School's Out: The Role of Summers in Understanding Achievement Disparities

Allison Atteberry (D)
University of Colorado-Boulder
Andrew McEachin (i)
RAND Corporation

Abstract

Summer learning loss (SLL) is a familiar and much-studied phenomenon, yet new concerns that measurement artifacts may have distorted canonical SLL findings create a need to revisit basic research on SLL. Though race/ethnicity and socioeconomic status only account for about 4% of the variance in SLL, nearly all prior work focuses on these factors. We zoom out to the full spread of differential SLL and its contribution to students' positions in the eighthgrade achievement distribution. Using a large, longitudinal NWEA data set, we document dramatic variability in SLL. While some students actually maintain their school-year learning rate, others lose nearly all their school-year progress. Moreover, decrements are not randomly distributed-52\% of students lose ground in all 5 consecutive years (English language arts).

Keywords: summer learning loss, achievement inequities, role of schools in achievement

Children experience vastly different home environments prior to formal schooling (Gilkerson \& Richards, 2009; Kaushal et al., 2011; Kornrich \& Furstenberg, 2013) and thus arrive at kindergarten with a wide range of starting skills (Lee \& Burkam, 2002; Magnuson et al., 2004). Yet once they begin school, children continue to spend a significant portion of their school-age years outside the school setting. That out-of-school time is

Allison Atteberry, PhD, is an assistant professor of research and evaluation methodology at the University of Colorado-Boulder School of Education, 249 UCB, Boulder, CO 80309; e-mail: allison.atteberry@colorado.edu. Her work addresses persistent patterns of inequality in key educational pivot points, including early-childhood education, access to effective teaching, and summer learning loss.
Andrew McEachin, PhD, is a policy researcher in the Economics, Statistics, and Sociology Department at RAND Corporation and a professor at Pardee RAND Graduate School. His research focuses on the determinants of persistent achievement gaps, as well as evaluating the effect of popular responses by policymakers and educators to reduce these gaps.
concentrated in the summer months-a time when schools play little to no direct role in children's lives. Instead, children return to the full-time care of their families, with vastly different options and preferences for how children spend this time (Gershenson, 2013). Student achievement disparities ${ }^{1}$ may grow dramatically during the summer, when child experiences appear the most diverse.

We use a novel data set with more than 200 million test scores for students across the United States to explore whether the "fanning out" of achievement from Grades 1 to 8 occurs while students are in school or during the intervening summers. The field is generally aware of the phenomenon called summer learning loss (SLL)-that student learning slows during the summer. Less apparent, however, is how little consensus actually exists on basic questions about SLL. Moreover, many of the canonical findings on SLL have recently been called into question based on measurement concerns that apply to data used in most prior SLL research (von Hippel \& Hamrock, 2019).

At a time when even fundamental questions in the SLL literature need to be revisited, our analyses also contribute a unique focus on the total variability in SLL-a surprisingly understudied phenomenon. Nearly all prior SLL work focuses on how summers contribute to race/ethnic or socioeconomic status (SES) gaps. ${ }^{2}$ However, these factors together only account for about 4% of the variance in summer learning rates (von Hippel et al., 2018). These gaps deserve our attention, ${ }^{3}$ yet a sole focus on these gaps misses important big-picture questions about the SLL landscape. Herein, we zoom out to explore the full spread of SLL experiences and examine how differential SLL contributes to where students end up in the achievement distribution at the end of eighth grade.

Even before concerns arose about possible measurement artifacts in SLL, surprisingly few aspects of SLL have been well established. For instance, do students, on average, actually lose ground during the summer or just exhibit no gain (i.e., flat)? What proportion of a student's school-year gain tends to be lost in the summer that immediately follows? Is the magnitude of SLL similar across students, or do some students exhibit gains while others actually lose ground? Does this vary by grade level? Do summer losses accrue to the same students year after year? We tackle these questions using a set of achievement scores that are potentially less susceptible to the measurement concerns raised by von Hippel and Hamrock (2019). These foundational questions have theoretical implications for the production of outcome inequality, as well as practical implications for where researchers and policymakers look for opportunities to disrupt this stratification process.

We focus on estimating the total variability in SLL across students, relative to school-year gains. Describing this total (or unconditional) variance is important for at least four reasons. (1) Summers will only contribute to widening achievement disparities if students exhibit meaningful variation
around the typical summer pattern. We find that SLL does vary dramatically across students. (2) Because of this wide variability, mean SLL patternsthose that most researchers, policymakers, and practitioners are familiar with-do not characterize most students' summer experiences very well. (3) We find evidence that the same students are likely to lose ground from summer to summer, suggesting a nonrandom accumulation of summer decrements. (4) Prior work has found that even a full vector of student demographics, home characteristics, prior achievement, and a list of summer activities accounts for only 13% of the variation in SLL (Burkam et al., 2004). ${ }^{4}$ In other words, SLL appears to vary greatly, but race and classwhich have been the main focus of prior SLL research—are an important but limited part of the story.

Contribution of the Current Study

Data provided by the NWEA allow us to estimate means and variances in SLL across eight grade levels, using a data set with more than 200 million test scores for nearly 18 million students in 7,500 districts across all 50 states in a very recent time period (2008 through 2016). NWEA's Measures of Academic Progress (MAP) scores are item response theory (IRT) based and computer adaptive in all grades, and cover a broader range of content than scores used in prior SLL research. The use of MAP scores, in and of itself, represents a timely contribution to the field of SLL because, as von Hippel and Hamrock (2019) have recently shown, newer data sources and scaling practices can dampen and sometimes even reverse some of the long-standing inferences about SLL gaps. They also argue that the above features of NWEA's test scores can make achievement gain inferences less susceptible to measurement artifacts. Their work has raised troubling questions about the robustness of what we thought we knew about SLL. The current study is among a new wave of SLL research to revisit our foundational knowledge about SLL, and our findings reaffirm the existence and importance of this phenomenon.

We use this powerful data set in a hierarchical student growth-modeling framework to characterize the contribution of SLL to end-of-school achievement disparities. Specifically, we address the following four questions:

1. On average, how do learning gains during the school year compare with gains/ losses during the summer across grade levels?
2. Of more relevance to the current investigation, how much do students vary in terms of how much they gain or lose?
3. Do the same students tend to exhibit SLL year after year, or are these gains/losses randomly distributed?
4. How large is the role of summer in producing end-of-school outcome disparities?

With respect to the questions posed above, we do find that some students maintain their school-year learning rate throughout the summer, while others can lose almost as much ground as they had gained in the preceding school year. We show that even if all the inequality in school-year learning rates could be entirely eliminated, students would still end up with very different achievement levels due to SLL alone. Our findings also suggest that negative summer decrements tend to accumulate for the same students over time: We find that more than twice as many students exhibit 5 years of consecutive summer losses (as opposed to no change or gains) than one would expect if summer losses were independently distributed across students and grades. Furthermore, these consecutive losses add up to a sizeable impact on where students end up in the achievement distribution: In a 5 -year period, the average student in this group ultimately loses nearly 40% of their total school-year gains during the intervening summers.

In what follows, we first situate the contributions of the current study within existing SLL literature. Next, we introduce this unique data set and show how it compares with the broader U.S. public school population. We also describe a significant primary data collection activity undertaken to address a methodological concern in SLL research about the dates on which tests are taken (more on this below). In the Methods section, we present our multilevel model and key parameters. The Results section is organized by the four research questions previously described. The Conclusion provides a reflection on our results relative to prior SLL findings, the study limitations, and implications for future research.

Evidence on SLL

There are logistical challenges to studying SLL: The data provided by the annual end-of-school-year statewide testing systems, which are most often used by researchers, lack the fall data point needed to separate learning gains between the school year and the summer. Opportunities to investigate SLL have necessarily been limited to idiosyncratic samples (e.g., one city), specific years, or particular grades (e.g., only after grade $\mathrm{K} / 1$). Table 1 provides an overview of the data used across 17 key SLL studies, including whether each one focuses on seasonal patterns in White-Black achievement gaps, SES gaps, and/or unconditional variance in achievement-the latter of which is our focus and is relatively unique. Table 1 also highlights some advantageous features of the current data set in terms of size, number of grades included, and recency.

Much has been written about SLL (see, e.g., Gershenson, 2013, for a particularly thorough recent overview; Cooper et al., 1996, for a meta-analysis of early studies). Today, there is a common understanding among policymakers, researchers, and practitioners that during the summer students lose some of the knowledge and skills acquired during the school year. ${ }^{5}$
Table 1
Compare Studies: Data Sets, Years, Grades, Sample Sizes, Location

Study	Data Set	Data Years	Years Since Data Collected	Summers After Grades...	No. of Students	No. of Schools	No. of Districts	No. of States	Geography	$\begin{aligned} & \text { Unconditional } \\ & \operatorname{Var(SLL)?} \end{aligned}$	Overall B-W SLL Gaps?	Overall SES SLL Gaps?
Current Study	$N W E A^{a}$	2008-2016	3 years prior	$\begin{gathered} 1,2,3,4,5,6 \\ 7,8 \end{gathered}$	18,000,000	$\sim 32,000$	7,500	50	Spread across all US states	Yes	No	No
Heyns (1978)	Unnamed	1970-1972	47 years prior	5	2,978	101	1	1	Atlanta	No	Yes	Yes
Allinder et al. (1992)	Unnamed	Not found	27 years prior at least	2, 3, 4	275	2	1	1	2 rural schools in midwest state	Yes (aggregated across grades)	No	No
Entwisle \& Alexander (1992)	BSS	Fall 1982- Fall 1984	35 years prior	1,2	542	20 (max)	1	1	Baltimore	No	Yes ${ }^{\text {f }}$	Yes ${ }^{\text {f }}$
Entwisle \& Alexander (1994)	BSS	Fall 1982Fall 1984	35 years prior	1,2	539 (max)	20 (max)	1	1	Baltimore	No	Yes ${ }^{\text {f }}$	Yes ${ }^{\text {f }}$
Alexander et al. (2001)	BSS	Fall 1982Spring 1987	32 years prior	1, 2, 3, 4	678	20 (max)	1	1	Baltimore	No	Yes	Yes
$\begin{aligned} & \text { Burkam et al. } \\ & \text { (2004) } \end{aligned}$	ECLS-K:99	Fall 1998Fall 1999	20 years prior	K	3,664	$\sim 600^{\text {d }}$	$\sim 230{ }^{\text {d }}$	$\sim 30^{\text {d }}$	Nationally representative	No	No	Yes
Downey et al. (2004)	ECLS-K:99	Fall 1998Fall 1999	20 years prior	K	$\begin{aligned} & \sim 5,000 \text { with } \\ & \text { summer data }{ }^{\text {d }} \end{aligned}$	992	$\sim 230^{\text {d }}$	$\sim 30^{\text {d }}$	Nationally representative	Yes ${ }^{\text {e }}$	Yes	Yes
Borman et al. (2005)	"Teach Baltimore"	1999-2000	19 years prior	K (2 cohorts)	303	10	1	1	Baltimore highpovery schools	No	Yes	Yes
Alexander et al. (2007)	BSS	Fall 1982-1999	20 years prior	1, 2, 3, 4	326	20 (max)	$\sim 230^{\text {d }}$	$\sim 30^{\text {d }}$	Baltimore	No	No	Yes
Benson \& Borman (2010)	$\begin{gathered} \text { ECLS-K:99 + } \\ \text { Census } \end{gathered}$	Fall 1998Fall 1999	20 years prior	K	4,180	290	$\sim 230^{\text {d }}$	$\sim 30^{\text {d }}$	Nationally representative	No	Yes	Yes
$\begin{aligned} & \text { Gershenson } \\ & \text { (2013) } \end{aligned}$	APSCC/ATUS	$\begin{aligned} & \text { 1989-1990/ } \\ & \text { 2003-2010 } \end{aligned}$	29 years prior/ 9 years prior	N/A	628/23,348	N/A	N/A	0	California/US	No	No	No (gaps in summer time use by SES)
Quinn (2014)	ECLS-K:99	Fall 1998- Fall 1999	20 years prior	K	3,043	$\sim 600^{\text {d }}$	$\sim 230{ }^{\text {d }}$	$\sim 30^{\text {d }}$	Nationally representative	No	Yes	No

Table 1 (continued)

Study	Data Set	Data Years	Years Since Data Collected	Summers After Grades...	No. of Students	No. of Schools	No. of Districts	No. of States	Geography	Unconditional $\operatorname{Var}(\mathrm{SLL})$?	Overall B-W SLL Gaps?	Overall SES SLL Gaps?
Rambo- McCoach (2015)	NWEA subsample ${ }^{\text {b }}$	Fall 2006- Fall 2009	10 years prior	3, 4, 5	118,959	1,202	?	32	Spread across all US states	No	No	No
Quinn et al. (2016)	ECLS-K:11	Fall 2010- Spring 2013	6 years prior	K, 1	$\begin{aligned} & \sim 3,750 \text { with } \\ & \text { summer data } \end{aligned}$	$\sim 640{ }^{\text {d }}$	$\sim 210{ }^{\text {d }}$	$\sim 20^{\text {d }}$	Nationally representative	No	Yes	Yes
$\begin{aligned} & \text { Quinn \& Le } \\ & \text { (2018) } \end{aligned}$	ECLS-K:99/ ECLS-K:11	Fall 1998-Fall 1999/Fall 2010Spring 2013	20 years prior/ 6 years prior	K/K, 1	$\begin{aligned} & \sim 5,000 \text { with } \\ & \text { summer data }{ }^{\mathrm{d}} \end{aligned}$	$\sim 600 / \sim 640^{\text {d }}$	$\sim 230 / \sim 210^{\text {d }}$	$\sim 30 / \sim 20^{\text {d }}$	Nationally representative	No	Yes	Yes
von Hippel et al. (2018)	ECLS-K:99/ ECLS-K:11	Fall 1998-Fall 1999/Fall 2010Spring 2013	20 years prior/ 6 years prior	K/K, 1	$\begin{aligned} & \text { ~5,000 with } \\ & \text { summer data }{ }^{\text {d }} \end{aligned}$	$\sim 600 / \sim 640^{\text {d }}$	$\sim 230 / \sim 210^{\text {d }}$	$\sim 30 / \sim 20^{\text {d }}$	Nationally representative	Yes	Yes	Yes
von Hippel \& Hamrock (2019)	$\begin{gathered} \text { BSS/ } \\ \text { ECLS-K:99/ } \\ \text { NWEA GRD } \end{gathered}$	$\begin{aligned} & 1982-1990 / \\ & 1998-2007 / \\ & 2008-2010 \end{aligned}$	19 years prior/ 12 years prior/ 9 years prior	$\begin{gathered} 1,2,3,4 / \mathrm{K} / \\ \mathrm{K}-7 \text { (different } \\ \text { cohorts) } \end{gathered}$	$\begin{gathered} 825 / \sim 5,000^{\mathrm{d}} \\ 177,549 \end{gathered}$	$\begin{gathered} 20 / \sim 600^{d} / \\ 419 \end{gathered}$	$\begin{gathered} 1 / \sim 230^{\mathrm{d}} / \\ 25 \end{gathered}$	$1 / \sim 30 \mathrm{~d} / 14$	Baltimore/ nationally representative/ 14 states	No	Yes	Yes

[^0]The seminal SLL research comes from two key studies: Heyns's (1978) study of the summer after fifth grade for about 3,000 students in 42 Atlanta schools from 1970 to 1972 and Entwisle and Alexander's study of the summers after Grades 1 to 4 for about 750 students in 20 Baltimore schools from 1982 to 1987 (Alexander et al., 2001, 2007; Entwisle \& Alexander, 1992). These studies documented that, on average, students' learning rates slow during the summer. Heyns (1978) found that average fifth- and sixth-grade schoolyear gains in Atlanta were positive (about 60% of the national norm for 1 year of achievement gains) while the summer after fifth-grade gains were either flat or very modestly negative, depending on the cohort. Alexander et al. (2001) used a multilevel, quadratic individual growth curve model to document slower summer (vs. school-year) learning. The authors have continued to follow their Baltimore sample through adulthood and have found that early differences in summer learning are predictive of later life outcomes such as high school completion and college going (Alexander et al., 2007). The findings from these studies became the definitive word on summer setback, raising awareness of the phenomenon and the role it plays in growing educational inequality. ${ }^{6}$

More recently, researchers have used the Early Childhood Longitudinal Study: Kindergarten (ECLS-K) 1998-1999 and 2010-2011 cohorts to study SLL (Benson \& Borman, 2010; Burkam et al., 2004; Downey et al., 2004; Downey et al., 2008; Quinn, 2014; Quinn et al., 2016; Quinn \& Le, 2018; von Hippel et al., 2018; von Hippel \& Hamrock, 2019). The advantage of the ECLS-K is that the samples are nationally representative (which NWEA is not). This constituted a major step forward for the SLL literature. The ECLS-K data have a few limitations: While the current study includes summers in Grades 1 to 8, ECLS-K only covers the summer after K or Grade 1, which limits one's view of how SLL accumulates as students move through the grades. In addition, because of the sampling methods used for ECLS-K (e.g., on average, only 3.2 students per K school have SLL estimates ${ }^{7}$), clustered analyses seeking to estimate the variability in SLL are not straightforward. The current NWEA data are therefore a useful complement to the ECLS-K data, since the weakness of each one is a strength of the other.

One of these ECLS-K studies-by von Hippel et al. (2018)—has a unique analysis that is particularly relevant to the current study. These authors also examine the unconditional variance in SLL at the student level (like the current study) through the summer after Grade 1. Interestingly, they find that the variation in achievement shrinks over that time. They also find that the variation in achievement arises more in summers than in school years. The current study extends these analyses through Grade 8, and we consider the results from the two alongside one another.

Another recent study by von Hippel and Hamrock (2019), which compares SLL racial and SES gap findings ${ }^{8}$ across three data sets, warrants more detailed discussion. This article has raised some important questions

Atteberry, McEachin

about SLL since the authors show that measurement artifacts can lead to quite different conclusions about how much these gaps grow over time. For instance, when they use two different scalings ${ }^{9}$ of math achievement scores available in ECLS-K 1998-1999, one indicates that student SES gaps grow by 83% from Grades 1 through 8 while their preferred scaling suggests that these gaps decrease by 27%. When von Hippel and Hamrock conduct the same analysis using BSS achievement scores-which the authors posit have several undesirable measurement properties-they find that SES gaps appear to grow 369%. The question of whether SES gaps grow more in the summer versus the school year, however, appears to be less sensitive to variations in data sources and scalings: In most permutations, they confirm the finding from the original BSS data that SES gaps grow faster in the summer versus the school year.

The von Hippel and Hamrock (2019) study is also particularly relevant to our current analysis because the authors use a subsample from NWEA's Growth Research Database (GRD). The full NWEA data that we use may not necessarily be comparable with the GRD subsample: The GRD is much smaller (e.g., 25 school districts vs. 7,500) and has a shorter panel (2 vs. 8 years). For the current analysis, the key point from their study is the authors' argument that the features of the NWEA/GRD data (e.g., IRT scaling, computer adaptive in all grades, broader content) make achievement gain inferences less susceptible to measurement artifacts. Their exploration of how measurement properties affect the study of SLL would bolster confidence in our results.

Finally, though both of these studies use similar data, they focus on different questions: Whereas the current study describes the degree of total variation in SLL, von Hippel and Hamrock (2019) focus on racial and SES gaps (although due to data limitations one cannot look at student-level SES gaps using the GRD data). As mentioned above, race and SES appear to play an important but modest part in explaining variability in SLL.

We are aware of one other peer-reviewed study that uses a subsample of NWEA data to explore SLL. Rambo-Hernandez and McCoach (2015) juxtapose the school-year and summer growth trajectories of initially high- and average-achieving students. ${ }^{10}$ Their results suggest that high-achieving students exhibit steadier growth throughout the panel while average-achieving students actually grow faster during the school year but lose more during the summer.

In sum, the extant research on SLL took an important leap forward in the late 20th century, and it now seems to be experiencing a resurgence of interest, particularly spurred by the availability of the ECLS-K data. This new work improves on the methods used in prior work (e.g., by taking into account test timing, considering measurement artifacts), updates the evidence to a more recent period, and covers a nationally representative sample (in Grades K and 1).

The current study continues in this tradition, building off the various methodological advances in this domain. First, NWEA's MAP tests are designed to be vertically scaled assessments of math and reading achievement, which facilitates an examination of student growth across grades (Quinn, 2014; von Hippel \& Hamrock, 2019). In addition, we undertook a substantial primary data collection effort to recover more than 44,000 district-year calendar dates for the start and end of the school year, allowing us to make crucial adjustments to SLL estimates on a large scale. We also implement a set of multilevel models that we think connect more clearly to the central research questions in this domain: The coefficients ("fixed effects" in the language of hierarchical linear modeling) correspond to school-year gains and summer losses, while the variance components allow us to characterize a plausible range of gains/losses one should expect across students during those periods. These variance components connect directly to our primary research question: The larger the variation in summer losses across students, relative to the school-year gains, the more summers are the time when end-of-school achievement disparities arise.

Table 1 compares key aspects of the current study with prior work. The defining feature of the current study is our unique focus on documenting the scope and seasonality of the total variation in achievement across U.S. students. The current data set also provides data on more than 18 million students across a wider range of grades than was possible in prior work. In addition, the NWEA data set comes from the 2008 through 2016 postaccountability era-a time in which it is at least conceivable that the dynamics of access to quality schooling have changed.

Data and Sample

NWEA Data

The current study primarily uses data from the NWEA's MAP assessment. The data set contains math and reading scores based on a computer-adaptive test designed to serve as part of a formative, benchmarking data system, used in about 32,000 schools located in 7,500 districts across all 50 states in the United States. The MAP assessment is used as a supplementary tool to aid schools in improving their instruction and meeting students' needs, not as a high-stakes test record. Because the MAP assessment is intended to monitor students' progress throughout the school year, it is administered in both the fall and the spring. ${ }^{11}$

NWEA's MAP test is designed so that its scores can be expressed on a vertical scale (which the NWEA calls the RIT [Rasch unit] scale), with the intent that the scale can be used to support equal-interval interpretations. In theory, the vertical scale allows comparisons of student learning across grades and over time, while the equal-interval property of the scale ensures that

Atteberry, McEachin

a unit increase in a student's score represents the same learning gain across the entire distribution. It is worth noting that there are many different ways of designing and calibrating a vertical scale, and there is little consensus with regard to the best methods for evaluating the properties of the scale (Briggs, 2013; Briggs \& Dadey, 2015; Briggs \& Domingue, 2013; Briggs \& Weeks, 2009). Therefore, our findings regarding changes across grades assume that NWEA's vertical scale is valid. However, much of the article concerns itself with comparing learning gains in the same grade (i.e., a given school year relative to the subsequent summer).

The full data set used for the current study comes from 7,685 U.S. school districts that administered the MAP assessment during the 9 years between 2008 and 2016. Different districts administer MAP in different grades; the NWEA full data set includes 203,234,153 test scores for 17,955,222 students who took a test between Grades K and 11. The data set includes students' race, gender, and math and reading MAP scores, and the number of items attempted and correctly answered, duration of the test, grade of enrollment, and date of test administration. The file does not include indicators for whether the student is an English language learner, is eligible for the federal free/reduced-price lunch (FRPL) program, or receives special education services. For this reason, the current data set is not well suited to studying achievement gaps along these dimensions.

Adjustments to NWEA RIT Scores

Students do not take MAP tests exactly on the first and last days of school but rather typically 3 to 6 weeks before/after the school year starts/ends, respectively. As a result, some of the time between the spring and fall administrations of the test-what one would mislabel as summer time-is actually spent in school. While the NWEA data set does include the test date, crucially it does not include school-year start or end dates.

We therefore conducted a large-scale data collection effort to find the start and end dates in every district in a subset of 11 states with the greatest use of MAP assessments. We found 23,223 school-year start dates and 20,807 school-year end dates-about 77% of the district-year calendar dates in those 11 states from 2008 to 2015. In later years, NWEA also began to collect school-year start and end dates. Together, these efforts allowed us to collect actual calendar start/end dates for 50.3% of the observed school years for the entire NWEA data set. Based on these data, we also extrapolate likely dates for other districts. ${ }^{12}$ Following the practices in prior SLL studies, we then use these calendar data to make a linear projection of each student's score on the first and last days of the school year. For more information about this process, including a description of our approach to collecting these data, the percentage of actual dates recovered, our extrapolation process, our score projection process, and similarity of study results when using observed

Figure 1. Illustration of observed and projected RIT test scores.
Note. Student 1: Observed scores in orange, projected scores in green. Student 2: Observed scores in red, projected scores in blue.
scores instead of projected scores, see Appendix A in the online version of the journal. For fall ELA (English language arts) scores, the correlation between the observed and projected RIT scores is .996 , with a root mean square error of 2.3 points. ${ }^{13}$

Figure 1 illustrates how even small changes in estimated scores using projection methods could have a large impact on estimating summer learning rates. ${ }^{14}$ Figure 1 presents two anonymous students as they progress through school between January 2008 and January 2012. Student 1's observed scores-and their test dates-are shown in orange. In dashed green, we project Student 1's achievement scores linearly based on their school-year learning rate. The green line connects the student's projected achievement on the last day of school to the projected achievement on the first day of school after that summer. In some grades, the summer learning gains estimated in the absence of school calendar information would be positive but would instead appear negative once the projections are used. The results are similar for Student 2 (red solid $=$ observed scores, blue

Atteberry, McEachin

dashed $=$ projected scores). The linear projection process-though it produces scores strongly correlated with the observed scores-could have a profound impact on the estimated summer learning gain/loss. In this article, we therefore use the projected RIT scores in place of the observed RIT scores. However, in the online Appendix A, we reconduct the analyses using the observed scores in place of the projected scores and replicate the figures in this article that capture the main findings.

Analytic Sample

For the current analysis, we first restrict the NWEA sample to students observed in Grades 1 through 8 (because these are the grades with the most complete coverage) and to the 89% of those students who neither repeat nor skip grades. In our preferred models, we also restrict the sample to a "balanced panel" - that is, the subset of students who possess test scores for the full grade range being included in the model. For instance, if we examine the test score patterns from first through fifth grade in a given model, only students who have both fall and spring test scores in every grade between first and fifth grade (i.e., a full vector of all 10 reading test scores) will be included in the sample. While this is quite a restrictive sample limitation, it ensures that our findings cannot be conflated with compositional changes from one time point to the next. In Appendix B (in the online version of the journal), we replicate our primary findings on a less restrictive sample by running models with only three consecutive grades at a time (e.g., Grades K through 2, Grades 3 through 5, etc.). In these models, more students are included because the vector of required test scores is much shorter. These two samples have different advantages in terms of internal and external validity. Ultimately, however, the results are relatively consistent (see online Appendix B).

In Table 2, we compare the demographic descriptives for the students, schools, and districts from four groups: (1) the population of U.S. public schools (from the National Center for Education Statistics Common Core of Data), (2) the entire population of NWEA test takers, (3) the subset of students who meet the less restrictive inclusion criteria (for the online Appendix B), and (4) the students who meet the more restrictive inclusion criteria for our preferred results (see Table 2; for simplicity, we conduct this comparison in the 2011-2012 school year). First, recall that that a student-level indicator of FRPL status is not available in the NWEA data set. However, at the school level, the mean percentage of students in a school who are FRPL eligible is very similar across the four groups: 50% both nationally and in the NWEA universe of schools, 48% in the larger online Appendix B sample, and 51\% in the more restrictive, primary analytic sample. The NWEA sample reflects the U.S. public school population in many ways. For instance, it is similar in terms of the percentage of students identified as Black, Asian, White, and

Table 2
Descriptive Statistics in the Nation, in Full Dataset, in Analytic Sample in 2011-12

	All U.S. Public Schools	Full NWEA Dataset	App B: Analytic Sample	Primary: Analytic Sample
Statistic	Student Level			
	45.5	N/A	N/A	N/A
\% FRPL	15.8	11.8	10.5	12.4
\% Black	23.7	12.1	11.7	9.2
\% Hispanic	4.7	3.9	4.1	3.4
\% Asian	51.7	53.2	57.6	60.5
\% White	51.3	51.2	50.4	50.3
\% Male	$49,256,120$	$5,469,366$	$1,892,098$	260,037
Total 2012 Student N	School Level			
	532	486	432	391
Average Enrollment	49.9	49.9	48.2	50.6
Mean \% FRPL	14.9	14.9	12.0	17.2
Mean \% Black	20.7	16.7	15.7	12.7
Mean \% Hispanic	3.5	3.2	3.5	3.0
Mean \% Asian	56.1	60.0	63.5	60.4
Mean \% White	25.2	22.6	21.8	25.9
\% of Schools Urban	31.8	24.4	24.8	16.0
\% of Schools Suburban	43.0	32.4	37.4	46.9
\% of Schools Rural	89,648	32,755	10,533	1,440
Total 2012 School N				

District Level

Mean \# of Schools in District	7	9.1	8.8	12.9
Mean \% FRPL	45.3	36.1	34.5	34.4
Mean \% Black	7.1	7.3	5.6	5.1
Mean \% Hispanic	12.9	11.6	11.4	11.1
Mean \% Asian	2.0	2.1	2.0	2.0
Mean \% White	72.8	76.1	78.0	78.1
Mean \% Male	51.5	51.5	51.3	51.2
Mean Stu:Tch Ratio	14.5	14.8	14.4	13.9
\% of Districts Urban	5.7	4.1	3.1	5.3
\% of Districts Suburban	29.0	19.5	18.7	17.5
\% of DistrictsRural	62.7	43.9	50.6	51.1
Total 2012 District N	13,273	7,437	3,242	1,093

Note. Data for the U.S. public school population come from the National Center for Education Statistics Common Core of Data and have been restricted to public schools (https://nces.ed.gov/ccd/). FRPL status is not available at the student level in the NWEA data set. The online Appendix B sample includes more NWEA students because it does not require students to have as long a panel of available test scores to be included. The primary analytic sample used in the main narrative requires students to have up to 10 available test scores in a row without missing data. NWEA $=$ Northwest Evaluation Association; FRPL $=$ free/reduced-price lunch; $\mathrm{N} / \mathrm{A}=$ not applicable.

Atteberry, McEachin

male. In addition, the majority of U.S. public schools are in rural geographic codes, followed by suburban and urban geographies, and this ordering also holds in NWEA. Many of the district characteristics are also quite similar.

To consider limitations to generalizability, we point out that the largest differences between the U.S. public school population and the NWEA universe are that (a) the NWEA sample has a lower percentage of Hispanic students, (b) the average NWEA school has a somewhat smaller mean enrollment, and (c) the NWEA districts tend to have more schools in them, have a lower percentage of FRPL students, and are less likely to be rural. These differences could be connected to the potential for unobservable differences between the NWEA sample and the public school population (e.g., orientation toward innovation and technology, resource allocation strategies, district leadership). What is also of note, however, is the sheer number of students in the NWEA universe in 2012 alone. NWEA students constitute more than 11% of the entire $\mathrm{K}-12$ public school population in 2012. NWEA data are available in nearly 37% of U.S. public schools and in more than half of all districts. This population is large enough to be of interest in its own right. Nonetheless, the lack of national representativeness is a weakness of NWEA data, relative to ECLS-K data.

Finally, we examine how the analytic sample limitations affect the characteristics of the NWEA students included in the models (compare the right three columns of Table 2^{15}). The final column reflects the requirements for inclusion in the balanced panel. Generally, the analytic restrictions do not dramatically alter the descriptive profile of included NWEA students, schools, or districts. However, the primary analytic sample has a higher percentage of White students than the NWEA full data set ($60 \% \mathrm{vs} .53 \%$), and the schools tend to be smaller (mean enrollment of 391 vs. 486) and are less likely to be suburban.

Methods

We use a multilevel model to estimate an individual learning trajectory for each student as they progress through sequential school years and summers. We then look across students to estimate how much students tend to gain, on average, during the school year versus what they typically lose during the summer. A multilevel modeling approach also allows us to estimate the variation in these gains/losses across students. Our multilevel model uses a Bayesian approach to estimate the variances and covariances. This approach produces more conservative estimates of student-level variances and is therefore preferable to calculating the raw standard deviation (SD) of summer gains, which reflects measurement error (Raudenbush \& Bryk, 2002). ${ }^{16}$

Longitudinal Multilevel Models

We use a two-level random effects (hierarchical) model, in which the outcome of interest is a test score, Score $_{t i}$, for student i at grade-semester t. In our preferred models, we separately model scores in first through fifth grade (students included here must have all 10 math score outcomes) and then in fifth through eighth grade ${ }^{17}$ (again, students must have all 6 test scores in these grades). For brevity, we present the model (Equation 1) for math scores from Grades 6 through 8. These six repeated observations at Level 1 (L1) are nested within students at Level 2 (L2):

L1: Repeated observations of students (i) across grade-semesters (t)

$$
\begin{array}{r}
\text { Score }_{t i}=\pi_{0 i}+\pi_{1 i}\left(\text { schyr6 }_{t i}\right)+\pi_{2 i}\left(\text { sumaf }_{t i}\right)+\pi_{3 i}\left(\operatorname{schyr}_{t i}\right)+\pi_{4 i}\left(\text { sumaf }_{t i}\right)+ \\
\pi_{5 i}\left(\text { schyr8 }_{t i}\right)+\pi_{6 i}\left(\text { sumaf8 }_{t i}\right)+\varepsilon_{t i} \quad \text { where } \varepsilon_{t i} \sim N_{i i d}(0, \sigma)
\end{array}
$$

$$
\begin{array}{ll}
\text { L2: Students }(i) & \\
\qquad \begin{aligned}
& \\
\pi_{0 i}=\beta_{00} & \text { where } r_{1 i} \sim N_{i i d}\left(0 \tau_{1,1}\right) \\
\pi_{1 i}=\beta_{10}+r_{1 i} & \\
\vdots & \text { where } r_{6 i} \sim N_{i i d}\left(0 \tau_{6,6}\right)
\end{aligned}
\end{array}
$$

At L1, students' growth trajectories are modeled with a set of dummy variables-schyr6 ${ }_{t i}$, sumaf $_{t i}$, schyr $_{t i}$, sumaf $7_{t i}$, and so on-for each grade-semester. Each is coded 1 if the observation occurred on or after the ending time point for the period. ${ }^{18}$ This coding scheme is different from that chosen in some prior work ${ }^{19}$ and may at first seem confusing, but it has the advantage of giving the L1 coefficients intuitive meaning that now match the variable names: They represent an individual student i 's grade-specific school-year gain or grade-specific summer gain/loss. For example, $\pi_{1 i}$-the coefficient on schyr $_{t i}$-captures student i 's Grade 6 school-year learning gain. The coefficient on sumaf $\sigma_{t i}$ captures student i 's summer after Grade 6 gain/loss. These coefficients are now the very learning gains/losses we are interested in estimating for each student. We allow all of the L1 coefficients ($\pi_{1 i}$ through $\pi_{6 i}$) to vary randomly at the student level, and we assume that the L2 errors ($r_{1 i}$ through $r_{6 i}$) are normally distributed with a mean of 0 and a constant variance given by $\tau_{1,1}$ through $\tau_{6,6}$. At L2, we use a fully unstructured covariance matrix, meaning that we estimate the variances of and correlations among all period-specific gain/losses rather than constraining them to be 0 or any other known value. These models estimate the parameters we need to answer each of our research questions (RQs) in turn. ${ }^{20}$

Results

RQ1: Average Students' School-Year Versus Summer Learning Gains/Losses Across Grades

We present findings both formally (i.e., point estimates in tables) and visually to make takeaways as tangible as possible. For instance, to address this first question, we present the beta coefficients (or "fixed effects" in the language of hierarchical linear modeling) in Table 3 (ELA) and Table 4 (math) because, substantively, they capture mean gains/losses in each grade and the following summers. These β coefficients are also graphed in Figure 2 as mean growth trajectories.

During School Years

To contextualize the findings about summer experiences, we first discuss mean school-year learning gains. Beginning from the left column of Table 3 (ELA), we find that students' school-year learning gains are largest in the early grades and generally diminish over time. This is depicted in Figure 2 with blue dashed lines. For instance, students gain on average 23.7 ELA MAP score points in first grade, 18.5 points in second grade, 13.3 points in third grade, and so on. By eighth grade, the average ELA learning gain on NWEA's RIT scale is just 4.4 points. We observe a very similar pattern for math (left column of Table 4). In all grade levels, the average student gains-as opposed to loses-ground during the school year. This suggests that students accumulate knowledge over time during the school years as measured by the NWEA MAP test.

During Summers

The patterns of mean summer learning gains/losses-the β coefficients in Tables 3 and 4 -are shown as solid red lines in Figure 2. Summer estimates differ from school-year gains in two important ways. First, in both ELA and math, the summer coefficients between first and eighth grade are negative and tend to be smaller in magnitude. For instance, the average ELA loss in the summer after first grade is -6.6 test score points, -3.9 in the summer after second grade, and -3.4 in the summer after third grade, and it falls to a low of -0.9 just before Grade 8 . In math, the mean summer learning estimates are also negative and of similar magnitude. An implication here is that, depending on grade, the average student loses between 17% and 28% of their school-year ELA gains (a 9-month period) during the following summer (a 3-month period). In math, the relative losses are a little larger: The average student loses between 25% and 34% of each schoolyear gain during the following summer.
ELA: HLM-Based Estimates of SY and Summer Learning Gains/Losses, Student-Level SDs, and 95\% PVRs Across Students

| | | Model-Based Estimates | | | | | Post Hoc Statistics for Given Grade |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 3 (continued)

Grade	Statistic	Model-Based Estimates		Post Hoc Statistics for Given Grade					
		Gains/Losses During the SY	Gains/Losses During the Following Summer	Means: \% SY Learning Gain Lost in Summer	\% More Gained at Top of PVR in the SY	SY: Ratio of $S D$ to Mean Gain	Summer: Ratio of $S D$ to Mean Gain	Summer: \% SY Learning Gained at Top of PVR	Summer: \% SY Learning Lost at Low of PVR
Grade 6	Coefficient (beta) (SE of beta)	$\begin{aligned} & 6.4^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -1.6^{* * *} \\ (0.04) \end{gathered}$	25	236	1.20	3.3	125	186
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 7.7 * * * \\ (-8.7 \text { to } 21.4) \end{gathered}$	$\begin{gathered} 5.3^{* * *} \\ (-11.9 \text { to } 8.8) \end{gathered}$						
Grade 7	Coefficient (beta) (SE of beta)	$\begin{aligned} & 5.2^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -0.9^{* * *} \\ (0.04) \end{gathered}$	17	275	1.40	5.2	154	194
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 7.3^{* * *} \\ (-9.1 \text { to } 19.6) \end{gathered}$	$\begin{gathered} 4.7^{* * *} \\ (-10.1 \text { to } 8.4) \end{gathered}$						
Grade 8	Coefficient (beta) (SE of beta)	$\begin{aligned} & \text { 4.4*** } \\ & (0.04) \end{aligned}$		N/A	258	1.32	N/A	N/A	N/A
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 5.8^{* * *} \\ (-7.0 \text { to } 15.9) \end{gathered}$							

Note. We report Huber-corrected standard errors for the estimated beta coefficients; however due to the large sample sizes, all of the beta coefficients are highly statistically significant (distinguishable from 0). We focus more on the substantive significance than on the statistical significance in our discussion of these results. ELA = English language arts; HLM = hierarchical linear modeling; PVR = plausible value range; N/A = not applicable; SY = school year.
${ }^{*} p<.10 .{ }^{* *} p<.05 .{ }^{* * *} p<.01$.
Math: HLM-Based Estimates of SY and Summer Learning Gains/Losses, Student-Level SDs, and 95\% PVRs Across Students

Grade	Statistic	Model-Based Estimates		Post Hoc Statistics for Given Grade					
		Gains/Losses During the SY	Gains/Losses During the Following Summer	Means: \% SY Learning Gain Lost in Summer	\% More Gained at Top of PVR in SY	SY: Ratio of $S D$ to Mean Gain	Summer: Ratio of $S D$ to Mean Gain	Summer: \% SY Learning Gained at Top of PVR	Summer: \% SY Learning Lost at Low of PVR
Grade 1	Coefficient (beta) (SE of beta)	$\begin{aligned} & 24.0^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -6.4^{* * *} \\ (0.05) \end{gathered}$	27	91	0.46	1.7	58	114
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{aligned} & 11.1^{* * *} \\ & (2.2-45.9) \end{aligned}$	$\begin{gathered} 10.7^{* * *} \\ (-27.4 \text { to } 14.6) \end{gathered}$						
Grade 2	Coefficient (beta) (SE of beta)	$\begin{aligned} & 18.6^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & -4.8^{* * *} \\ & (0.04) \end{aligned}$	26	92	0.47	1.2	32	88
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{aligned} & 8.7^{* * *} \\ & (1.6-35.0) \end{aligned}$	$\begin{gathered} 5.9 * * * \\ (-16.3 \text { to } 6.8) \end{gathered}$						
Grade 3	Coefficient (beta) (SE of beta)	$\begin{aligned} & 16.5^{* * *} \\ & (0.04) \end{aligned}$	$\begin{gathered} -4.6^{* * *} \\ (0.03) \end{gathered}$	28	78	0.40	0.8	12	73
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 6.6^{* * *} \\ (3.6-29.4) \end{gathered}$	$\begin{gathered} 3.7 * * * \\ (-12.0 \text { to } 2.7) \end{gathered}$						
Grade 4	Coefficient (beta) (SE of beta)	$\begin{aligned} & 14.2 \text { *** } \\ & (0.04) \end{aligned}$	$\begin{gathered} -4.3^{* * *} \\ (0.03) \end{gathered}$	30	86	0.44	1.1	28	96
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{aligned} & 6.2^{* * *} \\ & (2.0-26.3) \end{aligned}$	$\begin{gathered} 4.7 * * * \\ (-13.6 \text { to } 4.9) \end{gathered}$						
Grade 5	Coefficient (beta) (SE of beta)	$\begin{aligned} & 11.7^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -4.0^{* * *} \\ (0.04) \end{gathered}$	34	136	0.69	1.3	51	121
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 8.1^{* * *} \\ (-4.2 \text { to } 27.5) \end{gathered}$	$\begin{gathered} 5.2 * * * \\ (-14.2 \text { to } 6.2) \end{gathered}$						

Table 4 (continued)

Grade	Statistic	Model-Based Estimates		Post Hoc Statistics for Given Grade					
		Gains/Losses During the SY	Gains/Losses During the Following Summer	Means: \% SY Learning Gain Lost in Summer	\% More Gained at Top of PVR in SY	SY: Ratio of $S D$ to Mean Gain	Summer: Ratio of $S D$ to Mean Gain	Summer: \% SY Learning Gained at Top of PVR	Summer: \% SY Learning Lost at Low of PVR
Grade 6	Coefficient (beta) (SE of beta)	$\begin{aligned} & 9.8^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -2.7 * * * \\ (0.04) \end{gathered}$	28	144	0.73	1.8	61	127
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 7.2^{* * *} \\ (-4.4 \text { to } 23.9) \end{gathered}$	$\begin{gathered} 4.9 * * * \\ (-12.4 \text { to } 6.9) \end{gathered}$						
Grade 7	Coefficient (beta) (SE of beta)	$\begin{aligned} & 8.1^{* * *} \\ & (0.05) \end{aligned}$	$\begin{gathered} -2.0^{* * *} \\ (0.04) \end{gathered}$	25	179	0.91	2.3	86	136
	Student $S D$ (tau) (Student 95\% PVR)	$\begin{gathered} 7.4^{* * *} \\ (-6.4 \text { to } 22.6) \end{gathered}$	$\begin{gathered} 4.6 * * * \\ (-11.0 \text { to } 7.0) \end{gathered}$						
Grade 8	Coefficient (beta) (SE of beta)	$\begin{aligned} & 6.5^{* * *} \\ & (0.04) \end{aligned}$		N/A	163	0.83	N/A	N/A	N/A
	Student $S D$ (tau) (Stud 95\% PVR)	$\begin{gathered} 5.4^{* * *} \\ (-4.1 \text { to } 17.2) \end{gathered}$							

[^1]

Figure 2. ELA and math: Estimated mean school-year gains and summer losses.
Note. ELA = English language arts; $\mathrm{Gr}=$ grade; $\mathrm{S}=$ summer; $\mathrm{F}=$ fall.

Atteberry, McEachin

The second way in which summer estimates differ from school-year estimates is that the magnitude of mean SLL does not decrease over time to the same degree as in school-year learning. Put differently, although mean school-year gains in ELA fall from 23.7 to 4.4 across grades, mean summer losses stay within a tighter range of -6.6 to -0.9 .

Turning to the visual representation of these findings in Figure 2, we consistently see a zigzag pattern at every grade level, though the intensity of gains/losses flattens in the higher grades. These results generally confirm the notion that summers can be characterized as a time when, on average, students lose ground. Historically, SLL studies have not reached consensus on the direction of mean summer learning rates; some find losses, while others find stagnation, mere slowdown, or a mix of results across grades, subjects, or data sets. The current study joins those that find mean losses, but we will see that the 95% plausible value range (PVR) across students always includes 0 . However, we caution against overemphasizing mean SLL since it will become clear that this mean does not well characterize what students experience in the summer, because it masks the dramatic underlying variability across students.

RQ2: Variation in Students' School-Year Versus Summer Learning Gains/Losses by Grade

It is important to recognize that the trends illustrated in Figure 2 only tell us one part of the story: the seasonal learning patterns for the average student. However, achievement disparities are driven by differential learning patterns, and so we now focus on how students vary on both school-year and summer learning gains/losses. We are particularly interested in determining whether student growth trajectories vary more during school years or summers.

During School Years

We begin by examining the variability in school-year learning across students. The first column of Table 3 (ELA) and Table 4 (math) contains the estimated SDs of learning gains/losses across students in and after each grade (i.e., the square root of the diagonal elements of the tau matrix). For example, while we saw that the average student gains 23.7 ELA points in Grade 1, students also typically differ from this mean by 9.7 points. To illustrate the magnitude of this variability, we construct a 95\% PVR for learning gains across students (under the assumption of normality; Raudenbush \& Bryk, 2002). These are reported in Table 3 (ELA) and Table 4 (math) beneath the corresponding student $S D$. To continue with the example of Grade 1 ELA gains, we expect that 95% of students would have an average learning gain between 4.4 and 42.7 ELA test score points. Therefore, in first grade,
students at the high end of the PVR gain about 80% more than the average student.

Estimates of the $S D$ of school-year learning gains across students are relatively consistent across school years and subjects-generally in the range of 6 to 10 test score points. In grades that exhibit smaller average school-year gains, this variation implies larger discrepancies across students. For instance, in eighth grade, when average growth is only 4.4 test score points during the school year, we see a 95% PVR across students of -7.0 to +15.9 points. Here, students at the top of this PVR will experience nearly four times larger gains than the average student. Students at the lowest end of the same PVR, however, are actually losing ground during eighth grade.

To juxtapose mean gains/losses with the variation around them, we calculate the ratio of the variation ($S D$) across students for each learning gain to the mean learning gain. Larger ratios indicate greater variability relative to the mean gain. In first-grade ELA, that ratio is about 0.41 (9.7/23.7), indicating that the $S D$ is a little less than half the size of the mean gain. In ELA, that ratio grows slowly across grades and reaches 1.3 in Grade 8 (i.e., the $S D$ is now about 30% larger than the mean). The ratio also increases across grades in math but less dramatically-from 0.40 in first grade to 0.91 in eighth grade. However, the fact that the relative variability in learning gains grows as students progress through school may suggest that inequities in achievement accumulate to some extent during school years, as students who are underprepared are left further and further behind with each successive grade.

During Summers

While the variability in school-year patterns are interesting in and of themselves, our main interest lies in whether the summer gains/losses vary more than the gains in the school-year periods. This has direct implications for our understanding of when discrepancies in student achievement arise across the course of students' school-age years. Turning to the third columns of Table 3 (ELA) and Table 4 (math), we see that the $S D$ for a given summer tends to be a little smaller than the $S D$ in the preceding school year (with the exception of first grade). For instance, in third-grade math, the $S D$ is 6.6 in the school year and 3.6 in the following summer. This is expected; the summer is about one third the length of the school year, and so gains will be smaller. However, in a relative sense, the summer SDs are much larger with respect to the means. In ELA, the SD-to-mean ratios described above are much larger in summers, ranging from 1.4 to as high as 5.2. A ratio of 5.2 indicates that the $S D$ is more than five times larger than the mean loss. Recall that the largest such ratio during a school year was only 1.4. In math too, we see that the summer ratios, which range from 0.8 to 2.3, are larger than the school-year ratios (which only range from 0.40 to 0.91). Keep in mind that this larger summer variation is arising in a comparatively
shorter time (around 3 vs. 9 months). This highlights the fact that a great deal of variability in gains/losses is packed into a relatively short time frame.

The PVRs are large for SLL. Take second-grade math as an example: SLL in Grade 2 for math (fourth column of Table 4) ranges from -16.3 to +6.8 . While students at the top of that PVR are gaining during the summer another 32% of average growth from the preceding second-grade school year (6.8/ 18.6), students at the bottom of the PVR will lose during the summer just as much as the typical student gained in second grade. Looking across all grades in ELA, we find that students at the top of the summer loss PVR will gain during the summer from 45% to 154% of the mean growth in the preceding grade (12% to 86% for math). However, students at the bottom of the summer loss PVR will lose during the summer from 93% to 194% of the mean growth in the preceding grade (73% to 136% for math). In sum, some students experience accelerated learning during the summer relative to the preceding school year, while others lose nearly all of their prior gains.

The takeaways for RQ2 are also illustrated visually in Figure 3 (ELA) and Figure 4 (math), wherein we present box plots of individual students' empirical Bayes estimated learning gains and losses in each school year and summer. These concisely capture the essence of what is presented in the tables: larger gains during school years that diminish across grades, smaller average losses during summers that are more consistent in magnitude, but real variability around typical gains/losses. In the online Appendix B, we replicate Figure 3 (ELA) and Figure 4 (math) using the results from models using a shorter, three-grade increment. Though the data coverage is sparser before first grade and after ninth grade, we do include those grades in the online Appendix B.

In sum, students certainly appear to vary in terms of how much they learn during the school year, but most students tend to exhibit some test score gains while in school. However, the picture in the summer is quite different. While our results redocument the mean SLL phenomenon, this finding obscures a more problematic pattern: For mostly unknown reasons, ${ }^{21}$ certain students can gain at a faster rate in the summer than the mean rate in the preceding school year, while other students could lose most of what is typically gained.

RQ3: Student-Level Correlation of Summer Gains/Losses Across Summers

Up to this point, we have highlighted important variability in summer learning patterns across students. However, if that phenomenon occurs to students randomly-that is, a student might gain in one summer and then randomly lose in the next-then the contribution of SLL to end-of-school achievement disparities would be limited. However, if the same students tend to experience losses summer after summer, while others gain summer after summer, it would lead to a more dramatic "fanning out" of student

Figure 3. ELA: Boxplot of students' empirical Bayes estimated gains/losses across grades.
Note. $\mathrm{ELA}=$ English language arts; $\mathrm{Gr}=$ grade; Summ Aft. = summer after.

Figure 4. Math: Boxplot of students' empirical Bayes estimated gains/losses across grades.
Note. Gr = grade; Summ Aft. = summer after.
outcomes as they progress through school. We would be particularly concerned if the students who exhibit the greatest summer losses also tend to be from historically marginalized student populations-a question that has been taken up in many prior SLL studies. However, since student demographics appear to only account for about 4% of the variance in summer learning rates (von Hippel et al., 2018), we explore the systematicity of SLL across grades beyond just the differences by race and class.

To explore this question empirically, we examine from our multilevel models the estimated covariances of students' summer losses across grades. ${ }^{22}$ The upper panels of Table 5 (ELA) and Table 6 (math) present these covariances (expressed as correlations). Positive correlations are the most problematic: Summer losses accrue to the same students over time in a way that would contribute to the widening of end-of-school student outcomes. Correlations near 0 would suggest that gains/losses occur randomly. In ELA, all the correlations are positive (between 0.12 and 0.65), and most are substantively large. The corresponding correlations are also positive in math, ranging between 0.10 and 0.65 . This suggests that students who lose ground in the summer tend to also lose ground in subsequent summers. Likewise, students who make gains in one summer are also more likely to make gains in other summers. While few other studies have presented similar correlations across summers, von Hippel et al. (2018) also find a positive (though weaker) relationship between learning rates in the summers after K and Grade 1 for reading (+0.06) in ECLS-K:2011, but interestingly, they find that relationship is negative (-0.21) in math.

In the lower panels of Table 5 (ELA) and Table 6 (math), we also present the correlations of summer gains with school-year gains. Given that we have observed a notable zigzag pattern in learning trajectories and that the majority of students do exhibit learning gains while in school, we should anticipate that these correlations will be negative, particularly in adjoining periods (e.g., when a student loses ground in the summer after Grade 4, they start Grade 5 in the fall from a lower point from which to grow). Indeed, this is what we observe. For ELA, all but one ${ }^{23}$ of the 16 correlations presented in the lower panel of Table 5 are negative, and correlations from adjoining periods are the strongest. Of course, the more the time that separates the given summer (rows) and school year (columns), the weaker that negative relationship becomes. For instance, school-year gains in Grade 1 exhibit a negative correlation of -0.41 with summer gains/losses in the summer directly after Grade 1, -0.23 with the summer after Grade 2, -0.01 with the summer after Grade 3, and +0.01 with the summer after Grade 4 . The results for math (lower panel of Table 6) follow a very similar pattern. These findings are also consistent with those of von Hippel et al. (2018), who also report negative correlations between summer and school-year learning rates across Grades K, 1, and 2 on the order of -0.55 to -0.21 in both reading and math. ${ }^{24}$

Table 5
ELA: Student-Level Correlations of Estimated Summer Gains With Both School-Year Gains and Summer Gains in Other Grades

Summer After \longrightarrow	Correlations (Summer, Summer Gains) Across Grades						
	Grade 1, Sum.	Grade 2, Sum.	Grade 3, Sum.	Grade 4, Sum.	Grade 5, Sum.	Grade 6 Sum.	Grade 7, Sum.
Sum. after Grade 1	1.00						
Sum. after Grade 2	0.65	1.00					
Sum. after Grade 3	0.28	0.57	1.00				
Sum. after Grade 4	0.20	0.25	0.56	1.00			
Sum. after Grade 5					1.00		
Sum. after Grade 6					0.54	1.00	
Sum. after Grade 7					0.12	0.57	1.00

Correlations (Summer and School-Year Gains) Across Grades
School

Grade 1, Grade 2, Grade 3, Grade 4, Grade 5, Grade 6, Grade 7, | | Year \longrightarrow | SY | SY | SY | SY | SY | SY |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sum. after Grade 1	-0.41			
Sum. after Grade 2	-0.23	-0.51		
Sum. after Grade 3	-0.01	-0.17	-0.63	
Sum. after Grade 4	0.01	-0.12	-0.19	-0.53

Sum. after Grade $5 \quad-0.61$
Sum. after Grade 6

$$
\begin{array}{ll}
-0.09 & -0.58
\end{array}
$$

Sum. after Grade $7 \quad-0.07 \quad-0.08 \quad-0.66$
Note. In this table, we present the relevant off-diagonal elements of the covariance matrix, in the units of correlations. The model is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1\%) students have all the 19 test scores from first through eighth grade. We therefore cannot estimate correlations across these two models. ELA = English language arts; SY = school year; Sum. = summer.

RQ4: The Role of Summers in Producing End-of-School Outcome Disparities

Taken together, these three findings-RQ1: slightly negative mean summer losses, RQ2: large variances in summer loss/gains, and RQ3: systematic gain/loss patterns across summers-imply that end-of-school achievement disparities arise at least partly during the summer. How large a role do summers play? To consider this question, we begin by presenting a thought experiment designed to characterize the role of summers between Grades 1 and 8. We imagine a hypothetical scenario in which all students enter first grade at the exact same achievement level and all students experience the exact same (let's say, the mean) learning gain in each grade while school is in session. If there were no summer periods, all students in this scenario

Table 6
Math: Student-Level Correlations of Estimated Summer Gains With Both School-Year Gains and Summer Gains in Other Grades

Summer After \longrightarrow	Correlations (Summer, Summer Gains) Across Grades						
	Grade 1, Sum.	Grade 2, Sum.	Grade 3, Sum.	Grade 4, Sum.	Grade 5, Sum.	Grade 6, Sum.	$\begin{gathered} \text { Grade } 7, \\ \text { Sum. } \end{gathered}$
Sum. after Grade 1	1.00						
Sum. after Grade 2	0.65	1.00					
Sum. after Grade 3	0.15	0.43	1.00				
Sum. after Grade 4	0.09	0.15	0.49	1.00			
Sum. after Grade 5					1.00		
Sum. after Grade 6					0.42	1.00	
Sum. after Grade 7					0.10	0.53	1.00

Correlations (Summer and School-Year Gains) Across Grades

Sum. after Grade 1	-0.56						
Sum. after Grade 2	-0.38	-0.57					
Sum. after Grade 3	-0.08	-0.14	-0.60				
Sum. after Grade 4	-0.06	-0.13	-0.10	-0.40			
Sum. after Grade 5					-0.68		
Sum. after Grade 6			-0.08	-0.59			
Sum. after Grade 7				-0.07	-0.09	-0.72	

Note. In this table, we present the relevant off-diagonal elements of the covariance matrix, in the units of correlations. The model is run separately on early grades and later grades. Because the panel is only 9 years long, very few (less than 1\%) students have all the 19 test scores from first through eighth grade. We therefore cannot estimate correlations across these two models. SY = school year; Sum. = summer.
would end eighth grade with the same test score because no variation in gains arises while in school. We now return to the results from our multilevel model to characterize three plausible student experiences during the summers following each grade: the typical gain among students in the top, middle, and bottom thirds of a given summer's gain/loss distribution. ${ }^{25}$ We now illustrate these three levels of summer experiences in Figure 5 (ELA in top panel, math in bottom panel) while assuming that school-year gains are always equal (i.e., parallel slopes of dashed blue lines from fall to spring).

Figure 5 shows how the differences in summer experiences by themselves would lead to sizeable achievement over time. In ELA, the spread in test scores at the end of eighth grade is from about 185 to 255 test score points (and about 200-265 in math) -around 2.5 SDs of spring eighth-grade

Atteberry, McEachin

Figure 5. Math and ELA: Assume equal learning in school, three levels of summer gains/losses.
Note . ELA = English language arts; SLL $=$ summer learning loss; SY $=$ school year; $\mathrm{Gr}=$ grade; S = summer; $\mathrm{F}=$ fall.

RIT scores. This thought experiment illustrates the idea that even in an ideal world, where school inequities could be eliminated, achievement disparities would arise simply because of the summer break. The "fanning out" of achievement during these school-age years would need to be addressed in large part with respect to summer experiences.

Conclusion

Reflections on Findings

In this article, we conduct a thorough exploration of the seasonality of learning from a data set covering nearly 18 million students in 2008 through 2016 across all 50 states. We focus on characterizing the degree of variability in students' summer experiences and the role of summers in contributing to end-of-school achievement disparities. We find that students, on average, do indeed lose meaningful ground during the summer period in both math and ELA.

We add to the existing research by estimating the total variance across students in SLL. For instance, consider the SLL pattern after second grade, in which the average school-year gain is 18.6 points in math. During the summer that follows, the 95% PVR indicates that some students will lose as much as 16.3 test score points in math during the summer, while other students could gain up to 6.8 test score points (relative to a mean SLL of 4.8 points). Students do also exhibit significant variance in school-year learning; however, the lower bounds of the 95% PVR during the school year tend to be much closer to 0 . This means that while some students learn more than others during the school year, most students are moving in the same direction-that is, making learning gains-while school is in session.

The same cannot be said for summers. During the summer, a little more than half the students exhibit SLL, while the other half exhibit summer learning gains. It is clear that the summer period is a particularly variable time for students. We find that some students can in fact maintain average schoolyear learning rates during the summer in the absence of formal schooling. Other students, however, will lose nearly as much as what is typically gained in the preceding school-year.

This remarkable variability in summer learning appears to be an important contributor to the widening achievement disparities during the schoolage years. However, most education research tends to overlook the summer period by focusing on programs, policies, and practices designed to shape schooling experiences. But summers deserve greater attention. In Figure 6, we present the distribution, across students, in the percentage of their absolute value fluctuations from first through fifth grade that occur during summers. One can think of this as the percentage of each student's up/down "pathway" between their initial and end scores that arises during the

Figure 6. English language arts (ELA) and math: Proportion of students' test score fluctuations occurring in summer.
summer. Far from having no role in outcome inequality, we see that, on average, 19.4% of students' ELA test score changes occur during the summer (19.3\% for math). ${ }^{26}$ However, for some students, summer fluctuations
account for much more-even upward of 30%-of where they end up in the achievement distribution.

Our findings also suggest that summer learning gains/losses can be quite large and may accrue nonrandomly across students. If the likelihood of experiencing a loss during the summer were independent across students and grades, we would expect that only 24% of students would exhibit losses in five consecutive summers. ${ }^{27}$ In contrast, we actually find that 52% exhibit losses (in ELA) in all five consecutive years observed-more than double what one would expect by chance. Furthermore, the average student in this group ultimately loses 39% of their total school-year ELA gains during the summer (results are similar for math). This suggests that negative summer decrements tend to accumulate for the same students over time and that these consecutive losses add up to a sizeable impact on where students end up in the achievement distribution.

Contextualizing Findings in the Larger Body of SLL Literature

Historically, SLL studies have not reached consensus on the direction $(+/-)$ of mean SLL. Some find mean SLL (e.g., Allinder et al., 1992; Borman et al., 2005), summer learning stagnation (e.g., Benson \& Borman, 2010; Downey et al., 2008), summer learning slowdown (e.g., Alexander et al., 2001; Burkam et al., 2004; Quinn et al., 2016), or a mix of the three (e.g., Downey et al., 2004; Heyns, 1978; von Hippel et al., 2018). For instance, von Hippel et al. (2018) finds positive summer learning rates in some grades, subjects, or ECLS-K cohorts but flat or negative rates in others. The current study joins those that find mean summer losses. We observe this in every summer between first grade and eighth grade in both math and ELA.

How does the consistency we see across subjects align with not only recent studies but also Cooper et al.'s (1996) meta-analysis, which found, on average, more negative impacts of summer vacation in math-related subjects than in reading-related subjects? Cooper et al. hypothesize that math skills are more the domain of formal schooling while reading happens both at home and in school. However, the authors also point out that SLL skill patterns do not always fall along a math/ELA divide: Rather, the skills they view as more "procedural" (e.g., spelling and math computation) decline the most during the summer (although reading comprehension also appears to decline during summers, which does not align with this theory). Since we cannot disaggregate our results to more specific math and reading skills, it is less clear whether our findings are in conflict with those of Cooper et al. Moreover, while Cooper et al. found patterns of skill-specific gains/losses, in more recent studies that document mean SLL, no clear pattern by subject has emerged. ${ }^{28}$

Is the magnitude of mean SLL similar across studies? As a reminder, the current study covers different grade levels from those covered in the ECLS-K studies; the only overlapping summer is the one after first grade (see Table 1 to review which studies cover which summer grades). This may be partly responsible for any disparate findings. However, in this case (summer after first grade), we think the results from NWEA and ECLS-K:11 are complementary. Take seasonality in ELA learning as an example: von Hippel et al. (2018) document a modest but statistically significant mean SLL rate of -0.02 SDs per month. We find a mean SLL rate of around -2.2 points per month, with a 95% PVR across students that includes 0 (for context, the K fall $S D$ is about 13 points). However, once these mean SLL rates are contextualized with respect to the student-level SDs in SLL, the studies look even more similar: Both show that the student $S D$ is much larger-two to four times larger-than the mean SLL.

Most prior SLL research has focused on SES or racial/ethnic gaps in SLL, which is not the focus of the current study. As highlighted in Table 1, we are aware of only one other study that examines seasonal patterns of unconditional variance in SLL. ${ }^{29}$ Our results support two primary claims. First, we find that variation in achievement grows significantly from Grades 1 to 8. Second, summer learning varies dramatically and relatively more so than school-year learning.

With respect to the first claim, while we find evidence of widening achievement disparities when we follow students from Grades 1 to 8, prior research has not reached consensus on this matter. Claessens et al. (2009) used the IRT-based scale score versions of achievement from ECLS-K:99 and document SDs that grow from Grade K to 8 by $141 \% .{ }^{30}$ Test score scaling appears to be crucial in this debate, however, because when von Hippel et al. (2018) used improved, IRT-based theta achievement measures to report grade-specific $S D$ s of scores, they actually found that those $S D$ s shrink from Grade K to 2. Despite the fact that both the current study and von Hippel et al. (2018) use vertically scaled scores, the former indicates that variation grows, while the latter suggests that variation may shrink.

This debate about whether or not achievement disparities widen as students move through school is long-standing. It may seem counterintuitive that as students move through school, experiencing both different schools and different summer vacations, their achievement would become more homogeneous. But again, test score scaling will prove central to this question. Vertically scaled scores are probably the appropriate theoretical approach to measure growth over time, yet because the assumptions of vertical scales are hard to verify, it is difficult to conclude that a given scoring technique indeed yields the "right" scores. Vertically scaled scores, too, can suffer from measurement artifacts (e.g., scale shrinkage or ceiling effects). Camilli et al. (1993) capture the conundrum succinctly: "It cannot be determined whether developmental scales should show expansion or
contraction. The criteria for determining useful vertical scales constitute a controversial topic of debate and research" (p. 387).

Though not directly related to widening unconditional variance across grades, it is also useful to consider whether other researchers have found that race/ethnicity or SES gaps widen as students move through school, since demographic gaps could at least partly contribute to overall variation. Again, prior evidence is mixed. For instance, Duncan and Magnuson (2011) show increasing SES, Black-White, Hispanic-White, and gender achievement gaps in math between first grade and fifth grade. In Reardon (2008), IRT-based theta scores show that the Black-White gap increases from -0.32 in K to -0.41 in Grade 5. Recent results based on ECLS-K:11 from von Hippel and Hamrock (2019) and Quinn et al. (2016) both suggest that the Black-White gap may grow in the early grades but-in contrast to prior studies that may suffer from measurement artifacts-SES gaps may shrink between Grades K and 2.

With regard to our second claim that summers contribute more to achievement disparities than school years, our results are consistent with those of the one other study in this domain (von Hippel et al., 2018). In both studies, there is meaningful student-level variation in both schoolyear and summer learning. But, as in the current study, von Hippel et al. (2018) find that the student-level SDs of learning rates are larger in summers. They find this in both ECLS-K cohorts, in both subjects, and in the summer after Grades K and 1. Though school years are generally three times longer than summers and thus have more opportunity to contribute to widening achievement disparities, summers clearly play a key role in where students end up in the achievement distribution.

Finally, we can provide some limited reflections on the recent debate about whether inferences concerning the growth and seasonality of SES or race gaps have been distorted by measurement artifacts in earlier work. The von Hippel and Hamrock (2019) article highlights the importance of scaling: The same data set can yield opposing inferences when a different version of the test scores is used. While we find the arguments made by von Hippel and Hamrock regarding preferred measurement properties compelling, we do not have the ability in the current data set to empirically explore these issues since we do not have item-level data. Moreover, their study documents a different phenomenon-race and SES gaps-from the one we document here. We should not necessarily expect that the patterns in overall variability in SLL would move in tandem with patterns by demographics, since demographics seem to explain only a little of the variation in SLL. Regardless of whether or not this is an appropriate interpretation of von Hippel and Hamrock's findings, their study has shaken some people's confidence in the idea that SLL matters. However, as in von Hippel and Hamrock, we too use vertically scaled test scores and still find clear evidence that SLL exists and contributes substantially to where students end up in the achievement distribution. This suggests that SLL is very much worthy of continued research.

Study Limitations

First and foremost, the NWEA data set does not include key variables to explore SLL gaps (e.g., FRPL, language, special education status, links to teachers). In addition, the current study rests on the assumption that NWEA's RIT scores are a valid measure of student math and reading in both fall and spring periods and over time (i.e., vertical scaling). NWEA's MAP test is a formative assessment without stakes, and it is not entirely clear that there are incentives in place for students and teachers to take it equally seriously in the fall and the spring. Students tend to spend slightly less time on their fall tests than on their spring tests. One would be concerned if this signals that students do not put forth as much effort on their fall assessments, thus making SLLs appear larger than they actually are. We believe that the difference in time spent is not large (about 6 additional seconds per item, on average, in the spring), and we find that controlling for time spent on tests affects the results very little. In addition, most of the analyses herein do not rely on making direct comparisons across distal grades, thus reducing the reliance on vertical scaling properties for these particular inferences. That said, the findings herein should be considered with these caveats in mind.

Implications

Our results show that summers contribute more to achievement disparities than school years. Our findings to this effect align with prior work (e.g., Downey et al., 2004; von Hippel et al., 2018), though the current study provides perhaps the most comprehensive empirical analyses to date, given its large sample, extension beyond the early grades, and focus on overall variation.

This finding has implications for outcome inequality, yet it can be viewed through two different lenses. On one hand, it can be interpreted for what it says about summers. These periods, it seems, are more relevant for the expansion of outcome variation. Some will find themselves looking to summers as a time for intervention and perhaps even questioning whether long summer breaks should be standard practice.

On the other hand, this finding can be interpreted for what it says about the school year-that is, how we understand the role of schools in the production of outcome inequality. The summer can be thought of as a counterfactual to schooling, giving us a window into how inequality would grow in the absence of the school's influence. SLL researchers have pointed out that if learning rates vary less during the school year than during the summer, schools may be countering some of the powerful forces that exacerbate inequality when school is not in session.

Should schools be reframed, then, as "equalizers"-ameliorating rather than exacerbating outcome inequality? Certainly, this perspective is not widely embraced in the education research community. It is still true that
during the school year, some students gain much more than others. Perhaps, then, it would be more precise to say that schools may not intensify inequality but also cannot fully counter it or even hold it constant. In a sense, this question is a philosophical one that depends on what one thinks the purpose of public schooling is.

We motivate the current study based on the lack of consensus across prior SLL research, along with the recent questions about measurement artifacts in foundational studies. Our goal is to conduct basic research to clarify our understanding of this important phenomenon. Since we focus more on surfacing just how varied summer learning is and how little we understand about it, making specific policy recommendations is premature. Below, we offer our thoughts about potential directions for future applied research.

Since our results show that achievement disparities widen during school years, we should continue to develop policies that change how students experience schools, particularly on issues of access. Yet even in a hypothetical scenario where students all learn the same amount during the school year, the time spent out of school during summer break, by itself, gives rise to much of the dramatic spread of achievement outcomes, on the order of several $S D$ s.

One natural question, then, is whether to extend the school year to reduce summer atrophy and minimize opportunities for this divergence to occur. However existing research on year-round school calendars does not indicate that SLL is mitigated by these schedules (Graves, 2011; McMullen \& Rouse, 2012). It is possible that year-round calendars implemented to address overcrowding (a common impetus) may have different impacts on learning than year-round calendars implemented explicitly to reduce SLL, but to our knowledge this hypothesis has not been tested.

Another policy lever might be to focus on programs that bridge the gap between May and August, like summer school. The causal evaluation of summer school is often fraught, given the nonrandom selection of who is required to enroll and known issues around low attendance (especially in the higher grades). Yet there is growing evidence that summer interventions can help mitigate students' SLL (Kim \& Quinn, 2013; McCombs et al., 2012; McCombs et al., 2015). For instance, seven New Mexico school districts randomized early-grade children in low-income schools into an ambitious (and presumably expensive) summer program called $\mathrm{K}-3+$, which essentially amounted to a full-blown extension of the typical school year for much of the summer period. Early results from the experimental study indicated that the children assigned to $\mathrm{K}-3+$ exhibited stronger literacy outcomes across four domains of the Woodcock Johnson achievement assessment (Cann et al., 2015).

Our results also suggest that we should look beyond schooling solutions to address out-of-school learning disparities. Researchers have pointed to differential resources in terms of families' economic capital, parental time

Atteberry, McEachin

availability, and parenting skill and expectations as potential drivers of outcome inequality (see, e.g., Borman et al., 2005). Many of these resource differences are likely exacerbated by the summer break, when, for some families, work schedules come in greater conflict with reduced child care. Many social policies other than public education touch on these crucial resource inequalities and thus could help reduce summer learning disparities.

Next Steps for SLL

We document the magnitude of a social problem, the role of summers in the growth of achievement inequality. While we can conclude that this happens, and to what extent, the current data set is not well positioned for understanding why summer learning patterns are so varied across students. Though it is an important first step to know when inequality arises and how unequal the learning patterns are, the obvious next question is "What accounts for that variation?"

In some sense, we have reached a precipice on SLL research. It seems clear that summers play a key role in outcome inequality and that the range of students' summer learning experiences is sizeable. Prior research suggests that this variability may fall partly along racial and socioeconomic lines (Alexander et al., 2001; Benson \& Borman, 2010; Borman et al., 2005; Burkam et al., 2004; Downey et al., 2004; Gershenson, 2013; Heyns, 1978; Quinn, 2014; Quinn et al., 2016; von Hippel et al., 2018). However, prior research has also shown that demographic factors only account for a small part of the story here. In an insightful SLL study by Burkam et al. (2004) using ECLS-K:1999 data, the authors leverage the parent surveys of children's home and summer activities in conjunction with student gender, racial, and socioeconomic demographics-that is, most of the first-order candidates for explaining variability. However, they can explain only about 13% of the variance in learning gains in the summer after K. New research is needed to reconcile the fact that summer learning differs dramatically from child to child, but to date we have only limited insight into what accounts for most of that variation.

ORCID iDs

Allison Atteberry (iD https://orcid.org/0000-0002-9409-4372
Andrew McEachin (iD https://orcid.org/0000-0002-5113-6616

Notes

This project was supported in part by the Kingsbury Data Award, funded by the Kingsbury Center at the NWEA, as well as the Smith Richardson Foundation. We are particularly grateful to Dr. Nate Jensen, research scientist at the Kingsbury Center, for his help in acquiring the MAP assessment data. The research was also supported by the Institute of

Role of Summers in Understanding Achievement Disparities

Education Sciences, U.S. Department of Education through Grant R305B100009 to the University of Virginia. All errors are solely attributable to the authors.
${ }^{1}$ Throughout, we use the term "disparities" to refer to any large, potentially systematic variability across students. While "disparities" could refer to group mean differences (e.g., by race/ethnicity or SES), we use "disparate/disparities" synonymously with spread or variability across students. We reserve the term "gaps" only for group mean differences.
${ }^{2}$ Race and SES gaps have been the main focus of prior SLL research (Alexander et al., 2001, 2007; Benson \& Borman, 2010; Borman et al., 2005; Burkam et al., 2004; Downey et al., 2004; Entwisle \& Alexander, 1992, 1994; Heyns, 1978; Quinn, 2014; Quinn et al., 2016; von Hippel et al., 2018; von Hippel \& Hamrock, 2019).
${ }^{3}$ Given the importance of assessing the role of SLL on the development of racial/ ethnic and SES achievement gaps, some of their methodological nuances (Quinn, 2014), and the large amount of variability that remains unexplained by these demographics, exploring race and/or SES gaps in SLL deserves its own separate and full investigation. The goal of the current article is to update the existing knowledge base about overall firstthrough eighth-grade school-year learning gains and subsequent summer loss patterns, document the degree of variability in those patterns, and characterize the extent to which end-of-school achievement disparities arise during summer.
${ }^{4}$ This and many SLL studies specifically examine the summer after kindergarten.
${ }^{5}$ Strictly speaking, most studies actually show that, on average, students do not lose ground during summer but instead either gain less in summer than in the school year (learning rate slows) or have no gains during summer.
${ }^{6}$ A series of studies followed that examined SLL in specific locations (e.g., Allinder et al., 1992, in two rural schools around 1990; Borman et al., 2005, with about 300 students in Baltimore high-poverty schools; Skibbe et al., 2012, with about 380 students in one suburban Midwest town). That said, it has been unclear whether the results from those early studies would generalize either outside of their local contexts or to a vastly different educational landscape up to 40 years later.
${ }^{7}$ In ECLS-K:99, the target number of children sampled at any one school was 24 , and on average 5.8 students were sampled per classroom (based on our analysis of publicly available ECLS-K:99 data; but see also similar reported classroom sample sizes in Gershenson \& Hayes, 2018). However, because only one third of the K students were sampled for fall testing in Grade 1, on average, only 1.5 students per K classroom (3.2 students per K school) possess both the K spring and first fall scores needed to estimate their SLL in the summer after K. About 18\% of K classrooms (and schools) in ECLS-K have more than 3 students with SLL estimates.
${ }^{8}$ We provide a brief summary of their findings with respect to race and SES gaps, using scores that were not standardized by subject-semester-grade, the preferred theta scale from ECLS-K:99, and the most comparable grade ranges: With regard to BlackWhite race gaps, the authors find-across the three data sets-that the gaps grow across grades (with the exception of an aberrant finding from the BSS of 556% shrinkage of the Black-White English language arts [ELA] gap across grades), though that growth is more moderate in the ECLS-K:99 and GRD data sets. In both the BSS and the ECLS-K:99 data sets (preferred theta scores), the authors find that there is no significant difference in how fast the Black-White gap grows in the summer versus the school year. However, in the more recent GRD data set, it appears that these gaps grow more during the school year. With respect to SES gaps, von Hippel and Hamrock (2019) find that while student-level SES gaps appear to grow across grades in the BSS data set, they appear to shrink in ECLS-K:99. Gaps in low- versus high-poverty schools seem to grow when using BSS data and GRD data (though to a smaller degree) but shrink when using ECLS-K:99 data. Both ECLS-K and BSS data sets show that student SES gaps grow faster in the summer, as opposed to the school year, and all three data sets indicate that low- versus highpoverty school gaps grow faster in the summer (with the exception of math results using the GRD).
${ }^{9}$ Here, we highlight the comparison between the ECLS-K IRT-based scale scores (which estimate the number of items a child would correctly answer and are not designed for comparison over time) in their original metric (i.e., not standardized by subject-semester-year) and that same data set's IRT-based theta scores in their original metric.

Atteberry, McEachin

${ }^{10}$ Rambo-Hernandez and McCoach (2015) use a sample that follows a 2006 to 2009 cohort of about 118,000 Grade 3 students as they move through Grade 6 .
${ }^{11}$ It is also administered in the winter by some districts; however, the winter data are not available in the current data set.
${ }^{12}$ We also conducted the analyses presented in Table 3, Table 4, Figure 3, and Figure 4 using only the set of district years with actual school-year start/end dates (rather than extrapolated dates). The results are quite similar and are available on request.
${ }^{13}$ To contextualize the root mean square error, NWEA reports the achievement status norm for ELA as about 161 in the fall of Grade 1 and about 217 in the fall of Grade 8 (Thum \& Hauser, 2015).
${ }^{14}$ Because the summer learning rate is estimated off of just two points-the first and last days of school-the slope between these points is quite sensitive to even minor adjustments. Note that the method we describe assumes that students learn just as much on days in May as they do in, say, February. While there is some evidence that learning rates are relatively linear within the school year (Fitzpatrick et al., 2011; von Hippel \& Hamrock, 2019), there are also reasons to question this assumption, especially given anecdotal reports that the intensity of school activities slows after the spring standardized tests are given.
${ }^{15}$ The analytic samples in this study are first limited to NWEA students observed in Grades 1 through 8, hence the large drop in sample size between the full NWEA sample and the analytic sample in Appendix B.
${ }^{16}$ See Raudenbush and Bryk (2002) for a more complete description of the Bayesian approach to estimation of variances and covariances and specifically for a discussion of how the observed variability in ordinary least squares estimates compares with the empirical Bayes estimate of the variability.
${ }^{17}$ We include fifth grade in both panels to informally check how similar fifth-grade estimates are across the models.
${ }^{18}$ For example, schyr ${ }_{t i}$ takes a value of 1 at the end of sixth grade (i.e., Grade 6 spring test score) and remains at 1 for all observations thereafter. And sumaf $6_{t i}$ takes a value of 1 at the end of the summer after sixth grade (i.e., Grade 7 fall test score) and remains at 1 for all observations thereafter.
${ }^{19}$ For example, Downey et al. (2004) code time variables so that the relevant coefficients thereon represent a linear learning rate per month between the first and last days of school (or first and last days of summer). In contrast, we have chosen to code time dummies so that the relevant coefficients capture the total gain from the first to the last day of a given school year (or the total gain/loss from the first to the last day of summer). As a concrete example, suppose that a hypothetical student gained a total of 9 test score points during the school year but lost 3 of those test score points during the subsequent summer. Under the coding scheme used by Downey et al., the coefficients would be expressed in points per month: +1 in the school year versus -1 in the summer. Under the coding scheme used herein, the coefficients would be expressed in total gains/ losses-that is, +9 in the school year compared with -1 in the summer. This example illustrates how using learning rates makes it more difficult to appreciate what proportion of the school-year gain was lost during the summer. In addition, presenting the estimates as a monthly learning rate may imply to some readers that we have data on what happened on a monthly basis and that the function is, indeed, linear.
${ }^{20}$ The parameters are presented, with a focus on their substantive meaning, in the results section, but for those interested in a more formal road map between research questions and parameters, we provide the following. For RQ1, concerning mean gains/losses, we focus on the β coefficients. For RQ2, concerning student-level variation in gains/losses, we interpret the τ variance parameters from the diagonal of the covariance matrix. For RQ3, concerning whether the same students tend to lose ground summer after summer, we present the off-diagonal elements of the covariance matrix corresponding to $\pi_{2 i}$ and $\pi_{4 i}$ as correlations (take, e.g., the relationship between losses in the summers after sixth vs. seventh grade; for this example, the covariance is $\tau_{2,4}$). For RQ 4, we make use of the student-level Bayes shrunken residuals.
${ }^{21}$ Burkam et al.'s (2004) SLL analysis of ECLS-K:1999 data shows that, taken together, students' gender, racial, and socioeconomic demographics, in conjunction with detailed
information from parent surveys about children's home and summer activities, only account for about 13% of the variance in learning gains in the summer after K .
${ }^{22}$ Returning briefly to Equation 1 for a concrete example, consider the covariance of the $\pi_{2 i}$ values (estimated change in student i in the summer after sixth grade) with the $\pi_{4 i}$ values (in the summer after seventh grade). That covariance ($\tau_{4,6}$) from the covariance matrix captures the extent to which those students who lose ground in one summer tend to be the same ones who lose ground in the next summer. Like the variances presented earlier, these estimated covariances are more conservative than simply taking the $S D$ of student-level gain/loss scores (Raudenbush \& Bryk, 2002). We present the covariance as correlations for ease of interpretation.
${ }^{23}$ The one exception to the otherwise uniformly negative correlations in the lower panel of Table 5 (ELA) is the near-zero correlation of +0.01 between Grade 1 schoolyear gains and gains/losses in the summer after Grade 4.
${ }^{24}$ In von Hippel et al. (2018), 11 of these 12 reported correlations are negative and between -0.55 and -0.21 , with the one exception of a modest positive correlation $(+.09)$ between the ELA learning rates in the summer after Grade 1 and the Grade 2 school year.
${ }^{25}$ We split the distribution of student-specific, empirical Bayes shrunken summer learning gain/loss estimates into a top, a middle, and a bottom tercile and then calculate the mean learning gain within each of those terciles. We do this separately for residuals for each summer following a school year between first grade and eighth grade.
${ }^{26}$ We calculate for each student the sum of all absolute fluctuations in their test scores during a panel (here, from the start of first grade to the end of fifth grade) and then calculate what percentage of those absolute value fluctuations arose during summers. For a hypothetical student who experiences no change in their scores from the start to the end of the summers (i.e., always flat slopes in the summers), this percentage would be 0 . In contrast, if a hypothetical student's test score changes during the summer were always equal to the student's gain/loss during the school year, the corresponding statistic would be 50%.
${ }^{27}$ Looking across the full study sample, about 75% of all summer-period changes were negative (as opposed to gains or no change). If summer loss events were truly independent, the probability of five consecutive summer losses is .75 raised to the fifth power, which equals about . 24 .
${ }^{28}$ For instance, von Hippel et al. (2018) find that students exhibit slightly greater SLL in reading than in math in the summer after K but equal losses across subjects in the summer after Grade 1. Descriptive results from Quinn et al. (2016) suggest that students gained very similar amounts in math and reading during summers but they perhaps gained slightly more in math in the summer after K and slightly more in reading in the summer after Grade 1. Downey et al. (2004) document modest mean summer losses in reading alongside summer learning gains in math. Many of the studies since 1996 that specifically present mean SLL rates only present these results for a single subject, preventing a crosssubject comparison (e.g., Benson \& Borman, 2010; Borman, 2005; Downey et al., 2008; Skibbe et al., 2012; Rambo-Hernandez \& McCoach, 2015).
${ }^{29}$ Downey et al. (2004) also do so, but they subsequently discount those findings and update them in von Hippel et al. (2018).
${ }^{30}$ Claessens et al. (2009) describe the achievement measures they use from ECLS-K:99 as "IRT scores" (see Table A1, p. 424), and we believe that these are likely IRT-based scale scores (rather than IRT-based theta scores), which model the number of items children would have answered correctly, using summed probabilities of correct answers (Tourangeau et al., 2009).

References

Alexander, K. L., Entwisle, D. R., \& Olson, L. S. (2001). Schools, achievement, and inequality: A seasonal perspective. Educational Evaluation and Policy Analysis, 23(2), 171-191. https://doi.org/10.3102/01623737023002171

Atteberry, McEachin

Alexander, K. L., Entwisle, D. R., \& Olson, L. S. (2007). Lasting consequences of the summer learning gap. American Sociological Review, 72(2), 167-180. https:// doi.org/10.1177/000312240707200202
Allinder, R. M., Fuchs, L. S., Fuchs, D., \& Hamlett, C. L. (1992). Effects of summer break on math and spelling performance as a function of grade level. Elementary School Journal, 92(4), 451-460. https://doi.org/10.1086/461701
Benson, J., \& Borman, G. (2010). Family, neighborhood, and school settings across seasons: When do socioeconomic context and racial composition matter for the reading achievement growth of young children? Teachers College Record, 112(5), 1338-1390.
Borman, G. D., Benson, J., \& Overman, L. T. (2005). Families, schools, and summer learning. Elementary School Journal, 106(2), 131-150. https://doi.org/10.1086/ 499195
Briggs, D. C. (2013). Measuring growth with vertical scales. Journal of Educational Measurement, 50(2), 204-226. https://doi.org/10.1111/jedm. 12011
Briggs, D. C., \& Dadey, N. (2015). Making sense of common test items that do not get easier over time: Implications for vertical scale designs. Educational Assessment, 20(1), 1-22. https://doi.org/10.1080/10627197.2014.995165
Briggs, D. C., \& Domingue, B. (2013). The gains from vertical scaling. Journal of Educational and Behavioral Statistics, 38(6), 551-576. https://doi.org/10.3102/ 1076998613508317
Briggs, D. C., \& Weeks, J. P. (2009). The impact of vertical scaling decisions on growth interpretations. Educational Measurement: Issues and Practice, 28(4), 3-14. https://doi.org/10.1111/j.1745-3992.2009.00158.x
Burkam, D. T., Ready, D. D., Lee, V. E., \& LoGerfo, L. F. (2004). Social-class differences in summer learning between kindergarten and first grade: Model specification and estimation. Sociology of Education, 77(1), 1-31. https://doi.org/ 10.1177/003804070407700101

Camilli, G., Yamamoto, K., \& Wang, M. (1993). Scale shrinkage in vertical equating. Applied Psychological Measurement, 17(4), 379-388. https://doi.org/10.1177/ 014662169301700407
Cann, D., Karakaplan, M., Lubke, M., \& Rowland, C. (2015). New Mexico StartSmart K-3 Plus validation study: Evaluator's report. http://ccpi.unm.edu/sites/default/ files/publications/EvaluatorReport.pdf
Claessens, A., Duncan, G., \& Engel, M. (2009). Kindergarten skills and fifth-grade achievement: Evidence from the ECLS-K. Economics of Education Review, 28(4), 415-427. https://doi.org/10.1016/j.econedurev.2008.09.003
Cooper, H., Nye, B., Charlton, K., Lindsay, J., \& Greathouse, S. (1996). The effects of summer vacation on achievement test scores: A narrative and meta-analytic review. Review of Educational Research, 66(3), 227-268. https://doi.org/ 10.3102/00346543066003227

Downey, D. B., von Hippel, P. T., \& Broh, B. A. (2004). Are schools the great equalizer? Cognitive inequality during the summer months and the school year. American Sociological Review, 69(5), 613-635. https://doi.org/10.1177/0003 12240406900501
Downey, D. B., von Hippel, P. T., \& Hughes, M. (2008). Are "failing" schools really failing? Using seasonal comparison to evaluate school effectiveness. Sociology of Education, 81(3), 242-270. https://doi.org/10.1177/003804070808100302
Duncan, G. J., \& Magnuson, K. (2011). The nature and impact of early achievement skills, attention skills, and behavior problems. In G. J. Duncan \& R. J. Murnane (Eds.), Whither opportunity: Rising inequality, schools, and children's life chances (pp. 47-70). Russell Sage Foundation.

Entwisle, D. R., \& Alexander, K. L. (1992). Summer setback: Race, poverty, school composition, and mathematics achievement in the first two years of school. American Sociological Review, 57(1), 72-84. https://doi.org/10.2307/2096145
Entwisle, D. R., \& Alexander, K. L. (1994). Winter setback: The racial composition of schools and learning to read. American Sociological Review, 59(3), 446-460. https://doi.org/10.2307/2095943
Fitzpatrick, M. D., Grissmer, D., \& Hastedt, S. (2011). What a difference a day makes: Estimating daily learning gains during kindergarten and first grade using a natural experiment. Economics of Education Review, 30(2), 269-279. https://doi.org/ 10.1016/j.econedurev.2010.09.004

Gershenson, S. (2013). Do summer time-use gaps vary by socioeconomic status? American Educational Research Journal, 50(6), 1219-1248. https://doi.org/ 10.3102/0002831213502516

Gershenson, S., \& Hayes, M. S. (2018). The implications of summer learning loss for value-added estimates of teacher effectiveness. Educational Policy, 32(1), 5585. https://doi.org/10.1177/0895904815625288

Gilkerson, J., \& Richards, J. A. (2009). The power of talk: Impact of adult talk, conversational turns and TV during the critical 0-4 years of child development (Technical Report ITR-01-2). LENA Foundation. https://www.lena.org/wp-cont ent/uploads/2016/07/LTR-01-2_PowerOfTalk.pdf
Graves, J. (2011). Effects of year-round schooling on disadvantaged students and the distribution of standardized test performance. Economics of Education Review, 30(6), 1281-1305. https://doi.org/10.1016/j.econedurev.2011.04.003
Heyns, B. (1978). Summer learning and the effects of schooling. Academic Press.
Kaushal, N., Magnuson, K., \& Waldfogel, J. (2011). How is family income related to investments in children's learning? In G. J. Duncan \& R. J. Murnane (Eds.), Whither opportunity: Rising inequality, schools, and children's life chances (pp. 187-205). Russell Sage Foundation.
Kim, J. S., \& Quinn, D. M. (2013). The effects of summer reading on low-income children's literacy achievement from kindergarten to Grade 8: A meta-analysis of classroom and home interventions. Review of Educational Research, 83(3), 386-431. https://doi.org/10.3102/0034654313483906
Kornrich, S., \& Furstenberg, F. (2013). Investing in children: Changes in parental spending on children, 1972-2007. Demography, 50(1), 1-23. https://doi.org/ 10.1007/s13524-012-0146-4

Lee, V. E., \& Burkam, D. T. (2002). Inequality at the starting gate: Social background differences in achievement as children begin school (ED470551). ERIC. https:// eric.ed.gov/?id=ED470551
Magnuson, K. A., Meyers, M. K., Ruhm, C. J., \& Waldfogel, J. (2004). Inequality in preschool education and school readiness. American Educational Research Journal, 41(1), 115-157. https://doi.org/10.3102/00028312041001115
McCombs, J. S., Augustine, C., Schwartz, H., Bodilly, S., McInnis, B., Lichter, D., \& Cross, A. B. (2012). Making summer count: How summer programs can boost children's learning. Education Digest, 77(6), 47-52. https://doi.org/10.1037/ e525802012-001
McCombs, J. S., Pane, J. F., Augustine, C. H., Schwartz, H. L., Martorell, P., \& Zakaras, L. (2015). First outcomes from the National Summer Learning Study (RB-9819WF). RAND Corporation. https://doi.org/10.7249/RB9819
McMullen, S. C., \& Rouse, K. E. (2012). The impact of year-round schooling on academic achievement: Evidence from mandatory school calendar conversions. American Economic Journal: Economic Policy, 4(4), 230-252. https://doi.org/ 10.1257/pol.4.4.230

Atteberry, McEachin

Quinn, D. M. (2014). Black-White summer learning gaps: Interpreting the variability of estimates across representations. Educational Evaluation and Policy Analysis, 37(1), 50-69. https://doi.org/10.3102/0162373714534522
Quinn, D. M., Cooc, N., McIntyre, J., \& Gomez, C. J. (2016). Seasonal dynamics of academic achievement inequality by socioeconomic status and race/ethnicity: Updating and extending past research with new national data. Educational Researcher, 45(8), 443-453. https://doi.org/10.3102/0013189X16677965
Quinn, D. M., \& Le, Q. T. (2018). Are we trending to more or less between-group achievement inequality over the school year and summer? Comparing across ECLS-K cohorts. AERA Open, 4(4), 1-19. https://doi.org/10.1177/2332858418819995
Rambo-Hernandez, K. E., \& McCoach, D. B. (2015). High-achieving and average students' reading growth: Contrasting school and summer trajectories. Journal of Educational Research, 108(2), 112-129. https://doi.org/10.1080/00220671.2013 .850398
Raudenbush, S. W., \& Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (Vol. 1). Sage.
Reardon, S. F. (2008). Thirteen ways of looking at the black-white test score gap (Working Paper No. 2008-08). Stanford University.
Skibbe, L. E., Grimm, K. J., Bowles, R. P., \& Morrison, F. J. (2012). Literacy growth in the academic year versus summer from preschool through second grade: Differential effects of schooling across four skills. Scientific Studies of Reading, 16(2), 141-165. https://doi.org/10.1080/10888438.2010.543446
Thum, Y. M., \& Hauser, C. H. (2015). NWEA 2015 MAP norms for student and school achievement status and growth. Northwest Evaluation Association. https:// www.nwea.org/content/uploads/2018/01/2015-MAP-Norms-for-Student-and-School-Achievement-Status-and-Growth.pdf
Tourangeau, K., Nord, C., Lê, T., Sorongon, A. G., Najarian, M., \& Hausken, E. G. (2009). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K): Combined user's manual for the ECLS-K eighth-grade and $K-8$ full sample data files and electronic codebooks (NCES 2009-004). U.S. Department of Education, National Center for Education Statistics, Institute of Education Sciences. https://nces.ed.gov/ecls/data/ECLSK_K8_Manual_part1.pdf
von Hippel, P. T., \& Hamrock, C. (2019). Do test score gaps grow before, during, or between the school years? Measurement artifacts and what we can know in spite of them. Sociological Science, 6, 43-80. https://doi.org/10.15195/v6.a3
von Hippel, P. T., Workman, J., \& Downey, D. B. (2018). Inequality in reading and math skills forms mainly before kindergarten: A replication, and partial correction, of "Are Schools the Great Equalizer?" Sociology of Education, 91(4), 323357. https://doi.org/10.1177/0038040718801760

Manuscript received May 8, 2019
Final revision received May 11, 2020
Accepted May 19, 2020

[^0]: Note. SLL = summer learning loss; Var = variance; B-W = Black-White; SES = socioeconomic status; BSS = Beginning School Study; ECLS-K:99 = Early Childhood Longitudinal Study: Kindergarten Class of 1999; ECLS-K:11 = Early Childhood Longitudinal Study: Kindergarten Class of 2011; APSCC = Activity Pattern Survey of California Children; ATUS = American Time Use Study (time-diary surveys).
 papers use ECLS-K:99 or ECLS-K.11 to study SLL, which can only be calculated for a subsample of $\sim 30 \%$ of students. The student, school, district, and state N's for this subsample are not consistenty reported in these -2 cle also examines unconditional variance, but in the authors' updated analysis, von Hippel et al. (2018) argue that the 2004 findings may have been affected by measurement artifacts. 'These gaps are not presented by themselves, but only presented crossed with another demographic, such as SES, race/ethnicity, or school segregation status

[^1]: Note. We report Huber-corrected standard errors for the estimated beta coefficients; however, due to the large sample sizes, all of the beta coefficients are highly statistically significant (distinguishable from 0). We focus more on the substantive significance than on the statistical significance in our discussion of these results. HLM $=$ hierarchical linear modeling; $\mathrm{PVR}=$ plausible value range; $\mathrm{N} / \mathrm{A}=$ not applicable; $\mathrm{SY}=$ school year. *p<.10. ${ }^{* *} p<.05 .{ }^{* * *} p<.01$.

