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Summer learning loss (SLL) is a familiar and much-studied phenomenon, yet
new concerns that measurement artifacts may have distorted canonical SLL
findings create a need to revisit basic research on SLL. Though race/ethnicity
and socioeconomic status only account for about 4% of the variance in SLL,
nearly all prior work focuses on these factors. We zoom out to the full spread
of differential SLL and its contribution to students’ positions in the eighth-
grade achievement distribution. Using a large, longitudinal NWEA data set,
we document dramatic variability in SLL. While some students actually main-
tain their school-year learning rate, others lose nearly all their school-year
progress. Moreover, decrements are not randomly distributed—52% of stu-
dents lose ground in all 5 consecutive years (English language arts).
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Children experience vastly different home environments prior to formal
schooling (Gilkerson & Richards, 2009; Kaushal et al., 2011; Kornrich

& Furstenberg, 2013) and thus arrive at kindergarten with a wide range of
starting skills (Lee & Burkam, 2002; Magnuson et al., 2004). Yet once they
begin school, children continue to spend a significant portion of their
school-age years outside the school setting. That out-of-school time is
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concentrated in the summer months—a time when schools play little to no
direct role in children’s lives. Instead, children return to the full-time care of
their families, with vastly different options and preferences for how children
spend this time (Gershenson, 2013). Student achievement disparities1 may
grow dramatically during the summer, when child experiences appear the
most diverse.

We use a novel data set with more than 200 million test scores for stu-
dents across the United States to explore whether the ‘‘fanning out’’ of
achievement from Grades 1 to 8 occurs while students are in school or dur-
ing the intervening summers. The field is generally aware of the phenome-
non called summer learning loss (SLL)—that student learning slows during
the summer. Less apparent, however, is how little consensus actually exists
on basic questions about SLL. Moreover, many of the canonical findings on
SLL have recently been called into question based on measurement concerns
that apply to data used in most prior SLL research (von Hippel & Hamrock,
2019).

At a time when even fundamental questions in the SLL literature need to
be revisited, our analyses also contribute a unique focus on the total vari-
ability in SLL—a surprisingly understudied phenomenon. Nearly all prior
SLL work focuses on how summers contribute to race/ethnic or socioeco-
nomic status (SES) gaps.2 However, these factors together only account for
about 4% of the variance in summer learning rates (von Hippel et al.,
2018). These gaps deserve our attention,3 yet a sole focus on these gaps
misses important big-picture questions about the SLL landscape. Herein,
we zoom out to explore the full spread of SLL experiences and examine
how differential SLL contributes to where students end up in the achieve-
ment distribution at the end of eighth grade.

Even before concerns arose about possible measurement artifacts in SLL,
surprisingly few aspects of SLL have been well established. For instance, do
students, on average, actually lose ground during the summer or just exhibit
no gain (i.e., flat)? What proportion of a student’s school-year gain tends to
be lost in the summer that immediately follows? Is the magnitude of SLL sim-
ilar across students, or do some students exhibit gains while others actually
lose ground? Does this vary by grade level? Do summer losses accrue to the
same students year after year? We tackle these questions using a set of
achievement scores that are potentially less susceptible to the measurement
concerns raised by von Hippel and Hamrock (2019). These foundational
questions have theoretical implications for the production of outcome
inequality, as well as practical implications for where researchers and policy-
makers look for opportunities to disrupt this stratification process.

We focus on estimating the total variability in SLL across students, rela-
tive to school-year gains. Describing this total (or unconditional) variance is
important for at least four reasons. (1) Summers will only contribute to wid-
ening achievement disparities if students exhibit meaningful variation
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around the typical summer pattern. We find that SLL does vary dramatically
across students. (2) Because of this wide variability, mean SLL patterns—
those that most researchers, policymakers, and practitioners are familiar
with—do not characterize most students’ summer experiences very well.
(3) We find evidence that the same students are likely to lose ground from
summer to summer, suggesting a nonrandom accumulation of summer dec-
rements. (4) Prior work has found that even a full vector of student demo-
graphics, home characteristics, prior achievement, and a list of summer
activities accounts for only 13% of the variation in SLL (Burkam et al.,
2004).4 In other words, SLL appears to vary greatly, but race and class—
which have been the main focus of prior SLL research—are an important
but limited part of the story.

Contribution of the Current Study

Data provided by the NWEA allow us to estimate means and variances in
SLL across eight grade levels, using a data set with more than 200 million test
scores for nearly 18 million students in 7,500 districts across all 50 states in
a very recent time period (2008 through 2016). NWEA’s Measures of
Academic Progress (MAP) scores are item response theory (IRT) based
and computer adaptive in all grades, and cover a broader range of content
than scores used in prior SLL research. The use of MAP scores, in and of
itself, represents a timely contribution to the field of SLL because, as von
Hippel and Hamrock (2019) have recently shown, newer data sources and
scaling practices can dampen and sometimes even reverse some of the
long-standing inferences about SLL gaps. They also argue that the above fea-
tures of NWEA’s test scores can make achievement gain inferences less sus-
ceptible to measurement artifacts. Their work has raised troubling questions
about the robustness of what we thought we knew about SLL. The current
study is among a new wave of SLL research to revisit our foundational
knowledge about SLL, and our findings reaffirm the existence and impor-
tance of this phenomenon.

We use this powerful data set in a hierarchical student growth–modeling
framework to characterize the contribution of SLL to end-of-school achieve-
ment disparities. Specifically, we address the following four questions:

1. On average, how do learning gains during the school year compare with gains/
losses during the summer across grade levels?

2. Of more relevance to the current investigation, how much do students vary in
terms of how much they gain or lose?

3. Do the same students tend to exhibit SLL year after year, or are these gains/los-
ses randomly distributed?

4. How large is the role of summer in producing end-of-school outcome
disparities?

Role of Summers in Understanding Achievement Disparities
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With respect to the questions posed above, we do find that some stu-
dents maintain their school-year learning rate throughout the summer, while
others can lose almost as much ground as they had gained in the preceding
school year. We show that even if all the inequality in school-year learning
rates could be entirely eliminated, students would still end up with very dif-
ferent achievement levels due to SLL alone. Our findings also suggest that
negative summer decrements tend to accumulate for the same students
over time: We find that more than twice as many students exhibit 5 years
of consecutive summer losses (as opposed to no change or gains) than
one would expect if summer losses were independently distributed across
students and grades. Furthermore, these consecutive losses add up to a size-
able impact on where students end up in the achievement distribution: In
a 5-year period, the average student in this group ultimately loses nearly
40% of their total school-year gains during the intervening summers.

In what follows, we first situate the contributions of the current study
within existing SLL literature. Next, we introduce this unique data set and
show how it compares with the broader U.S. public school population.
We also describe a significant primary data collection activity undertaken
to address a methodological concern in SLL research about the dates on
which tests are taken (more on this below). In the Methods section, we pres-
ent our multilevel model and key parameters. The Results section is orga-
nized by the four research questions previously described. The Conclusion
provides a reflection on our results relative to prior SLL findings, the study
limitations, and implications for future research.

Evidence on SLL

There are logistical challenges to studying SLL: The data provided by the
annual end-of-school-year statewide testing systems, which are most often
used by researchers, lack the fall data point needed to separate learning
gains between the school year and the summer. Opportunities to investigate
SLL have necessarily been limited to idiosyncratic samples (e.g., one city),
specific years, or particular grades (e.g., only after grade K/1). Table 1 pro-
vides an overview of the data used across 17 key SLL studies, including
whether each one focuses on seasonal patterns in White-Black achievement
gaps, SES gaps, and/or unconditional variance in achievement—the latter of
which is our focus and is relatively unique. Table 1 also highlights some
advantageous features of the current data set in terms of size, number of
grades included, and recency.

Much has been written about SLL (see, e.g., Gershenson, 2013, for a par-
ticularly thorough recent overview; Cooper et al., 1996, for a meta-analysis of
early studies). Today, there is a common understanding among policy-
makers, researchers, and practitioners that during the summer students
lose some of the knowledge and skills acquired during the school year.5
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The seminal SLL research comes from two key studies: Heyns’s (1978) study
of the summer after fifth grade for about 3,000 students in 42 Atlanta schools
from 1970 to 1972 and Entwisle and Alexander’s study of the summers after
Grades 1 to 4 for about 750 students in 20 Baltimore schools from 1982 to
1987 (Alexander et al., 2001, 2007; Entwisle & Alexander, 1992). These stud-
ies documented that, on average, students’ learning rates slow during the
summer. Heyns (1978) found that average fifth- and sixth-grade school-
year gains in Atlanta were positive (about 60% of the national norm for 1
year of achievement gains) while the summer after fifth-grade gains were
either flat or very modestly negative, depending on the cohort. Alexander
et al. (2001) used a multilevel, quadratic individual growth curve model to
document slower summer (vs. school-year) learning. The authors have con-
tinued to follow their Baltimore sample through adulthood and have found
that early differences in summer learning are predictive of later life outcomes
such as high school completion and college going (Alexander et al., 2007).
The findings from these studies became the definitive word on summer set-
back, raising awareness of the phenomenon and the role it plays in growing
educational inequality.6

More recently, researchers have used the Early Childhood Longitudinal
Study: Kindergarten (ECLS-K) 1998–1999 and 2010–2011 cohorts to study SLL
(Benson & Borman, 2010; Burkam et al., 2004; Downey et al., 2004; Downey
et al., 2008; Quinn, 2014; Quinn et al., 2016; Quinn & Le, 2018; von Hippel
et al., 2018; von Hippel & Hamrock, 2019). The advantage of the ECLS-K is
that the samples are nationally representative (which NWEA is not). This
constituted a major step forward for the SLL literature. The ECLS-K data
have a few limitations: While the current study includes summers in
Grades 1 to 8, ECLS-K only covers the summer after K or Grade 1, which lim-
its one’s view of how SLL accumulates as students move through the grades.
In addition, because of the sampling methods used for ECLS-K (e.g., on aver-
age, only 3.2 students per K school have SLL estimates7), clustered analyses
seeking to estimate the variability in SLL are not straightforward. The current
NWEA data are therefore a useful complement to the ECLS-K data, since the
weakness of each one is a strength of the other.

One of these ECLS-K studies—by von Hippel et al. (2018)—has a unique
analysis that is particularly relevant to the current study. These authors also
examine the unconditional variance in SLL at the student level (like the cur-
rent study) through the summer after Grade 1. Interestingly, they find that
the variation in achievement shrinks over that time. They also find that the
variation in achievement arises more in summers than in school years. The
current study extends these analyses through Grade 8, and we consider
the results from the two alongside one another.

Another recent study by von Hippel and Hamrock (2019), which com-
pares SLL racial and SES gap findings8 across three data sets, warrants
more detailed discussion. This article has raised some important questions
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about SLL since the authors show that measurement artifacts can lead to
quite different conclusions about how much these gaps grow over time.
For instance, when they use two different scalings9 of math achievement
scores available in ECLS-K 1998–1999, one indicates that student SES gaps
grow by 83% from Grades 1 through 8 while their preferred scaling suggests
that these gaps decrease by 27%. When von Hippel and Hamrock conduct
the same analysis using BSS achievement scores—which the authors posit
have several undesirable measurement properties—they find that SES gaps
appear to grow 369%. The question of whether SES gaps grow more in
the summer versus the school year, however, appears to be less sensitive
to variations in data sources and scalings: In most permutations, they con-
firm the finding from the original BSS data that SES gaps grow faster in
the summer versus the school year.

The von Hippel and Hamrock (2019) study is also particularly relevant
to our current analysis because the authors use a subsample from NWEA’s
Growth Research Database (GRD). The full NWEA data that we use may
not necessarily be comparable with the GRD subsample: The GRD is
much smaller (e.g., 25 school districts vs. 7,500) and has a shorter panel (2
vs. 8 years). For the current analysis, the key point from their study is the
authors’ argument that the features of the NWEA/GRD data (e.g., IRT scaling,
computer adaptive in all grades, broader content) make achievement gain
inferences less susceptible to measurement artifacts. Their exploration of
how measurement properties affect the study of SLL would bolster confi-
dence in our results.

Finally, though both of these studies use similar data, they focus on dif-
ferent questions: Whereas the current study describes the degree of total var-
iation in SLL, von Hippel and Hamrock (2019) focus on racial and SES gaps
(although due to data limitations one cannot look at student-level SES gaps
using the GRD data). As mentioned above, race and SES appear to play an
important but modest part in explaining variability in SLL.

We are aware of one other peer-reviewed study that uses a subsample of
NWEA data to explore SLL. Rambo-Hernandez and McCoach (2015) juxta-
pose the school-year and summer growth trajectories of initially high- and
average-achieving students.10 Their results suggest that high-achieving stu-
dents exhibit steadier growth throughout the panel while average-achieving
students actually grow faster during the school year but lose more during the
summer.

In sum, the extant research on SLL took an important leap forward in the
late 20th century, and it now seems to be experiencing a resurgence of inter-
est, particularly spurred by the availability of the ECLS-K data. This new
work improves on the methods used in prior work (e.g., by taking into
account test timing, considering measurement artifacts), updates the evi-
dence to a more recent period, and covers a nationally representative sample
(in Grades K and 1).
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The current study continues in this tradition, building off the various
methodological advances in this domain. First, NWEA’s MAP tests are
designed to be vertically scaled assessments of math and reading achieve-
ment, which facilitates an examination of student growth across grades
(Quinn, 2014; von Hippel & Hamrock, 2019). In addition, we undertook
a substantial primary data collection effort to recover more than 44,000
district-year calendar dates for the start and end of the school year, allowing
us to make crucial adjustments to SLL estimates on a large scale. We also
implement a set of multilevel models that we think connect more clearly
to the central research questions in this domain: The coefficients (‘‘fixed
effects’’ in the language of hierarchical linear modeling) correspond to
school-year gains and summer losses, while the variance components allow
us to characterize a plausible range of gains/losses one should expect across
students during those periods. These variance components connect directly
to our primary research question: The larger the variation in summer losses
across students, relative to the school-year gains, the more summers are the
time when end-of-school achievement disparities arise.

Table 1 compares key aspects of the current study with prior work. The
defining feature of the current study is our unique focus on documenting the
scope and seasonality of the total variation in achievement across U.S. stu-
dents. The current data set also provides data on more than 18 million stu-
dents across a wider range of grades than was possible in prior work. In
addition, the NWEA data set comes from the 2008 through 2016 postaccount-
ability era—a time in which it is at least conceivable that the dynamics of
access to quality schooling have changed.

Data and Sample

NWEA Data

The current study primarily uses data from the NWEA’s MAP assessment.
The data set contains math and reading scores based on a computer-adap-
tive test designed to serve as part of a formative, benchmarking data system,
used in about 32,000 schools located in 7,500 districts across all 50 states in
the United States. The MAP assessment is used as a supplementary tool to aid
schools in improving their instruction and meeting students’ needs, not as
a high-stakes test record. Because the MAP assessment is intended to mon-
itor students’ progress throughout the school year, it is administered in both
the fall and the spring.11

NWEA’s MAP test is designed so that its scores can be expressed on a ver-
tical scale (which the NWEA calls the RIT [Rasch unit] scale), with the intent
that the scale can be used to support equal-interval interpretations. In the-
ory, the vertical scale allows comparisons of student learning across grades
and over time, while the equal-interval property of the scale ensures that
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a unit increase in a student’s score represents the same learning gain across
the entire distribution. It is worth noting that there are many different ways
of designing and calibrating a vertical scale, and there is little consensus with
regard to the best methods for evaluating the properties of the scale (Briggs,
2013; Briggs & Dadey, 2015; Briggs & Domingue, 2013; Briggs & Weeks,
2009). Therefore, our findings regarding changes across grades assume
that NWEA’s vertical scale is valid. However, much of the article concerns
itself with comparing learning gains in the same grade (i.e., a given school
year relative to the subsequent summer).

The full data set used for the current study comes from 7,685 U.S. school
districts that administered the MAP assessment during the 9 years between
2008 and 2016. Different districts administer MAP in different grades; the
NWEA full data set includes 203,234,153 test scores for 17,955,222 students
who took a test between Grades K and 11. The data set includes students’
race, gender, and math and reading MAP scores, and the number of items
attempted and correctly answered, duration of the test, grade of enrollment,
and date of test administration. The file does not include indicators for
whether the student is an English language learner, is eligible for the federal
free/reduced-price lunch (FRPL) program, or receives special education
services. For this reason, the current data set is not well suited to studying
achievement gaps along these dimensions.

Adjustments to NWEA RIT Scores

Students do not take MAP tests exactly on the first and last days of school
but rather typically 3 to 6 weeks before/after the school year starts/ends,
respectively. As a result, some of the time between the spring and fall admin-
istrations of the test—what one would mislabel as summer time—is actually
spent in school. While the NWEA data set does include the test date, crucially
it does not include school-year start or end dates.

We therefore conducted a large-scale data collection effort to find the
start and end dates in every district in a subset of 11 states with the greatest
use of MAP assessments. We found 23,223 school-year start dates and 20,807
school-year end dates—about 77% of the district-year calendar dates in those
11 states from 2008 to 2015. In later years, NWEA also began to collect
school-year start and end dates. Together, these efforts allowed us to collect
actual calendar start/end dates for 50.3% of the observed school years for the
entire NWEA data set. Based on these data, we also extrapolate likely dates
for other districts.12 Following the practices in prior SLL studies, we then use
these calendar data to make a linear projection of each student’s score on the
first and last days of the school year. For more information about this pro-
cess, including a description of our approach to collecting these data, the
percentage of actual dates recovered, our extrapolation process, our score
projection process, and similarity of study results when using observed
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scores instead of projected scores, see Appendix A in the online version of
the journal. For fall ELA (English language arts) scores, the correlation
between the observed and projected RIT scores is .996, with a root mean
square error of 2.3 points.13

Figure 1 illustrates how even small changes in estimated scores using
projection methods could have a large impact on estimating summer learn-
ing rates.14 Figure 1 presents two anonymous students as they progress
through school between January 2008 and January 2012. Student 1’s
observed scores—and their test dates—are shown in orange. In dashed
green, we project Student 1’s achievement scores linearly based on their
school-year learning rate. The green line connects the student’s projected
achievement on the last day of school to the projected achievement on
the first day of school after that summer. In some grades, the summer learn-
ing gains estimated in the absence of school calendar information would be
positive but would instead appear negative once the projections are used.
The results are similar for Student 2 (red solid = observed scores, blue

Figure 1. Illustration of observed and projected RIT test scores.

Note. Student 1: Observed scores in orange, projected scores in green. Student 2: Observed

scores in red, projected scores in blue.
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dashed = projected scores). The linear projection process—though it produ-
ces scores strongly correlated with the observed scores—could have a pro-
found impact on the estimated summer learning gain/loss. In this article, we
therefore use the projected RIT scores in place of the observed RIT scores.
However, in the online Appendix A, we reconduct the analyses using the
observed scores in place of the projected scores and replicate the figures
in this article that capture the main findings.

Analytic Sample

For the current analysis, we first restrict the NWEA sample to students
observed in Grades 1 through 8 (because these are the grades with the
most complete coverage) and to the 89% of those students who neither
repeat nor skip grades. In our preferred models, we also restrict the sample
to a ‘‘balanced panel’’—that is, the subset of students who possess test scores
for the full grade range being included in the model. For instance, if we
examine the test score patterns from first through fifth grade in a given
model, only students who have both fall and spring test scores in every
grade between first and fifth grade (i.e., a full vector of all 10 reading test
scores) will be included in the sample. While this is quite a restrictive sample
limitation, it ensures that our findings cannot be conflated with composi-
tional changes from one time point to the next. In Appendix B (in the online
version of the journal), we replicate our primary findings on a less restrictive
sample by running models with only three consecutive grades at a time (e.g.,
Grades K through 2, Grades 3 through 5, etc.). In these models, more stu-
dents are included because the vector of required test scores is much shorter.
These two samples have different advantages in terms of internal and exter-
nal validity. Ultimately, however, the results are relatively consistent (see
online Appendix B).

In Table 2, we compare the demographic descriptives for the students,
schools, and districts from four groups: (1) the population of U.S. public
schools (from the National Center for Education Statistics Common Core
of Data), (2) the entire population of NWEA test takers, (3) the subset of stu-
dents who meet the less restrictive inclusion criteria (for the online Appendix
B), and (4) the students who meet the more restrictive inclusion criteria for
our preferred results (see Table 2; for simplicity, we conduct this comparison
in the 2011–2012 school year). First, recall that that a student-level indicator
of FRPL status is not available in the NWEA data set. However, at the school
level, the mean percentage of students in a school who are FRPL eligible is
very similar across the four groups: 50% both nationally and in the NWEA
universe of schools, 48% in the larger online Appendix B sample, and 51%
in the more restrictive, primary analytic sample. The NWEA sample reflects
the U.S. public school population in many ways. For instance, it is similar in
terms of the percentage of students identified as Black, Asian, White, and
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Table 2
Descriptive Statistics in the Nation, in Full Dataset,  

in Analytic Sample in 2011-12

Statistic

All U.S.  
Public  
Schools

Full  
NWEA 
Dataset

App B:  
Analytic 
Sample

Primary:  
Analytic  
Sample

Student Level

% FRPL 45.5 N/A N/A N/A
% Black 15.8 11.8 10.5 12.4
% Hispanic 23.7 12.1 11.7 9.2
% Asian 4.7 3.9 4.1 3.4
% White 51.7 53.2 57.6 60.5
% Male 51.3 51.2 50.4 50.3
Total 2012 Student N 49,256,120 5,469,366 1,892,098 260,037 

School Level

Average Enrollment 532 486 432 391
Mean % FRPL 49.9 49.9 48.2 50.6
Mean % Black 14.9 14.9 12.0 17.2
Mean % Hispanic 20.7 16.7 15.7 12.7
Mean % Asian 3.5 3.2 3.5 3.0
Mean % White 56.1 60.0 63.5 60.4
% of Schools Urban 25.2 22.6 21.8 25.9
% of Schools Suburban 31.8 24.4 24.8 16.0
% of Schools Rural 43.0 32.4 37.4 46.9
Total 2012 School N 89,648 32,755 10,533 1,440 

District Level

Mean # of Schools in District 7 9.1 8.8 12.9
Mean % FRPL 45.3 36.1 34.5 34.4
Mean % Black 7.1 7.3 5.6 5.1
Mean % Hispanic 12.9 11.6 11.4 11.1
Mean % Asian 2.0 2.1 2.0 2.0
Mean % White 72.8 76.1 78.0 78.1
Mean % Male 51.5 51.5 51.3 51.2
Mean Stu:Tch Ratio 14.5 14.8 14.4 13.9
% of Districts Urban 5.7 4.1 3.1 5.3
% of Districts Suburban 29.0 19.5 18.7 17.5
% of DistrictsRural 62.7 43.9 50.6 51.1
Total 2012 District N 13,273 7,437 3,242 1,093

Note. Data for the U.S. public school population come from the National Center for 
Education Statistics Common Core of Data and have been restricted to public schools 
(https://nces.ed.gov/ccd/). FRPL status is not available at the student level in the NWEA 
data set. The online Appendix B sample includes more NWEA students because it does 
not require students to have as long a panel of available test scores to be included. The 
primary analytic sample used in the main narrative requires students to have up to 10 
available test scores in a row without missing data. NWEA = Northwest Evaluation 
Association; FRPL = free/reduced-price lunch; N/A = not applicable.
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male. In addition, the majority of U.S. public schools are in rural geographic
codes, followed by suburban and urban geographies, and this ordering also
holds in NWEA. Many of the district characteristics are also quite similar.

To consider limitations to generalizability, we point out that the largest
differences between the U.S. public school population and the NWEA uni-
verse are that (a) the NWEA sample has a lower percentage of Hispanic stu-
dents, (b) the average NWEA school has a somewhat smaller mean
enrollment, and (c) the NWEA districts tend to have more schools in
them, have a lower percentage of FRPL students, and are less likely to be
rural. These differences could be connected to the potential for unobserv-
able differences between the NWEA sample and the public school popula-
tion (e.g., orientation toward innovation and technology, resource
allocation strategies, district leadership). What is also of note, however, is
the sheer number of students in the NWEA universe in 2012 alone. NWEA
students constitute more than 11% of the entire K–12 public school popula-
tion in 2012. NWEA data are available in nearly 37% of U.S. public schools
and in more than half of all districts. This population is large enough to
be of interest in its own right. Nonetheless, the lack of national representa-
tiveness is a weakness of NWEA data, relative to ECLS-K data.

Finally, we examine how the analytic sample limitations affect the char-
acteristics of the NWEA students included in the models (compare the right
three columns of Table 215). The final column reflects the requirements for
inclusion in the balanced panel. Generally, the analytic restrictions do not
dramatically alter the descriptive profile of included NWEA students,
schools, or districts. However, the primary analytic sample has a higher per-
centage of White students than the NWEA full data set (60% vs. 53%), and the
schools tend to be smaller (mean enrollment of 391 vs. 486) and are less
likely to be suburban.

Methods

We use a multilevel model to estimate an individual learning trajectory
for each student as they progress through sequential school years and sum-
mers. We then look across students to estimate how much students tend to
gain, on average, during the school year versus what they typically lose dur-
ing the summer. A multilevel modeling approach also allows us to estimate
the variation in these gains/losses across students. Our multilevel model uses
a Bayesian approach to estimate the variances and covariances. This
approach produces more conservative estimates of student-level variances
and is therefore preferable to calculating the raw standard deviation (SD)
of summer gains, which reflects measurement error (Raudenbush & Bryk,
2002).16
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Longitudinal Multilevel Models

We use a two-level random effects (hierarchical) model, in which the
outcome of interest is a test score, Scoreti, for student i at grade-semester
t. In our preferred models, we separately model scores in first through fifth
grade (students included here must have all 10 math score outcomes) and
then in fifth through eighth grade17 (again, students must have all 6 test
scores in these grades). For brevity, we present the model (Equation 1) for
math scores from Grades 6 through 8. These six repeated observations at
Level 1 (L1) are nested within students at Level 2 (L2):

L1: Repeated observations of students (i) across grade-semesters (t)

Scoreti5 p0i1p1i schyr6tið Þ1p2i sumaf6tið Þ1 p3i schyr7tið Þ1p4i sumaf7tið Þ1
p5i schyr8tið Þ1p6i sumaf8tið Þ1eti where eti;Niid 0;sð Þ

L2: Students (i)

p0i5b00

p1i5b101r1i where r1i;Niid 0t1; 1

� �

..

.

p6i5b601r6i where r6i;Niid 0t6; 6

� �

ð1Þ

At L1, students’ growth trajectories are modeled with a set of dummy
variables—schyr6ti, sumaf6ti, schyr7ti, sumaf7ti, and so on—for each
grade-semester. Each is coded 1 if the observation occurred on or after the
ending time point for the period.18 This coding scheme is different from that
chosen in some prior work19 and may at first seem confusing, but it has the
advantage of giving the L1 coefficients intuitive meaning that now match
the variable names: They represent an individual student i’s grade-specific
school-year gain or grade-specific summer gain/loss. For example, p1i—the
coefficient on schyr6ti—captures student i’s Grade 6 school-year learning
gain. The coefficient on sumaf6ti captures student i’s summer after Grade 6
gain/loss. These coefficients are now the very learning gains/losses we are
interested in estimating for each student. We allow all of the L1 coefficients
(p1i through p6i) to vary randomly at the student level, and we assume that
the L2 errors (r1i through r6i) are normally distributed with a mean of 0 and
a constant variance given by t1;1 through t6;6. At L2, we use a fully unstruc-
tured covariance matrix, meaning that we estimate the variances of and corre-
lations among all period-specific gain/losses rather than constraining them to
be 0 or any other known value. These models estimate the parameters we
need to answer each of our research questions (RQs) in turn.20
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Results

RQ1: Average Students’ School-Year Versus Summer

Learning Gains/Losses Across Grades

We present findings both formally (i.e., point estimates in tables) and
visually to make takeaways as tangible as possible. For instance, to address
this first question, we present the beta coefficients (or ‘‘fixed effects’’ in the
language of hierarchical linear modeling) in Table 3 (ELA) and Table 4
(math) because, substantively, they capture mean gains/losses in each grade
and the following summers. These b coefficients are also graphed in Figure 2
as mean growth trajectories.

During School Years

To contextualize the findings about summer experiences, we first dis-
cuss mean school-year learning gains. Beginning from the left column of
Table 3 (ELA), we find that students’ school-year learning gains are largest
in the early grades and generally diminish over time. This is depicted in
Figure 2 with blue dashed lines. For instance, students gain on average
23.7 ELA MAP score points in first grade, 18.5 points in second grade, 13.3
points in third grade, and so on. By eighth grade, the average ELA learning
gain on NWEA’s RIT scale is just 4.4 points. We observe a very similar pattern
for math (left column of Table 4). In all grade levels, the average student
gains—as opposed to loses—ground during the school year. This suggests
that students accumulate knowledge over time during the school years as
measured by the NWEA MAP test.

During Summers

The patterns of mean summer learning gains/losses—the b coefficients
in Tables 3 and 4—are shown as solid red lines in Figure 2. Summer esti-
mates differ from school-year gains in two important ways. First, in both
ELA and math, the summer coefficients between first and eighth grade are
negative and tend to be smaller in magnitude. For instance, the average
ELA loss in the summer after first grade is 26.6 test score points, 23.9 in
the summer after second grade, and 23.4 in the summer after third grade,
and it falls to a low of 20.9 just before Grade 8. In math, the mean summer
learning estimates are also negative and of similar magnitude. An implication
here is that, depending on grade, the average student loses between 17%
and 28% of their school-year ELA gains (a 9-month period) during the fol-
lowing summer (a 3-month period). In math, the relative losses are a little
larger: The average student loses between 25% and 34% of each school-
year gain during the following summer.
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Figure 2. ELA and math: Estimated mean school-year gains and summer losses.

Note. ELA = English language arts; Gr = grade; S = summer; F = fall.
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The second way in which summer estimates differ from school-year esti-
mates is that the magnitude of mean SLL does not decrease over time to the
same degree as in school-year learning. Put differently, although mean
school-year gains in ELA fall from 23.7 to 4.4 across grades, mean summer
losses stay within a tighter range of 26.6 to 20.9.

Turning to the visual representation of these findings in Figure 2, we
consistently see a zigzag pattern at every grade level, though the intensity
of gains/losses flattens in the higher grades. These results generally confirm
the notion that summers can be characterized as a time when, on average,
students lose ground. Historically, SLL studies have not reached consensus
on the direction of mean summer learning rates; some find losses, while
others find stagnation, mere slowdown, or a mix of results across grades,
subjects, or data sets. The current study joins those that find mean losses,
but we will see that the 95% plausible value range (PVR) across students
always includes 0. However, we caution against overemphasizing mean
SLL since it will become clear that this mean does not well characterize
what students experience in the summer, because it masks the dramatic
underlying variability across students.

RQ2: Variation in Students’ School-Year Versus

Summer Learning Gains/Losses by Grade

It is important to recognize that the trends illustrated in Figure 2 only tell
us one part of the story: the seasonal learning patterns for the average stu-
dent. However, achievement disparities are driven by differential learning
patterns, and so we now focus on how students vary on both school-year
and summer learning gains/losses. We are particularly interested in deter-
mining whether student growth trajectories vary more during school years
or summers.

During School Years

We begin by examining the variability in school-year learning across stu-
dents. The first column of Table 3 (ELA) and Table 4 (math) contains the esti-
mated SDs of learning gains/losses across students in and after each grade
(i.e., the square root of the diagonal elements of the tau matrix). For exam-
ple, while we saw that the average student gains 23.7 ELA points in Grade 1,
students also typically differ from this mean by 9.7 points. To illustrate the
magnitude of this variability, we construct a 95% PVR for learning gains
across students (under the assumption of normality; Raudenbush & Bryk,
2002). These are reported in Table 3 (ELA) and Table 4 (math) beneath
the corresponding student SD. To continue with the example of Grade 1
ELA gains, we expect that 95% of students would have an average learning
gain between 4.4 and 42.7 ELA test score points. Therefore, in first grade,
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students at the high end of the PVR gain about 80% more than the average
student.

Estimates of the SD of school-year learning gains across students are rel-
atively consistent across school years and subjects—generally in the range of
6 to 10 test score points. In grades that exhibit smaller average school-year
gains, this variation implies larger discrepancies across students. For
instance, in eighth grade, when average growth is only 4.4 test score points
during the school year, we see a 95% PVR across students of 27.0 to 115.9
points. Here, students at the top of this PVR will experience nearly four times
larger gains than the average student. Students at the lowest end of the same
PVR, however, are actually losing ground during eighth grade.

To juxtapose mean gains/losses with the variation around them, we cal-
culate the ratio of the variation (SD) across students for each learning gain to
the mean learning gain. Larger ratios indicate greater variability relative to
the mean gain. In first-grade ELA, that ratio is about 0.41 (9.7/23.7), indicat-
ing that the SD is a little less than half the size of the mean gain. In ELA, that
ratio grows slowly across grades and reaches 1.3 in Grade 8 (i.e., the SD is
now about 30% larger than the mean). The ratio also increases across grades
in math but less dramatically—from 0.40 in first grade to 0.91 in eighth grade.
However, the fact that the relative variability in learning gains grows as stu-
dents progress through school may suggest that inequities in achievement
accumulate to some extent during school years, as students who are under-
prepared are left further and further behind with each successive grade.

During Summers

While the variability in school-year patterns are interesting in and of
themselves, our main interest lies in whether the summer gains/losses vary
more than the gains in the school-year periods. This has direct implications
for our understanding of when discrepancies in student achievement arise
across the course of students’ school-age years. Turning to the third columns
of Table 3 (ELA) and Table 4 (math), we see that the SD for a given summer
tends to be a little smaller than the SD in the preceding school year (with the
exception of first grade). For instance, in third-grade math, the SD is 6.6 in
the school year and 3.6 in the following summer. This is expected; the sum-
mer is about one third the length of the school year, and so gains will be
smaller. However, in a relative sense, the summer SDs are much larger
with respect to the means. In ELA, the SD-to-mean ratios described above
are much larger in summers, ranging from 1.4 to as high as 5.2. A ratio of
5.2 indicates that the SD is more than five times larger than the mean loss.
Recall that the largest such ratio during a school year was only 1.4. In
math too, we see that the summer ratios, which range from 0.8 to 2.3, are
larger than the school-year ratios (which only range from 0.40 to 0.91).
Keep in mind that this larger summer variation is arising in a comparatively
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shorter time (around 3 vs. 9 months). This highlights the fact that a great deal
of variability in gains/losses is packed into a relatively short time frame.

The PVRs are large for SLL. Take second-grade math as an example: SLL
in Grade 2 for math (fourth column of Table 4) ranges from 216.3 to 16.8.
While students at the top of that PVR are gaining during the summer another
32% of average growth from the preceding second-grade school year (6.8/
18.6), students at the bottom of the PVR will lose during the summer just
as much as the typical student gained in second grade. Looking across all
grades in ELA, we find that students at the top of the summer loss PVR
will gain during the summer from 45% to 154% of the mean growth in the
preceding grade (12% to 86% for math). However, students at the bottom
of the summer loss PVR will lose during the summer from 93% to 194% of
the mean growth in the preceding grade (73% to 136% for math). In sum,
some students experience accelerated learning during the summer relative
to the preceding school year, while others lose nearly all of their prior gains.

The takeaways for RQ2 are also illustrated visually in Figure 3 (ELA) and
Figure 4 (math), wherein we present box plots of individual students’ empir-
ical Bayes estimated learning gains and losses in each school year and sum-
mer. These concisely capture the essence of what is presented in the tables:
larger gains during school years that diminish across grades, smaller average
losses during summers that are more consistent in magnitude, but real vari-
ability around typical gains/losses. In the online Appendix B, we replicate
Figure 3 (ELA) and Figure 4 (math) using the results from models using
a shorter, three-grade increment. Though the data coverage is sparser before
first grade and after ninth grade, we do include those grades in the online
Appendix B.

In sum, students certainly appear to vary in terms of how much they
learn during the school year, but most students tend to exhibit some test
score gains while in school. However, the picture in the summer is quite dif-
ferent. While our results redocument the mean SLL phenomenon, this find-
ing obscures a more problematic pattern: For mostly unknown reasons,21

certain students can gain at a faster rate in the summer than the mean rate
in the preceding school year, while other students could lose most of
what is typically gained.

RQ3: Student-Level Correlation of Summer Gains/Losses Across Summers

Up to this point, we have highlighted important variability in summer
learning patterns across students. However, if that phenomenon occurs to
students randomly—that is, a student might gain in one summer and then
randomly lose in the next—then the contribution of SLL to end-of-school
achievement disparities would be limited. However, if the same students
tend to experience losses summer after summer, while others gain summer
after summer, it would lead to a more dramatic ‘‘fanning out’’ of student
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Figure 3. ELA: Boxplot of students’ empirical Bayes estimated gains/losses

across grades.

Note. ELA = English language arts; Gr = grade; Summ Aft. = summer after.
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Figure 4. Math: Boxplot of students’ empirical Bayes estimated gains/losses

across grades.

Note. Gr = grade; Summ Aft. = summer after.
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outcomes as they progress through school. We would be particularly con-
cerned if the students who exhibit the greatest summer losses also tend to
be from historically marginalized student populations—a question that has
been taken up in many prior SLL studies. However, since student demo-
graphics appear to only account for about 4% of the variance in summer
learning rates (von Hippel et al., 2018), we explore the systematicity of
SLL across grades beyond just the differences by race and class.

To explore this question empirically, we examine from our multilevel
models the estimated covariances of students’ summer losses across
grades.22 The upper panels of Table 5 (ELA) and Table 6 (math) present
these covariances (expressed as correlations). Positive correlations are the
most problematic: Summer losses accrue to the same students over time in
a way that would contribute to the widening of end-of-school student out-
comes. Correlations near 0 would suggest that gains/losses occur randomly.
In ELA, all the correlations are positive (between 0.12 and 0.65), and most
are substantively large. The corresponding correlations are also positive in
math, ranging between 0.10 and 0.65. This suggests that students who lose
ground in the summer tend to also lose ground in subsequent summers.
Likewise, students who make gains in one summer are also more likely to
make gains in other summers. While few other studies have presented sim-
ilar correlations across summers, von Hippel et al. (2018) also find a positive
(though weaker) relationship between learning rates in the summers after K
and Grade 1 for reading (10.06) in ECLS-K:2011, but interestingly, they find
that relationship is negative (20.21) in math.

In the lower panels of Table 5 (ELA) and Table 6 (math), we also present
the correlations of summer gains with school-year gains. Given that we have
observed a notable zigzag pattern in learning trajectories and that the majority
of students do exhibit learning gains while in school, we should anticipate that
these correlations will be negative, particularly in adjoining periods (e.g.,
when a student loses ground in the summer after Grade 4, they start Grade
5 in the fall from a lower point from which to grow). Indeed, this is what
we observe. For ELA, all but one23 of the 16 correlations presented in the
lower panel of Table 5 are negative, and correlations from adjoining periods
are the strongest. Of course, the more the time that separates the given sum-
mer (rows) and school year (columns), the weaker that negative relationship
becomes. For instance, school-year gains in Grade 1 exhibit a negative corre-
lation of 20.41 with summer gains/losses in the summer directly after Grade 1,
20.23 with the summer after Grade 2, 20.01 with the summer after Grade 3,
and 10.01 with the summer after Grade 4. The results for math (lower panel
of Table 6) follow a very similar pattern. These findings are also consistent
with those of von Hippel et al. (2018), who also report negative correlations
between summer and school-year learning rates across Grades K, 1, and 2 on
the order of 20.55 to 20.21 in both reading and math.24
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RQ4: The Role of Summers in Producing End-of-School Outcome Disparities

Taken together, these three findings—RQ1: slightly negative mean sum-
mer losses, RQ2: large variances in summer loss/gains, and RQ3: systematic
gain/loss patterns across summers—imply that end-of-school achievement
disparities arise at least partly during the summer. How large a role do sum-
mers play? To consider this question, we begin by presenting a thought
experiment designed to characterize the role of summers between Grades
1 and 8. We imagine a hypothetical scenario in which all students enter first
grade at the exact same achievement level and all students experience the
exact same (let’s say, the mean) learning gain in each grade while school
is in session. If there were no summer periods, all students in this scenario

Table 5

ELA: Student-Level Correlations of Estimated Summer Gains

With Both School-Year Gains and Summer Gains in Other Grades

Correlations (Summer, Summer Gains) Across Grades

Summer

After�!
Grade 1,

Sum.

Grade 2,

Sum.

Grade 3,

Sum.

Grade 4,

Sum.

Grade 5,

Sum.

Grade 6,

Sum.

Grade 7,

Sum.

Sum. after Grade 1 1.00

Sum. after Grade 2 0.65 1.00

Sum. after Grade 3 0.28 0.57 1.00

Sum. after Grade 4 0.20 0.25 0.56 1.00

Sum. after Grade 5 1.00

Sum. after Grade 6 0.54 1.00

Sum. after Grade 7 0.12 0.57 1.00

Correlations (Summer and School-Year Gains) Across Grades

School

Year�!
Grade 1,

SY

Grade 2,

SY

Grade 3,

SY

Grade 4,

SY

Grade 5,

SY

Grade 6,

SY

Grade 7,

SY

Sum. after Grade 1 20.41

Sum. after Grade 2 20.23 20.51

Sum. after Grade 3 20.01 20.17 20.63

Sum. after Grade 4 0.01 20.12 20.19 20.53

Sum. after Grade 5 20.61

Sum. after Grade 6 20.09 20.58

Sum. after Grade 7 20.07 20.08 20.66

Note. In this table, we present the relevant off-diagonal elements of the covariance matrix,
in the units of correlations. The model is run separately on early grades and later grades.
Because the panel is only 9 years long, very few (less than 1%) students have all the 19 test
scores from first through eighth grade. We therefore cannot estimate correlations across
these two models. ELA = English language arts; SY = school year; Sum. = summer.
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would end eighth grade with the same test score because no variation in
gains arises while in school. We now return to the results from our multilevel
model to characterize three plausible student experiences during the sum-
mers following each grade: the typical gain among students in the top, mid-
dle, and bottom thirds of a given summer’s gain/loss distribution.25 We now
illustrate these three levels of summer experiences in Figure 5 (ELA in top
panel, math in bottom panel) while assuming that school-year gains are
always equal (i.e., parallel slopes of dashed blue lines from fall to spring).

Figure 5 shows how the differences in summer experiences by them-
selves would lead to sizeable achievement over time. In ELA, the spread in
test scores at the end of eighth grade is from about 185 to 255 test score
points (and about 200–265 in math)—around 2.5 SDs of spring eighth-grade

Table 6

Math: Student-Level Correlations of Estimated Summer Gains

With Both School-Year Gains and Summer Gains in Other Grades

Correlations (Summer, Summer Gains) Across Grades

Summer

After�!
Grade 1,

Sum.

Grade 2,

Sum.

Grade 3,

Sum.

Grade 4,

Sum.

Grade 5,

Sum.

Grade 6,

Sum.

Grade 7,

Sum.

Sum. after Grade 1 1.00

Sum. after Grade 2 0.65 1.00

Sum. after Grade 3 0.15 0.43 1.00

Sum. after Grade 4 0.09 0.15 0.49 1.00

Sum. after Grade 5 1.00

Sum. after Grade 6 0.42 1.00

Sum. after Grade 7 0.10 0.53 1.00

Correlations (Summer and School-Year Gains) Across Grades

School

Year�!
Grade 1,

SY

Grade 2,

SY

Grade 3,

SY

Grade 4,

SY

Grade 5,

SY

Grade 6,

SY

Grade 7,

SY

Sum. after Grade 1 20.56

Sum. after Grade 2 20.38 20.57

Sum. after Grade 3 20.08 20.14 20.60

Sum. after Grade 4 20.06 20.13 20.10 20.40

Sum. after Grade 5 20.68

Sum. after Grade 6 20.08 20.59

Sum. after Grade 7 20.07 20.09 20.72

Note. In this table, we present the relevant off-diagonal elements of the covariance matrix,
in the units of correlations. The model is run separately on early grades and later grades.
Because the panel is only 9 years long, very few (less than 1%) students have all the 19 test
scores from first through eighth grade. We therefore cannot estimate correlations across
these two models. SY = school year; Sum. = summer.
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Figure 5. Math and ELA: Assume equal learning in school, three levels of summer

gains/losses.

Note. ELA = English language arts; SLL = summer learning loss; SY = school year; Gr = grade; S

= summer; F = fall.
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RIT scores. This thought experiment illustrates the idea that even in an ideal
world, where school inequities could be eliminated, achievement disparities
would arise simply because of the summer break. The ‘‘fanning out’’ of
achievement during these school-age years would need to be addressed in
large part with respect to summer experiences.

Conclusion

Reflections on Findings

In this article, we conduct a thorough exploration of the seasonality of
learning from a data set covering nearly 18 million students in 2008 through
2016 across all 50 states. We focus on characterizing the degree of variability
in students’ summer experiences and the role of summers in contributing to
end-of-school achievement disparities. We find that students, on average, do
indeed lose meaningful ground during the summer period in both math and
ELA.

We add to the existing research by estimating the total variance across
students in SLL. For instance, consider the SLL pattern after second grade,
in which the average school-year gain is 18.6 points in math. During the
summer that follows, the 95% PVR indicates that some students will lose as
much as 16.3 test score points in math during the summer, while other stu-
dents could gain up to 6.8 test score points (relative to a mean SLL of 4.8
points). Students do also exhibit significant variance in school-year learning;
however, the lower bounds of the 95% PVR during the school year tend to
be much closer to 0. This means that while some students learn more than
others during the school year, most students are moving in the same
direction—that is, making learning gains—while school is in session.

The same cannot be said for summers. During the summer, a little more
than half the students exhibit SLL, while the other half exhibit summer learn-
ing gains. It is clear that the summer period is a particularly variable time for
students. We find that some students can in fact maintain average school-
year learning rates during the summer in the absence of formal schooling.
Other students, however, will lose nearly as much as what is typically gained
in the preceding school-year.

This remarkable variability in summer learning appears to be an impor-
tant contributor to the widening achievement disparities during the school-
age years. However, most education research tends to overlook the summer
period by focusing on programs, policies, and practices designed to shape
schooling experiences. But summers deserve greater attention. In Figure 6,
we present the distribution, across students, in the percentage of their abso-
lute value fluctuations from first through fifth grade that occur during sum-
mers. One can think of this as the percentage of each student’s up/down
‘‘pathway’’ between their initial and end scores that arises during the
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summer. Far from having no role in outcome inequality, we see that, on
average, 19.4% of students’ ELA test score changes occur during the summer
(19.3% for math).26 However, for some students, summer fluctuations

Figure 6. English language arts (ELA) and math: Proportion of students’ test

score fluctuations occurring in summer.
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account for much more—even upward of 30%—of where they end up in the
achievement distribution.

Our findings also suggest that summer learning gains/losses can be quite
large and may accrue nonrandomly across students. If the likelihood of
experiencing a loss during the summer were independent across students
and grades, we would expect that only 24% of students would exhibit losses
in five consecutive summers.27 In contrast, we actually find that 52% exhibit
losses (in ELA) in all five consecutive years observed—more than double
what one would expect by chance. Furthermore, the average student in
this group ultimately loses 39% of their total school-year ELA gains during
the summer (results are similar for math). This suggests that negative sum-
mer decrements tend to accumulate for the same students over time and
that these consecutive losses add up to a sizeable impact on where students
end up in the achievement distribution.

Contextualizing Findings in the Larger Body of SLL Literature

Historically, SLL studies have not reached consensus on the direction
(1/2) of mean SLL. Some find mean SLL (e.g., Allinder et al., 1992;
Borman et al., 2005), summer learning stagnation (e.g., Benson &
Borman, 2010; Downey et al., 2008), summer learning slowdown (e.g.,
Alexander et al., 2001; Burkam et al., 2004; Quinn et al., 2016), or a mix
of the three (e.g., Downey et al., 2004; Heyns, 1978; von Hippel et al.,
2018). For instance, von Hippel et al. (2018) finds positive summer learning
rates in some grades, subjects, or ECLS-K cohorts but flat or negative rates in
others. The current study joins those that find mean summer losses. We
observe this in every summer between first grade and eighth grade in
both math and ELA.

How does the consistency we see across subjects align with not only
recent studies but also Cooper et al.’s (1996) meta-analysis, which found,
on average, more negative impacts of summer vacation in math-related sub-
jects than in reading-related subjects? Cooper et al. hypothesize that math
skills are more the domain of formal schooling while reading happens
both at home and in school. However, the authors also point out that SLL
skill patterns do not always fall along a math/ELA divide: Rather, the skills
they view as more ‘‘procedural’’ (e.g., spelling and math computation)
decline the most during the summer (although reading comprehension
also appears to decline during summers, which does not align with this the-
ory). Since we cannot disaggregate our results to more specific math and
reading skills, it is less clear whether our findings are in conflict with those
of Cooper et al. Moreover, while Cooper et al. found patterns of skill-specific
gains/losses, in more recent studies that document mean SLL, no clear pat-
tern by subject has emerged.28
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Is the magnitude of mean SLL similar across studies? As a reminder, the
current study covers different grade levels from those covered in the ECLS-K
studies; the only overlapping summer is the one after first grade (see Table 1
to review which studies cover which summer grades). This may be partly
responsible for any disparate findings. However, in this case (summer after
first grade), we think the results from NWEA and ECLS-K:11 are complemen-
tary. Take seasonality in ELA learning as an example: von Hippel et al.
(2018) document a modest but statistically significant mean SLL rate of
20.02 SDs per month. We find a mean SLL rate of around 22.2 points per
month, with a 95% PVR across students that includes 0 (for context, the K
fall SD is about 13 points). However, once these mean SLL rates are contex-
tualized with respect to the student-level SDs in SLL, the studies look even
more similar: Both show that the student SD is much larger—two to four
times larger—than the mean SLL.

Most prior SLL research has focused on SES or racial/ethnic gaps in SLL,
which is not the focus of the current study. As highlighted in Table 1, we are
aware of only one other study that examines seasonal patterns of uncondi-
tional variance in SLL.29 Our results support two primary claims. First, we
find that variation in achievement grows significantly from Grades 1 to 8.
Second, summer learning varies dramatically and relatively more so than
school-year learning.

With respect to the first claim, while we find evidence of widening
achievement disparities when we follow students from Grades 1 to 8, prior
research has not reached consensus on this matter. Claessens et al. (2009)
used the IRT-based scale score versions of achievement from ECLS-K:99
and document SDs that grow from Grade K to 8 by 141%.30 Test score scaling
appears to be crucial in this debate, however, because when von Hippel
et al. (2018) used improved, IRT-based theta achievement measures to
report grade-specific SDs of scores, they actually found that those SDs shrink
from Grade K to 2. Despite the fact that both the current study and von
Hippel et al. (2018) use vertically scaled scores, the former indicates that var-
iation grows, while the latter suggests that variation may shrink.

This debate about whether or not achievement disparities widen as stu-
dents move through school is long-standing. It may seem counterintuitive
that as students move through school, experiencing both different schools
and different summer vacations, their achievement would become more
homogeneous. But again, test score scaling will prove central to this ques-
tion. Vertically scaled scores are probably the appropriate theoretical
approach to measure growth over time, yet because the assumptions of ver-
tical scales are hard to verify, it is difficult to conclude that a given scoring
technique indeed yields the ‘‘right’’ scores. Vertically scaled scores, too,
can suffer from measurement artifacts (e.g., scale shrinkage or ceiling
effects). Camilli et al. (1993) capture the conundrum succinctly: ‘‘It cannot
be determined whether developmental scales should show expansion or
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contraction. The criteria for determining useful vertical scales constitute
a controversial topic of debate and research’’ (p. 387).

Though not directly related to widening unconditional variance across
grades, it is also useful to consider whether other researchers have found
that race/ethnicity or SES gaps widen as students move through school, since
demographic gaps could at least partly contribute to overall variation. Again,
prior evidence is mixed. For instance, Duncan and Magnuson (2011) show
increasing SES, Black-White, Hispanic-White, and gender achievement gaps
in math between first grade and fifth grade. In Reardon (2008), IRT-based theta
scores show that the Black-White gap increases from 20.32 in K to 20.41 in
Grade 5. Recent results based on ECLS-K:11 from von Hippel and Hamrock
(2019) and Quinn et al. (2016) both suggest that the Black-White gap may
grow in the early grades but—in contrast to prior studies that may suffer
from measurement artifacts—SES gaps may shrink between Grades K and 2.

With regard to our second claim that summers contribute more to
achievement disparities than school years, our results are consistent with
those of the one other study in this domain (von Hippel et al., 2018). In
both studies, there is meaningful student-level variation in both school-
year and summer learning. But, as in the current study, von Hippel et al.
(2018) find that the student-level SDs of learning rates are larger in summers.
They find this in both ECLS-K cohorts, in both subjects, and in the summer
after Grades K and 1. Though school years are generally three times longer
than summers and thus have more opportunity to contribute to widening
achievement disparities, summers clearly play a key role in where students
end up in the achievement distribution.

Finally, we can provide some limited reflections on the recent debate
about whether inferences concerning the growth and seasonality of SES or
race gaps have been distorted by measurement artifacts in earlier work. The
von Hippel and Hamrock (2019) article highlights the importance of scaling:
The same data set can yield opposing inferences when a different version
of the test scores is used. While we find the arguments made by von
Hippel and Hamrock regarding preferred measurement properties compel-
ling, we do not have the ability in the current data set to empirically explore
these issues since we do not have item-level data. Moreover, their study docu-
ments a different phenomenon—race and SES gaps—from the one we docu-
ment here. We should not necessarily expect that the patterns in overall
variability in SLL would move in tandem with patterns by demographics, since
demographics seem to explain only a little of the variation in SLL. Regardless
of whether or not this is an appropriate interpretation of von Hippel and
Hamrock’s findings, their study has shaken some people’s confidence in the
idea that SLL matters. However, as in von Hippel and Hamrock, we too use
vertically scaled test scores and still find clear evidence that SLL exists and con-
tributes substantially to where students end up in the achievement distribu-
tion. This suggests that SLL is very much worthy of continued research.
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Study Limitations

First and foremost, the NWEA data set does not include key variables to
explore SLL gaps (e.g., FRPL, language, special education status, links to
teachers). In addition, the current study rests on the assumption that
NWEA’s RIT scores are a valid measure of student math and reading in both
fall and spring periods and over time (i.e., vertical scaling). NWEA’s MAP
test is a formative assessment without stakes, and it is not entirely clear that
there are incentives in place for students and teachers to take it equally seri-
ously in the fall and the spring. Students tend to spend slightly less time on
their fall tests than on their spring tests. One would be concerned if this signals
that students do not put forth as much effort on their fall assessments, thus
making SLLs appear larger than they actually are. We believe that the differ-
ence in time spent is not large (about 6 additional seconds per item, on aver-
age, in the spring), and we find that controlling for time spent on tests affects
the results very little. In addition, most of the analyses herein do not rely on
making direct comparisons across distal grades, thus reducing the reliance
on vertical scaling properties for these particular inferences. That said, the
findings herein should be considered with these caveats in mind.

Implications

Our results show that summers contribute more to achievement dispar-
ities than school years. Our findings to this effect align with prior work (e.g.,
Downey et al., 2004; von Hippel et al., 2018), though the current study pro-
vides perhaps the most comprehensive empirical analyses to date, given its
large sample, extension beyond the early grades, and focus on overall
variation.

This finding has implications for outcome inequality, yet it can be
viewed through two different lenses. On one hand, it can be interpreted
for what it says about summers. These periods, it seems, are more relevant
for the expansion of outcome variation. Some will find themselves looking
to summers as a time for intervention and perhaps even questioning whether
long summer breaks should be standard practice.

On the other hand, this finding can be interpreted for what it says about
the school year—that is, how we understand the role of schools in the pro-
duction of outcome inequality. The summer can be thought of as a counter-
factual to schooling, giving us a window into how inequality would grow in
the absence of the school’s influence. SLL researchers have pointed out that
if learning rates vary less during the school year than during the summer,
schools may be countering some of the powerful forces that exacerbate
inequality when school is not in session.

Should schools be reframed, then, as ‘‘equalizers’’—ameliorating rather
than exacerbating outcome inequality? Certainly, this perspective is not
widely embraced in the education research community. It is still true that
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during the school year, some students gain much more than others. Perhaps,
then, it would be more precise to say that schools may not intensify inequal-
ity but also cannot fully counter it or even hold it constant. In a sense, this
question is a philosophical one that depends on what one thinks the pur-
pose of public schooling is.

We motivate the current study based on the lack of consensus across
prior SLL research, along with the recent questions about measurement arti-
facts in foundational studies. Our goal is to conduct basic research to clarify
our understanding of this important phenomenon. Since we focus more on
surfacing just how varied summer learning is and how little we understand
about it, making specific policy recommendations is premature. Below, we
offer our thoughts about potential directions for future applied research.

Since our results show that achievement disparities widen during school
years, we should continue to develop policies that change how students
experience schools, particularly on issues of access. Yet even in a hypothet-
ical scenario where students all learn the same amount during the school
year, the time spent out of school during summer break, by itself, gives
rise to much of the dramatic spread of achievement outcomes, on the order
of several SDs.

One natural question, then, is whether to extend the school year to
reduce summer atrophy and minimize opportunities for this divergence to
occur. However existing research on year-round school calendars does not
indicate that SLL is mitigated by these schedules (Graves, 2011; McMullen
& Rouse, 2012). It is possible that year-round calendars implemented to
address overcrowding (a common impetus) may have different impacts on
learning than year-round calendars implemented explicitly to reduce SLL,
but to our knowledge this hypothesis has not been tested.

Another policy lever might be to focus on programs that bridge the gap
between May and August, like summer school. The causal evaluation of
summer school is often fraught, given the nonrandom selection of who is
required to enroll and known issues around low attendance (especially in
the higher grades). Yet there is growing evidence that summer interventions
can help mitigate students’ SLL (Kim & Quinn, 2013; McCombs et al., 2012;
McCombs et al., 2015). For instance, seven New Mexico school districts ran-
domized early-grade children in low-income schools into an ambitious (and
presumably expensive) summer program called K–31, which essentially
amounted to a full-blown extension of the typical school year for much of
the summer period. Early results from the experimental study indicated
that the children assigned to K–31 exhibited stronger literacy outcomes
across four domains of the Woodcock Johnson achievement assessment
(Cann et al., 2015).

Our results also suggest that we should look beyond schooling solutions
to address out-of-school learning disparities. Researchers have pointed to dif-
ferential resources in terms of families’ economic capital, parental time
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availability, and parenting skill and expectations as potential drivers of out-
come inequality (see, e.g., Borman et al., 2005). Many of these resource differ-
ences are likely exacerbated by the summer break, when, for some families,
work schedules come in greater conflict with reduced child care. Many social
policies other than public education touch on these crucial resource inequal-
ities and thus could help reduce summer learning disparities.

Next Steps for SLL

We document the magnitude of a social problem, the role of summers in
the growth of achievement inequality. While we can conclude that this hap-
pens, and to what extent, the current data set is not well positioned for
understanding why summer learning patterns are so varied across students.
Though it is an important first step to know when inequality arises and how
unequal the learning patterns are, the obvious next question is ‘‘What
accounts for that variation?’’

In some sense, we have reached a precipice on SLL research. It seems
clear that summers play a key role in outcome inequality and that the range
of students’ summer learning experiences is sizeable. Prior research suggests
that this variability may fall partly along racial and socioeconomic lines
(Alexander et al., 2001; Benson & Borman, 2010; Borman et al., 2005;
Burkam et al., 2004; Downey et al., 2004; Gershenson, 2013; Heyns, 1978;
Quinn, 2014; Quinn et al., 2016; von Hippel et al., 2018). However, prior
research has also shown that demographic factors only account for a small
part of the story here. In an insightful SLL study by Burkam et al. (2004) using
ECLS-K:1999 data, the authors leverage the parent surveys of children’s
home and summer activities in conjunction with student gender, racial,
and socioeconomic demographics—that is, most of the first-order candidates
for explaining variability. However, they can explain only about 13% of the
variance in learning gains in the summer after K. New research is needed to
reconcile the fact that summer learning differs dramatically from child to
child, but to date we have only limited insight into what accounts for
most of that variation.
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1Throughout, we use the term ‘‘disparities’’ to refer to any large, potentially system-
atic variability across students. While ‘‘disparities’’ could refer to group mean differences
(e.g., by race/ethnicity or SES), we use ‘‘disparate/disparities’’ synonymously with spread
or variability across students. We reserve the term ‘‘gaps’’ only for group mean differences.

2Race and SES gaps have been the main focus of prior SLL research (Alexander et al.,
2001, 2007; Benson & Borman, 2010; Borman et al., 2005; Burkam et al., 2004; Downey
et al., 2004; Entwisle & Alexander, 1992, 1994; Heyns, 1978; Quinn, 2014; Quinn et al.,
2016; von Hippel et al., 2018; von Hippel & Hamrock, 2019).

3Given the importance of assessing the role of SLL on the development of racial/
ethnic and SES achievement gaps, some of their methodological nuances (Quinn,
2014), and the large amount of variability that remains unexplained by these demograph-
ics, exploring race and/or SES gaps in SLL deserves its own separate and full investigation.
The goal of the current article is to update the existing knowledge base about overall first-
through eighth-grade school-year learning gains and subsequent summer loss patterns,
document the degree of variability in those patterns, and characterize the extent to which
end-of-school achievement disparities arise during summer.

4This and many SLL studies specifically examine the summer after kindergarten.
5Strictly speaking, most studies actually show that, on average, students do not lose

ground during summer but instead either gain less in summer than in the school year
(learning rate slows) or have no gains during summer.

6A series of studies followed that examined SLL in specific locations (e.g., Allinder
et al., 1992, in two rural schools around 1990; Borman et al., 2005, with about 300 students
in Baltimore high-poverty schools; Skibbe et al., 2012, with about 380 students in one sub-
urban Midwest town). That said, it has been unclear whether the results from those early
studies would generalize either outside of their local contexts or to a vastly different edu-
cational landscape up to 40 years later.

7In ECLS-K:99, the target number of children sampled at any one school was 24, and
on average 5.8 students were sampled per classroom (based on our analysis of publicly
available ECLS-K:99 data; but see also similar reported classroom sample sizes in
Gershenson & Hayes, 2018). However, because only one third of the K students were sam-
pled for fall testing in Grade 1, on average, only 1.5 students per K classroom (3.2 students
per K school) possess both the K spring and first fall scores needed to estimate their SLL in
the summer after K. About 18% of K classrooms (and schools) in ECLS-K have more than 3
students with SLL estimates.

8We provide a brief summary of their findings with respect to race and SES gaps,
using scores that were not standardized by subject-semester-grade, the preferred theta
scale from ECLS-K:99, and the most comparable grade ranges: With regard to Black-
White race gaps, the authors find—across the three data sets—that the gaps grow across
grades (with the exception of an aberrant finding from the BSS of 556% shrinkage of the
Black-White English language arts [ELA] gap across grades), though that growth is more
moderate in the ECLS-K:99 and GRD data sets. In both the BSS and the ECLS-K:99 data
sets (preferred theta scores), the authors find that there is no significant difference in
how fast the Black-White gap grows in the summer versus the school year. However, in
the more recent GRD data set, it appears that these gaps grow more during the school
year. With respect to SES gaps, von Hippel and Hamrock (2019) find that while
student-level SES gaps appear to grow across grades in the BSS data set, they appear to
shrink in ECLS-K:99. Gaps in low- versus high-poverty schools seem to grow when using
BSS data and GRD data (though to a smaller degree) but shrink when using ECLS-K:99
data. Both ECLS-K and BSS data sets show that student SES gaps grow faster in the sum-
mer, as opposed to the school year, and all three data sets indicate that low- versus high-
poverty school gaps grow faster in the summer (with the exception of math results using
the GRD).

9Here, we highlight the comparison between the ECLS-K IRT-based scale scores
(which estimate the number of items a child would correctly answer and are not designed
for comparison over time) in their original metric (i.e., not standardized by subject-
semester-year) and that same data set’s IRT-based theta scores in their original metric.
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10Rambo-Hernandez and McCoach (2015) use a sample that follows a 2006 to 2009
cohort of about 118,000 Grade 3 students as they move through Grade 6.

11It is also administered in the winter by some districts; however, the winter data are
not available in the current data set.

12We also conducted the analyses presented in Table 3, Table 4, Figure 3, and Figure
4 using only the set of district years with actual school-year start/end dates (rather than
extrapolated dates). The results are quite similar and are available on request.

13To contextualize the root mean square error, NWEA reports the achievement status
norm for ELA as about 161 in the fall of Grade 1 and about 217 in the fall of Grade 8 (Thum
& Hauser, 2015).

14Because the summer learning rate is estimated off of just two points—the first and
last days of school—the slope between these points is quite sensitive to even minor adjust-
ments. Note that the method we describe assumes that students learn just as much on days
in May as they do in, say, February. While there is some evidence that learning rates are
relatively linear within the school year (Fitzpatrick et al., 2011; von Hippel & Hamrock,
2019), there are also reasons to question this assumption, especially given anecdotal
reports that the intensity of school activities slows after the spring standardized tests are
given.

15The analytic samples in this study are first limited to NWEA students observed in
Grades 1 through 8, hence the large drop in sample size between the full NWEA sample
and the analytic sample in Appendix B.

16See Raudenbush and Bryk (2002) for a more complete description of the Bayesian
approach to estimation of variances and covariances and specifically for a discussion of
how the observed variability in ordinary least squares estimates compares with the empir-
ical Bayes estimate of the variability.

17We include fifth grade in both panels to informally check how similar fifth-grade
estimates are across the models.

18For example, schyr6ti takes a value of 1 at the end of sixth grade (i.e., Grade 6
spring test score) and remains at 1 for all observations thereafter. And sumaf6ti takes
a value of 1 at the end of the summer after sixth grade (i.e., Grade 7 fall test score) and
remains at 1 for all observations thereafter.

19For example, Downey et al. (2004) code time variables so that the relevant coeffi-
cients thereon represent a linear learning rate per month between the first and last days of
school (or first and last days of summer). In contrast, we have chosen to code time dum-
mies so that the relevant coefficients capture the total gain from the first to the last day of
a given school year (or the total gain/loss from the first to the last day of summer). As
a concrete example, suppose that a hypothetical student gained a total of 9 test score
points during the school year but lost 3 of those test score points during the subsequent
summer. Under the coding scheme used by Downey et al., the coefficients would be
expressed in points per month: 11 in the school year versus 21 in the summer. Under
the coding scheme used herein, the coefficients would be expressed in total gains/
losses—that is, 19 in the school year compared with 21 in the summer. This example
illustrates how using learning rates makes it more difficult to appreciate what proportion
of the school-year gain was lost during the summer. In addition, presenting the estimates
as a monthly learning rate may imply to some readers that we have data on what hap-
pened on a monthly basis and that the function is, indeed, linear.

20The parameters are presented, with a focus on their substantive meaning, in the
results section, but for those interested in a more formal road map between research ques-
tions and parameters, we provide the following. For RQ1, concerning mean gains/losses,
we focus on the b coefficients. For RQ2, concerning student-level variation in gains/los-
ses, we interpret the t variance parameters from the diagonal of the covariance matrix.
For RQ3, concerning whether the same students tend to lose ground summer after sum-
mer, we present the off-diagonal elements of the covariance matrix corresponding to p2i

and p4i as correlations (take, e.g., the relationship between losses in the summers after
sixth vs. seventh grade; for this example, the covariance is t2;4). For RQ 4, we make
use of the student-level Bayes shrunken residuals.

21Burkam et al.’s (2004) SLL analysis of ECLS-K:1999 data shows that, taken together,
students’ gender, racial, and socioeconomic demographics, in conjunction with detailed
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information from parent surveys about children’s home and summer activities, only
account for about 13% of the variance in learning gains in the summer after K.

22Returning briefly to Equation 1 for a concrete example, consider the covariance of
the p2i values (estimated change in student i in the summer after sixth grade) with the p4i

values (in the summer after seventh grade). That covariance (t4;6) from the covariance
matrix captures the extent to which those students who lose ground in one summer
tend to be the same ones who lose ground in the next summer. Like the variances pre-
sented earlier, these estimated covariances are more conservative than simply taking the
SD of student-level gain/loss scores (Raudenbush & Bryk, 2002). We present the covari-
ance as correlations for ease of interpretation.

23The one exception to the otherwise uniformly negative correlations in the lower
panel of Table 5 (ELA) is the near-zero correlation of 10.01 between Grade 1 school-
year gains and gains/losses in the summer after Grade 4.

24In von Hippel et al. (2018), 11 of these 12 reported correlations are negative and
between 20.55 and 20.21, with the one exception of a modest positive correlation
(1.09) between the ELA learning rates in the summer after Grade 1 and the Grade 2 school
year.

25We split the distribution of student-specific, empirical Bayes shrunken summer
learning gain/loss estimates into a top, a middle, and a bottom tercile and then calculate
the mean learning gain within each of those terciles. We do this separately for residuals for
each summer following a school year between first grade and eighth grade.

26We calculate for each student the sum of all absolute fluctuations in their test scores
during a panel (here, from the start of first grade to the end of fifth grade) and then cal-
culate what percentage of those absolute value fluctuations arose during summers. For
a hypothetical student who experiences no change in their scores from the start to the
end of the summers (i.e., always flat slopes in the summers), this percentage would be
0. In contrast, if a hypothetical student’s test score changes during the summer were
always equal to the student’s gain/loss during the school year, the corresponding statistic
would be 50%.

27Looking across the full study sample, about 75% of all summer-period changes
were negative (as opposed to gains or no change). If summer loss events were truly inde-
pendent, the probability of five consecutive summer losses is .75 raised to the fifth power,
which equals about .24.

28For instance, von Hippel et al. (2018) find that students exhibit slightly greater SLL
in reading than in math in the summer after K but equal losses across subjects in the sum-
mer after Grade 1. Descriptive results from Quinn et al. (2016) suggest that students gained
very similar amounts in math and reading during summers but they perhaps gained
slightly more in math in the summer after K and slightly more in reading in the summer
after Grade 1. Downey et al. (2004) document modest mean summer losses in reading
alongside summer learning gains in math. Many of the studies since 1996 that specifically
present mean SLL rates only present these results for a single subject, preventing a cross-
subject comparison (e.g., Benson & Borman, 2010; Borman, 2005; Downey et al., 2008;
Skibbe et al., 2012; Rambo-Hernandez & McCoach, 2015).

29Downey et al. (2004) also do so, but they subsequently discount those findings and
update them in von Hippel et al. (2018).

30Claessens et al. (2009) describe the achievement measures they use from ECLS-K:99
as ‘‘IRT scores’’ (see Table A1, p. 424), and we believe that these are likely IRT-based scale
scores (rather than IRT-based theta scores), which model the number of items children
would have answered correctly, using summed probabilities of correct answers
(Tourangeau et al., 2009).
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