,
when students are learning in isolation, their motivation to learn may be reduced and
their attrition rate may increase, especially when facing difficult concepts [4]. Introductory
chemistry is a subject that is often challenging to beginners, thus requiring course design
strategies to overcome students’ feelings of isolation and the lack of motivation. Therefore,
using a double-blind randomized experimental design, this study aimed at examining and
comparing the effects of two sociocognitive theoretical framework, social presence theory
and self-regulated learning theory (along with self-determination theory) on increasing
students’ learning outcome in an online chemistry learning environment.
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1.1. The Role of Peer in Chemistry Learning: Social Presence Theory

One way in which students’ sense of isolation in an online learning environment may
be resolved is through an imagined social presence. Social presence theory was developed
and applied to address the lack of face-to-face interactions in telecommunication and
computer-mediated communication (CMC). Social presence is defined as “the salience of
the other in a mediated communication and the consequent salience of their interpersonal
interactions” [5]. In other words, social presence is referred to as being aware of others in
communications and interactions in CMC. In the smallest occurrence, the social presence
is shown in the degree in which a user connects to the intelligence, intentions, as well as
the sensory impressions of another user [6]. Social presence is subjective and is impacted
by the educational technology implemented [5]. It can be impacted through interactions
with peers and instructors through e-mail, discussion boards, and video conferencing.
Research studying the effect of social presence in online classrooms found that the real or
imagined presence of others is important in strengthening students’ sense of relatedness [7],
satisfaction [8], and motivation [2]. Social presence can be increased by increasing student–
student interaction and student–teacher interaction [9], in synchronous class events and
asynchronous class events [10], and even in an imagined presence of others [11].

Although social presence theory has not been researched extensively in the context
of online chemistry learning, chemical educational research found a significant effect of
the role of peer in students’ chemistry learning outcome [12–16] in regular, in-person
classrooms. For example, in a classroom study examining students in a general chemistry
course, when students were asked to discuss concepts learned in class with another stu-
dent, their chemistry exam scores were significantly higher (i.e., 17.76 percentile points
higher) than students who only received traditional lecture-based teaching [12]. Similarly,
in another study, learning chemistry with a peer leader was found to result in better critical
thinking than a traditional lecture-based approach [13]. Although these studies focused
on the in-person classroom, the evidence is clear: Social presence or peer influence is
important in chemistry learning.

How can social presence be incorporated in introductory chemistry online course
design? Flipped classroom model is a great example of incorporating peer components
in chemistry classrooms [17]. The flipped classroom is a teaching strategy that involves
having students learn materials online at home, usually watching a video or a simulation.
Then, when students come to the classroom, they engage in discussion and problem-solving
with the instructor and with one another [18]. For example, in a study examining first-year
college students’ introductory chemistry classrooms, students being taught in a flipped
design classroom were found to have better grades and lower failure rates than students
being taught in traditional classrooms [17]. Students also expressed that they preferred a
flipped classroom. However, it should be noted that research of the flipped classroom often
compares students’ outcomes in flipped versus non-flipped classrooms, without identifying
what exact components of the flipped design work to improve students learning outcome.

Research looking at specific types of activities or tasks may complement these general
findings. For example, one study suggested that giving students’ collaborative tasks, such
as solving problems together or helping one another to interpret ideas, are helpful for
students’ learning [10]. Consistent with this idea, a study examining an introductory
chemistry laboratory course found that targeting students’ helping obligatory (i.e., training
students to help other students) was effective in improving college students’ attitudes in
completing the laboratory course [15]. In another study examining high school students’
learning in stoichiometry, simply writing a letter and notes to help younger learners
improved students learning outcomes [19]. In other words, studies consistently showed
that having students help one another was found to be effective in improving students’
learning outcomes. Therefore, in this study, we selected a simple peer interaction task by
asking students to help other students learn chemistry by taking notes for them during
the video lecture. This procedure was used in a national study on understanding students’
learning mindset [20] and was similar to the stoichiometry instruction study [19].
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1.2. The Role of Self in Chemistry Learning: Self-Regulated Learning and
Self-Determination Theory

Although classroom studies mentioned in the last section found a significant effect
of peer-learning in the chemistry classrooms, randomized controlled trial experiments
seem to tell another story. Particularly, the effect of peer-learning has not always been
found to be better than the effect of self-learning in chemistry. In a recent randomized
controlled trial experiment examining the effect of the flipped classroom (i.e., pre-class
online self-learning and then a collaborative group learning), researchers tested the stu-
dents at different points throughout the learning process to see which flipped classroom
activities increased students’ chemistry knowledge the most [21]. Surprisingly, results
showed that students’ chemistry knowledge appeared to increase the most during the
pre-class online self-learning, rather than the collaborative group learning [21]. Specifi-
cally, the results showed that students in both flipped classrooms and traditional lecture
conditions experienced a similar increase in knowledge before and after the self-learning
video/in-person lecture. In both conditions, students’ improvement was not significant at
all between test scores before and after peer collaboration. The researchers concluded that
when considering a flipped classroom, the asynchronous instructors should focus on the
online self-learning portion. The findings of this study indicate the need to understand
the role of the self in online learning. Although the findings may be surprising to people
conducting flipped classroom research, the finding is in alignment with sociocognitive
perspectives, such as the self-determination theory.

According to self-determination theory, when being placed in a nurturing environ-
ment, humans can actively and positively approach goals and grow intellectually, psy-
chologically, and autonomously through effort, commitment and determination [22–25].
Specifically, self-determination theory proposed three basic human needs/motives that
enhance human growth, including autonomy, competence, and relatedness [22,24]. Au-
tonomy is being able to be an active agent for manage one’s life, competence is being able
to master skills and experience the sense of accomplishment through mastery, and relat-
edness is defined as being able to connect others [22,24]. However, it was also noted that
relatedness should not interfere with one’s autonomy [22,26]. In educational terms, self-
determination theory suggested that when being placed in an environment that provides
students with resources to learn, students are capable of motivating themselves to achieve
goals and to succeed, as long as students experience autonomy (sense of independence and
control), competence (sense of mastery), and relatedness (sense of belonging that does not
interfere with the sense of independence) in the learning process [27]. Research showed
that when college students were given uninteresting learning tasks, perceived autonomy
helped to improve students’ engagement in the task and their learning outcomes [28].
A qualitative study examining chemistry laboratory students also found that perceived
autonomy and competence were keys to designing an effective learning environment for
students [29].

Another similar theory is self-regulated learning. Self-regulated learning has been
incorporated in chemistry instruction for at least 25 years [30]. There are many different
models in self-regulated learning, but the general idea is that students are capable of adopt-
ing strategies and taking actions to motivate themselves to achieve goals [31]. Specifically,
most models (e.g., the most cited Cyclical self-regulatory phases model [32]) suggested
that an effective strategy is to have students engaged in a preparatory stage or forethought
phase. This phase involves asking students to set clear goals and develop self-motivation
beliefs before learning the materials and performing the learning tasks [31,32]. Then, in the
next stage, the performance phase, students engage in self-instruction and self-recording
(e.g., note-taking), and attention focusing to improve their learning outcomes [31–33].
Finally, students reflect and evaluate their own performance. The cycle then goes back to
the preparatory stage [31,32].

Many online and multimedia educational studies have employed self-determination
or self-regulation strategies to improve students’ learning. Specifically, self-regulation has
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been a key component in studies that develop chemistry online and multimedia course
designs [34,35]. For example, in developing a chemistry self-learning web tool, ChemEd
X Data, self-regulation was identified as a key outcome of the tool [36]. Similarly, in de-
veloping a stepped supporting tool for students in organic chemistry, researchers found
that students saw self-regulation components of the tools to be helpful in understanding
chemistry [37]. In another study testing students’ self-regulation in learning in a massive
open online course (MOOC) on the topic of data science, students’ self-regulation was sig-
nificantly associated with their perception towards the course and their learning outcome
in the course [38].

Meta-analyses showed that self-regulated learning significantly predicted better stu-
dent learning outcomes and performance [33]. Particularly, self-assessment and monitoring
strategies (e.g., planning, self-motivating, self-recording/note-taking) were found to be one
of the most central self-regulated learning strategies [33]. It was also suggested that this
kind of cognitive process helps students understand their way of thinking about chemical
knowledge [30]. Therefore, in this study, we selected a simple, brief self-regulation task
in which students were asked to motivate themselves and then take notes for themselves.
A similar procedure was used in a previous study to understand students’ mindsets [20].
These tasks were chosen because they allow a direct comparison between the social pres-
ence theoretical model and the self-determination/regulation models.

1.3. Research Question

This study aims at studying ways to enhance the effectiveness of online introductory
chemistry learning. Specifically, we compared the effect of two learning strategies derived
from the social presence theory and from self theories (i.e., self-determination and self-
regulated learning theory) on students’ online chemistry learning outcomes. Students were
presented with online learning materials of an introductory chemistry topic, stoichiometry.
A double-blind randomized experimental method was used to reduce experimenter bias
and students’ social desirability. Students in the social presence condition were asked to
write a letter to motivate a peer-learning partner and to take notes to help the student.
Students in the self-regulated learning condition (i.e., the condition designed based on
self-regulated learning and self-determination theories) participated in a comparable task,
that is, to write a letter to encourage themselves and to take notes for themselves to achieve
the learning goal. This study was conducted during the beginning of the COVID-19 course
transformation period, from an in-person classroom to an online classroom.

The study involved a 2 (conditions) × 2 (time: pre vs. post) design. The present study
tested an exploratory research question, “do students in the social presence condition have
a better or worse quiz score than students in the self-regulated learning condition”? It was
expected that through understanding the research question, specific strategies developed
using the two theoretical frameworks could be tested in the context of an introductory,
online chemistry learning environment.

2. Materials and Methods
2.1. Sample and Procedure

The study procedure was approved by the Institutional Review Board (IRB) of the
authors’ affiliation under the approval code SP20-109 PSYC. College students were re-
cruited from a participant pool in which students could voluntarily participate in different
research studies in return for course credits. Upon signing up for the study, students were
given a link to participate in the study. The study was hosted on Qualtrics. Students
were presented with a consent form and were asked to indicate whether they agreed to
participate. Students were told that the study aims to understand their online learning.
Students had no knowledge of the experimental conditions of the study. To make sure the
learning experience simulated an actual class learning experience, students were told that
if they got all answers correct, they would get one additional participation credit (generally
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translating to 1% of their course grade). If students passed the test with 50% correct, they
would get half participation credit (i.e., translating to 0.5% of their course grade).

After accepting the consent form, all students were given a quiz to test their stoichiom-
etry knowledge (i.e., pre-test). After completing the pre-test and some survey questions,
students were randomly assigned to one of the two conditions. The randomization was
performed by Qualtrics randomizer. In both conditions, students engaged in a simple
experimental manipulation task before watching the video lecture online.

Specifically, in the social presence condition, students were told that they were selected
as a peer mentor for another student learning the material. They were then asked to write
a letter to encourage the student. This methodology was previously used in a mindset
study in educational contexts [20] and in a chemistry educational study [19]. Subsequently,
the students were told to type notes to the student based on their understanding of the
learning materials (i.e., the video lecture). They were given space to type notes while
watching the video lecture. To encourage students’ helping obligatory [15], students were
deliberately told that “your notes will help the student significantly in getting their answers
correct. The better notes you take, the more the student will benefit from it”.

In the self-regulated learning condition, students were presented with the exact same
materials, except that the letter and the notes they wrote were directed inward rather
than directed outward to their peers. Specifically, students were told to write a letter to
encourage themselves, and to take notes for themselves. To ensure that the meta-cognition
on their self-regulation and self-determination was activated, they were told that “your
notes will help you significantly in getting your answers correct. The better notes you take,
the more you will benefit from it”.

After the experimental manipulation, all students took another version of the quiz
on stoichiometry (post-test). The quiz questions for pre- and post-test were verified to be
of a similar level (see materials design section below). Finally, students were directed to
answer some demographic questions (e.g., age, gender, year in college), and were debriefed.
Table 1 shows a summary of the procedure of the study.

Table 1. Experimental procedures and approximate time taken to complete the tasks.

Study Phase Content Approx. Time

Pre-test Pre-test Stoichiometry Quiz 10 min

Experimental manipulation Random assignment to conditions
and video lecture 25 min

Post-test Post-test Stoichiometry Quiz 15 min

Before the execution of the study, the sample size was calculated a priori using
G*Power 3.1.9.5 [39] using the criteria of small effect size (0.25), alpha value of 0.05,
and power of 0.95, resulting in the desired sample size of at least 76. A priori calcu-
lation of the sample is crucial to avoid under-power studies. To account for attrition, we
collected more samples than the minimum sample requirement. A total of 114 participants
consented to participate. Among these participants, 100 of them completed the study.

In the final sample of 100 participants, most of them were freshmen (63%), followed by
sophomores (13%), Junior (11%), and then seniors and above (13%). Average age was 19.91
(SD = 2.93). A little over half of the participants identified themselves as female (59%),
with the rest identifying themselves as male (41%). Nearly half of the participants were
assigned to the social presence condition (46%), with the rest of the students randomly
assigned to the self-regulated learning condition (54%).

Students in the participant pool enrolled in different majors (science, liberal arts,
engineering, nursing, and health, etc.). However, many of them are required to take
introductory chemistry because of the college requirements. Most students have not taken
any college-level chemistry courses (59%) or have taken only one college-level chemistry
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course (29%). The student composition is similar to a normal introductory chemistry class
taught at the same institution.

2.2. Materials Design

Chemistry learning materials and quiz questions were developed by the second author
who has experiences teaching introductory chemistry and the fourth author, a research
assistant. A screenshot of the micro-lecture is shown in Figure 1. In the video lecture, key
concepts and examples of balancing equations were introduced. The video lasted around
13 min [40]. This kind of micro-lecture was suggested to be an effective tool for students to
learn chemistry online [41]. Chunking information into micro-lectures was also suggested
to be an effective way to teach students stoichiometry and to prevent students’ cognitive
overload [42].

Figure 1. A screenshot of the micro-lecture on balancing equations.

To test students’ understanding of stoichiometry, quiz questions were developed
based on the difficulty levels of the questions (i.e., easy, medium, difficult). In both pre- and
post-tests, students were given three easy questions, three medium questions, and three
difficult questions. The questions sorted by difficulty level are available for download in
the Supporting Information. A sample of the quiz questions was shown in Figure 2.

Figure 2. A screenshot of the quiz question.
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For the exploratory purpose and to understand the students’ profile of our sample,
in addition to the quiz questions, we also surveyed students’ interests in learning chemistry
and anxiety towards learning chemistry, both before and after the micro-lecture. Interests
in learning chemistry were measured using two items from the Modified Attitudes toward
Science Inventory (mASI) [43], including “Chemistry is something which I enjoy very
much” and “Chemistry is one of my favorite subjects” and one self-constructed item on
career interest, “I want to pursue a career that involves chemistry/science”. Cronbach’s
alpha for the interests in learning chemistry measurement was 0.88 (pre-test) and 0.89 (post-
test), indicating high reliability of the measure. For anxiety towards learning chemistry,
students were asked to report their level of anxiety in taking a chemistry course and
learning chemistry. Nine items were adapted from the Abbreviated Mathematics Anxiety
Rating Scales (AMAS) [44]. Sample items were “thinking about an upcoming chemistry
test one day before”, “watching a teacher work a chemistry equation on the blackboard”,
and “taking an examination in a chemistry course”. Cronbach’s alpha for the anxiety
towards learning chemistry measurement was 0.90 (pre-test) and 0.91 (post-test), indicating
high reliability of the measure. All items were rated on a 6-point Likert scale from 1
(strongly disagree) to 6 (strongly agree).

Students were asked to indicate, out of a 6-point Likert scale, whether they would
rate the video lecture as clear, easy, concise, helpful, interesting, or informative. A mean
score for the video ratings was computed by averaging students’ ratings across these six
items. Cronbach’s alpha for the video rating scale was 0.93,, showing the high reliability of
the measure.

2.3. Data Analysis Plan

This study employed a 2 (between-subject: conditions) × 2 (within-subject: time/pre-
and post-test) mixed design. To analyze the data, first, descriptive statistics, including
students’ average quiz scores across conditions and time, students’ interests in chemistry,
anxiety towards learning chemistry, and average ratings of the video lecture were computed
and reported.

Next, to test the main research question, whether students in the social presence con-
dition have a better or worse quiz score improvement than students in the self-regulated
learning condition, linear mixed modeling was used. The commonly used repeated mea-
sure ANOVA was not chosen in this case because it has been found to have limitations,
such as the easy violation of sampling distribution [45] and inadequacy to detect test
bias [46]. Instead, mixed modeling is recommended in comparing sample means across
different groups [47]. Another advantage of using a generalized linear mixed model is that
it accounts for the random variation in each participant by including a random intercept for
each participant in the data (instead of assuming equal slopes in all participants). The effect
of the experimental conditions on the students’ quiz score improvement was calculated
using the following equation:

y = β1x1 + β2x2 + β3x1x2 + b1z1 + ε

where y is the learning effect (i.e. quiz scores improvement), β1 and x1 are the fixed effect
coefficient and regressor of conditions, β2 and x2 are the fixed effect coefficient and regressor
of time (pre vs. post), β3 and x1x2 are the coefficient and regressor of the interaction of
conditions and time, and b1 and z1 are the random-effect coefficient and regressor for
individual participants and ε the error term. The analysis was performed on R3.5.1 [48]
using the package lme4 [49]. An alpha of 0.05 was used as a cutoff value for statistical
significance. A significant interaction effect (β3x1x2, condition × time) would indicate
that students across the two conditions were different in their quiz score improvement.
A post-hoc sensitivity analysis using linear mixed model was conducted using the package
emmeans to unpack the significant mean differences across groups (social presence vs.
self-regulated learning) and across time (pre vs. post).
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3. Results
3.1. Descriptive Statistics

For exploratory purposes, and to understand our sampled students’ profile, descrip-
tive statistics of students’ interests and anxiety in chemistry were analyzed. Specifically,
students’ interests in learning chemistry were low, both before and after the experiment
(Mpre = 1.86, SDpre = 1.09; Mpost = 1.85, SDpost = 1.11). There were no significant
differences between students’ interests in learning chemistry before and after the exper-
iment, or between the two experimental conditions. Students’ anxiety towards learning
chemistry was moderate before the experiment (Mpre = 3.61, SDpre = 1.56; Mpost = 2.89,
SDpost = 0.89). Although the mean of students’ anxiety towards learning chemistry was
much lower in the post-test, no significant difference was found before and after the experi-
ment, or between the two experimental conditions. However, this was expected, because it
is unlikely that students’ interests and anxiety in learning chemistry can be changed by
merely attending a 13-min micro-lecture.

Table 2 shows the means and standard deviations of students’ quiz scores (out of
9 points possible) by conditions and time. In general, students performed poorly in the
pre-test in both conditions, with an average correct percentage of less than 40%. Sepa-
rate paired-sample t-tests were used to test students’ improvement before and after the
experiment. As shown in Table 2, our findings showed that both conditions were effective
in improving students’ stoichiometry quiz scores. Specifically, students showed signifi-
cant improvement in the overall sample, t(99) = 9.79, p < 0.001, and in both the social
presence condition, t(53) = 8.31, p < 0.001, and in the self-regulated learning condition,
t(45) = 5.75, p < 0.001. On average, students rated the micro-lecture positively (M = 4.56
(out of 6 points), SD = 1.23).

Table 2. Means and Standard Deviations of Students’ Stoichiometry Quiz Scores by Conditions
and Time.

Pre-Test
M (SD)

Post-Test
M (SD) t a d f p

Social Presence Condition 3.41 (3.11) 5.57 (3.27) 9.79 99 <0.001
Self-Regulated Learning Condition 3.04 (2.68) 6.83 (2.60) 8.31 53 <0.001
Overall Sample 3.21 (2.87) 6.25 (2.98) 5.75 45 <0.001

a Pre-test and post-test mean difference was tested using separate paired-sample t-test.

3.2. Testing Main Research Question

Next, to answer the main research question, that is, whether students in the so-
cial presence condition have a better or worse quiz score improvement than have stu-
dents in the self-regulated learning condition, a linear mixed model analysis was con-
ducted. Results showed that the main effect of condition was not significant, β1 = 0.38,
SEβ1 = 0.58, tβ1 = 0.65, 95% CI [−0.76, 1.51], but the main effect of time was significant,
β2 = 3.76, SEβ2 = 0.41, tβ2 = 9.27, 95% CI [2.99, 4.60], indicating that overall, participants’
post-test scores were significantly higher than pre-test scores. The interaction term of
condition × time was found to be significant, β3 = −1.64, SEβ3 = 0.60, tβ3 = −2.72,
95% CI [−2.83,−0.46]. A post-hoc sensitivity analysis was conducted to unfold the pattern
of interaction. Results showed that, while students in two conditions were not different in
pre-test (b = −0.38, SE = 0.58, t = −0.65, p = 0.520), students in self-regulated learning
condition significantly improved more than did students in the social presence condition
(b = 1.27, SE = 0.58, t = 2.17, p = 0.031). In other words, self-regulation strategy appeared
to be more effective than social presence strategy in our current study. Figure 3 shows
the increase of students’ quiz scores across conditions and time. As shown in Figure 3,
the slope (indicating improvement across time) was steeper in the self-regulated learning
condition than in the social presence condition.
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Figure 3. Increase of students’ quiz scores across conditions and time.

4. Discussion
4.1. Implications for Chemistry Learning

In this study, we successfully designed two experimental conditions using two
sets of sociocognitive theories, social presence theory and self-oriented theories (self-
determination and self-regulated learning theory). We then tested the effect of these two
learning strategies on students’ online introductory chemistry learning outcomes, using
stoichiometry as the subject of the learning experiment. A double-blind 2 (between-subject:
conditions) × 2 (within-subject: time) randomized experimental design was employed,
a linear mixed modeling analytic strategy was employed to test the research question:
Do students in the social presence condition have a better or worse quiz score than have
students in the self-regulation condition?

Our findings showed that both conditions resulted in significant improvements in
students’ quiz scores after the introduction of the learning strategies. Specifically, when
students engaged in helping other students and experienced the virtual presence of another
peer in the learning process (i.e., social presence condition) and when students engaged in
self-determination and regulation (i.e., engaging in self-recording/note-taking, and self-
motivation and goal-setting), their stoichiometry scores significantly improved under both
conditions. However, our linear mixed modeling results showed that between the two
strategies, self-determination/self-regulation strategy appeared to be more effective in
increasing students’ learning outcomes in an online introductory chemistry classroom. Our
findings are consistent with another randomized experimental study in chemistry which
showed that students’ learning occurred mostly in the self-learning/self-regulation phase of
a flipped classroom, rather than during the social presence or peer interaction period [21].
Specifically, the researchers in that study only found a significant increase in organic
chemistry knowledge after students engaged in self-learning, and they found no significant
increase in organic chemistry knowledge after students learned with peers. Although their
study differed from ours in the study design, their findings were in alignment with our
study, which showed that in chemistry learning, the role of self might be much more
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important than the role of connecting with others. These findings do not undermine
the importance of research findings of peer-learning; rather, these suggest that chemical
educational research should not overemphasize the role of peer and neglect the role of self
in learning.

The current study has several contributions. Our experimental conditions were
carefully crafted so that the two experimental groups were not different except for the
independent variable manipulated. This design had high internal validity and significantly
reduced confounding in the experimental design. Classroom studies are helpful in under-
standing students in the context of the class and the instructors; however, classroom studies
are often conducted by instructors who have knowledge of the experimental hypotheses
(i.e., potential experimental bias due to non-blinded study). The variations across different
classes, years, and cohorts could also introduce confounding and extraneous variables to
the study design. Therefore, conducting a double-blind randomized experimental study
like our current study could greatly complement existing classroom studies in chemical
education. Our study also contributed to the understanding of online learning specific to
chemistry contexts. Understanding online learning in chemistry is crucial in sustaining
students’ quality of learning, especially given the recent increase in distance learning or re-
mote teaching. As mentioned earlier, the current study was conducted during COVID-19’s
transition from the traditional in-person classroom to online learning. Although it is not
the goal of this study to understand teaching strategies specifically relating to COVID-19,
this study successfully showed that in an online environment where students may get dis-
tracted and lose focus and motivation, engaging students meta-cognitively to consider their
responsibilities and role in self-planning, self-recording, and self-determination, and their
ability to successfully help to increase students’ learning outcome.

It should also be noted that the students who we tested in this sample were generally
uninterested in chemistry (rated interests in chemistry as an average of 1.85 out of a
6-point scale) and moderately anxious about learning chemistry in college (3.61 out of
a 6-point scale). Therefore, both strategies introduced in this study, and particularly
the self-regulation strategy appeared to be effective in helping students who may find
chemistry to be uninteresting or difficult. This is very important in introductory chemistry,
especially because introductory chemistry is often a required course of students from not
only chemistry but also other science, engineering, and health science students. Students’
decision to major in chemistry can be greatly influenced by their experience in introductory
chemistry. Therefore, the strategies and the theoretical framework that we introduced in
this study could potentially benefit the success and retention of students.

4.2. Limitation and Future Directions

This study is not without limitations. First, this study is an experimental study
conducted in a virtual setting that models after chemistry learning experiences. It is not an
actual chemistry classroom and involves only learning a subtopic in stoichiometry through
a micro-lecture. However, conducting empirical studies in a well-controlled experimental
setting is crucial in eliminating confounding and increasing internal validity. Future studies
may complement the current study by conducting it in an actual chemistry class over a
period of a semester. Second, this study only involves two strategies, each developed
from one of the theoretical frameworks. Therefore, based on these experimental findings,
future empirical studies may expand to examine the effectiveness of specific self-regulation
strategies in chemistry online course design, such as incorporating self-assessment and self-
evaluation [33] elements, encouraging goal-setting [38], and promoting self-planning [50].

In addition to research studies, with the rising popularity and the need of developing
online open educational resources (OER), future chemistry OER can be designed with these
self-determination and self-regulation strategies in mind. For example, these OER texts or
web tools may include a feedback system in which students can assess their progress and
get feedback on what they need to improve. An OER tool may be created to help students
self-manage their own progress on learning essential concepts in chemistry. Such a tool
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may include a checklist feature for students to monitor their learning progress. In addition,
to enhance self-instruction and self-recording, a tool that allows students to easily take
notes and organize notes may help students increase in chemistry learning outcomes.

5. Conclusions

In conclusion, guided by two socio-cognitive theoretical frameworks, our random-
ized experimental study revealed that self-oriented learning might be more important
than other-oriented learning in the context of an online chemistry learning environment.
Although our findings do not infer that peers are not important in students’ chemistry learn-
ing, our findings emphasize the importance of understanding ways to increase students’
self-determined attitude and self-regulated behaviors in chemistry learning. The recent
COVID-19 pandemic has caused a global need to move chemistry education to an online
environment. Our study helps to shed light upon components to be considered when
designing an online chemistry course, especially an introductory course that often in-
cludes beginners who may be taking the course as a requirement and may be uninterested
or unmotivated.
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