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This article describes an extension to the use of heteroskedastic ordered probit

(HETOP) models to estimate latent distributional parameters from grouped,

ordered-categorical data by pooling across multiple waves of data. We illus-

trate the method with aggregate proficiency data reporting the number of stu-

dents in schools or districts scoring in each of a small number of ordered

“proficiency” levels. HETOP models can be used to estimate means and

standard deviations of the underlying (latent) test score distributions but may

yield biased or very imprecise estimates when group sample sizes are small. A

simulation study demonstrates that the pooled HETOP models described here

can reduce the bias and sampling error of standard deviation estimates when

group sample sizes are small. Analyses of real test score data demonstrate the

use of the models and suggest the pooled models are likely to improve estimates

in applied contexts.

Keywords: coarsened data; categorical data; heteroskedastic ordered probit; proficiency

data

States administer millions of standardized assessments to public school stu-

dents annually as a part of their school accountability systems. The results of

these assessments are often made publicly available only in highly coarsened

form and so are much less useful than they might be. Many states, for example,

report the number students in a particular school or district scoring in each of a

small number of ordered performance categories, such as “basic,” “proficient,”

or “advanced,” rather than reporting the overall mean and standard deviation of

students’ scores. These are referred to as “coarsened” test score data because they

arise from coarsening continuous test scores according to a set of predetermined

cut scores. Such data have many widely recognized shortcomings (Ho, 2008; Ho

& Reardon, 2012; Holland, 2002; Jacob et al., 2014) but continue to be a primary,
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and sometimes the only, publicly available source of state or district achievement

test data. Having access to estimates of the mean and standard deviation of test

scores can support a wider range of interpretations and analyses, ultimately

leading to more accurate and useful interpretations about student achievement.

Reardon et al. (2017) described how heteroskedastic ordered probit (HETOP)

models can be used to estimate the underlying means and standard deviations of

the test score distributions based on coarsened test score data via maximum

likelihood (ML), thus overcoming some limitations of the coarsening. In addi-

tion, because HETOP models use only ordinal information in the data, they do

not rely on common interval scale assumptions. This fact provides some inter-

pretational benefits and allows the models to be connected to other widely used

ordinal statistics, as we describe in more detail below. Use of the HETOP model

in this context does require that the coarsened scores in each group be based on a

common test (or other measure) across groups that is coarsened using a common

set of cut scores. At the same time, HETOP models can readily be applied to

other contexts in which grouped, ordered-categorical scores are available, and

there is a need to summarize or compare the underlying distributions across

groups. Examples include analyzing the aggregate responses to a Likert-style

survey item across groups or across time, comparing aggregated Apgar (1953)

scores across hospitals or regions, or analyzing continuous variables, such as

income, that are reported in ordered categories in aggregate data sources such as

the census.

The HETOP model described by Reardon et al. (2017) has some important

limitations, however. When group sample sizes are small, the standard deviation

estimates produced by the HETOP model are negatively biased and have large

sampling variances (Reardon et al., 2017). Sparse data is the primary cause of

this problem; when some groups have no observations in one or more categories,

the coarse data provide limited information about the underlying distribution. In

some cases, finite ML estimates may not exist (Agresti, 2013). These sparse data

problems can occur frequently, particularly in the context of analyzing coarsened

test score data, where group sample sizes are often small and the cut scores used

to coarsen the original test scores may be asymmetrically located throughout the

distribution.

Researchers have proposed several methods to improve small-sample HETOP

estimates. To illustrate how these approaches work, consider a case in which a

HETOP model is used to estimate, from coarsened proficiency data, the distri-

bution of mathematics achievement of third graders in each school across an

entire state. As described in prior work, the HETOP model requires that all

students complete the same test and that scores were coarsened using a common

set of cut scores across all schools. To overcome small-sample problems, Rear-

don et al. (2017) proposed using models that constrain standard deviations to be

equal across some or all schools in the sample. These constrained models attempt

to improve standard deviation estimates for schools with small sample sizes by
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borrowing information from other small schools and estimating a single, com-

mon third grade mathematics standard deviation parameter for these small

schools. In their most extreme form, the constrained models estimate only a

single standard deviation parameter for all schools, regardless of size. Lockwood

et al. (2018) describe Bayesian HETOP models that use a form of shrinkage

estimators to improve small-sample estimates by borrowing information from

other schools that are similar on observed covariates. Both of these approaches

rely on borrowing information across groups (schools, in this case) to improve

small-sample estimates, which can preclude the study of heterogeneity of within-

group variances and rely on the potentially unrealistic assumption that the

within-group variances are equal.

In this article, we propose a generalized version of the HETOP model, which

we refer to as a pooled HETOP model, that can be used to estimate multiple latent

distributions for each group simultaneously when coarsened data are available

from multiple measures or time points. Returning to the case of achievement

testing, analysts will often have access to additional sets of coarsened data for

each school based on tests administered in other grades, years, or subjects. The

pooled HETOP model allows these distributions to be estimated simultaneously,

even when the tests and cut scores vary across grades, years, or subjects. Esti-

mating these distributions simultaneously allows the model to use information

from the same school in other grades, years, or subjects to improve estimates

rather than borrowing information from different schools within the same grade,

year, or subject. The intuition behind our approach is that when possible, it is

preferable to pool information from the same group observed on different occa-

sions rather than to pool information across different groups observed on the

same occasion. This is partly an empirical question, and we analyze test score

data from a national database to evaluate the trade-off between pooling across

versus within groups in the context of aggregate coarsened test score data.

The remainder of the article is organized as follows. The Statistical Models

section provides an explanation of the HETOP model in the context of analyzing

coarsened test score data and describes an extension of the model to define what

we refer to as the pooled HETOP model, which can be used to estimate distribu-

tions across multiple tests simultaneously. The Empirical Test of Pooled Model

Assumptions section analyzes test scores in a national database to evaluate the

plausibility of assumptions made in the pooled HETOP model and to provide

empirical evidence that placing constraints within rather than between groups is

preferable. The Simulation section uses a Monte Carlo simulation to evaluate

how well the pooled HETOP model can recover parameters using small sample

sizes under known conditions and compares performance to the standard HETOP

model and a constrained homoskedastic ordered probit model. The Real Data

Example section uses school-level coarsened proficiency data from a statewide

mathematics assessment to illustrate the use of a pooled HETOP model in prac-

tice. The Discussion section concludes with a brief discussion.
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Statistical Models

To formalize discussion of the HETOP model, let there be a set of G groups

(e.g., schools or districts). Students within each group take the same test, and

their scores are coarsened into one of K ordered proficiency categories using a

common set of cut scores across all groups. We assume that there is an under-

lying, normally distributed latent variable y� within each group that was coar-

sened into the set of K ordered categories based on a set of K � 1 ordered cut

scores denoted c1; : : : ; cK�1, where ck�1 < ck for all k. We define c0 ¼ �1 and

cK ¼ þ1. More formally, we assume that

y�gi *N mg;sg

� �
; ð1Þ

where y�gi represents an unobserved continuous score for student i in group g; mg

and sg are the mean and standard deviation, respectively, in group g. Let N be a

G � K matrix, with elements ngk equal to the number of students in group g

scoring in category k.

We do not observe the values of y�gi but rather observe the ordered categorical

variable xgi, x 2 1; : : : ;Kf g, for each student i in group g, where

xgi ¼ k; if ck�1 < y�gi � ck : ð2Þ

The model-implied proportion of students in group g scoring in category k is

pgk ¼ F
mg � ck�1

sg

� �
� F

mg � ck

sg

� �
¼ Pr ck�1 < y�gi � ck

� �
; ð3Þ

where F �ð Þ is the standard normal cumulative distribution function. This model

is also sometimes referred to as a heterogeneous choice model (e.g., Alvarez &

Brehm, 1995; Keele & Park, 2006; Williams, 2009), a rational model (McCul-

lagh & Nelder, 1989), or a location-scale model (e.g., Cox, 1995; McCullagh,

1980). The use of HETOP models to estimate and interpret the means and

standard deviations of y� in each group is a generalization of the ML-based

estimator of V, an ordinal method for estimating standardized achievement gaps

between two groups described by Ho and Reardon (2012). The model can also be

applied to the context of receiver operating characteristic curves (Dorfman &

Alf, 1969; Tosteson & Begg, 1988).

Following the notation of Reardon et al. (2017), let ngk be the number of

students in group g scoring in category k and let N be the G � K matrix of

observed ngk values. The goal is to estimate the vectors M ¼ m1; : : : ; mG½ �t,
Σ ¼ s1; : : : ;sG½ �t, and C ¼ c1; : : : ; cK�1½ �t.1 In practice, Γ ¼ g1; : : : ; gG½ �t is

estimated in place of Σ, where gg ¼ ln sg

� �
. This ensures that the estimates of sg

will always be positive. Following estimation of Γ, we have Σ̂ ¼ eĝ 1 ; : : : ; eĝG

� 	t
.

This is similar to the regression model with heterogeneous variances proposed by

Harvey (1976). Reardon et al. (2017) describe how to estimate these parameters
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and their standard errors using ML. The estimation is based on expressing the

log-likelihood function for the data as

l M;Σ;CjNð Þ ¼ Aþ
XG

g¼1

XK

k¼1

ngk ln F
mg � ck�1

egg

� �
� F

mg � ck

egg

� �� �
; ð4Þ

where A is a constant based on the multinomial distribution. The scale of the y�

variable is undefined and constraints must be placed on the model parameters to

make the model identified. Reardon et al. (2017) describe different sets of equiv-

alent constraints that can be used, as well as a process to linearly transform the

resulting estimates of M and Σ to a scale such that the overall mean of y� is 0 and

the standard deviation is 1 (i.e., y� is in a standardized metric).

Assumptions and Interpretation of the HETOP Model

The primary assumption of the HETOP model is that test score distributions

are respectively normal and thus a probit link can adequately summarize the data

(Albert & Chib, 1993; Ho & Haertel, 2006; Ho & Reardon, 2012; Reardon & Ho,

2015). Let y denote the latent test scores in their original, continuous metric. The

scores are said to be respectively normal if there is a single, monotonic function

g yð Þ ¼ y� that can transform the original scale scores into the y� metric, in which

the within-group distributions are all normal. The HETOP model estimates the

means and standard deviations of achievement expressed in the y� metric, not

necessarily the original test score metric.

It would be possible to use alternate within-group distributional forms such

as logistic distributions. In that case, the assumption would be that the latent

distributions were respectively logistic. We elect to use normal distributions

(i.e., a probit link function) due to their familiarity for many researchers and

because analyses of real test score data by Reardon et al. (2017) suggest the

respective normality assumption is reasonable and likely to be satisfied in

practice when analyzing coarsened test score data. Prior research using similar

methods in the two-group case to estimate achievement gaps suggests these

models are likely to be robust to violations of respective normality and that the

probit transformation may yield more accurate estimates than the logit trans-

formation (Ho & Reardon, 2012).

The HETOP model parameters can be viewed as ordinal statistics because

they rely only on ordinal information in the data. That is, the y� metric is invariant

to monotonic transformations of the original score scale—any monotonic trans-

formation to the original latent score scale (that also transforms the cut scores)

will lead to identical parameter estimates in the y� metric. Because there may be

doubts about whether test score scales have meaningful interval properties (Bal-

lou, 2009; Briggs, 2013; Domingue, 2014), the choice of a single metric such as y

can be difficult to justify, making this a potential advantage of the HETOP

model. While it would be possible to analyze coarsened proficiency data with
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other methods that rely only on ordinal information in the coarsened scores, we

believe the HETOP models are particularly useful in this context. Many ordinal

statistics focus on making pairwise comparisons between distributions and may

require adjustments for ties (repeat values), which occur frequently in coarsened

data. The HETOP models naturally account for repeat values, while the model

parameters allow one to both make pairwise comparisons between groups and

summarize patterns across more than two groups. The HETOP model para-

meters, for example, can be used to estimate standardized mean differences or

probability-based ordinal effect size measures between pairs of groups (Agresti

& Kateri, 2017), to estimate intraclass correlation coefficients (ICC) among

groups (Reardon et al., 2017), or as outcome measures in regression models.

Problems With the HETOP Model

Although the HETOP model works well for recovering the means and stan-

dard deviations in the y� metric when only N is observed, a number of problems

can occur when attempting to estimate the parameters using ML with small

samples. First, for some patterns of sampling zeros in N, finite ML estimates

may not exist for all groups. Second, even when there may be sufficient infor-

mation for the ML estimates to be defined in theory, computer algorithms may

not converge to a solution or may produce unstable estimates with extremely

poor precision. Such issues are sometimes referred to as fragile identification

(Freeman et al., 2015; Keane, 1992). Third, in cases where the ML estimates do

exist and software can identify the estimates, the simulations in Reardon et al.

(2017) show that there is negative bias and excessive sampling error in standard

deviation estimates when group sample sizes are small (less than 50) and the cut

scores are asymmetrically and/or widely spaced.

Reardon et al. (2017) considered two possible solutions to these challenges.

The first was to fit a homoskedastic ordered probit (HOMOP) model that

constrains all groups to have a common standard deviation. The second was

a partially heteroskedastic ordered probit (PHOP) model that estimates a sin-

gle, pooled standard deviation for all groups with sample sizes below a set

threshold. The HOMOP model makes the potentially unrealistic assumption

that all groups have equal standard deviations, precluding the study of hetero-

geneity of within-group variances. The PHOP model allows for the study of

heterogeneity among some groups but entails the arbitrary constraint that a

subset of groups (here, those with sample sizes below some threshold) have a

common standard deviation.

Lockwood et al. (2018) describe a Bayesian model that addresses these chal-

lenges by borrowing information from other groups and from covariates. As

anticipated, the Bayesian model solves the identification and existence problems

and reduces sampling error of standard deviation estimates, but at the cost of
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additional bias and the requirement that analysts define or estimate appropriate

prior distributions for the latent group parameters.

In the context of recovering achievement test score distributions for schools,

each of these approaches borrows information from students in other schools

taking the same test in the same year because the models are defined assuming

that the coarsened data are from a single test with a common set of cut scores. In

the next section, we describe a generalized version of the HETOP model that

can be used to estimate multiple latent distributions for each group simultane-

ously, even if the distributions are for different measures coarsened using

different cut scores. Estimating the distributions simultaneously allows one

to borrow information from students in the same school taking tests in these

additional years, grades, and subjects. This approach will be preferable, in

theory, if borrowing information from the same group provides better estimates

than borrowing information from other groups. This could occur, for example,

if there is more variability in the relative magnitude of parameters across

schools (within time points) than within schools (across time points). This is

an empirical question that we investigate in the Empirical Test of Pooled Model

Assumptions section with a national database of real test score data, where we

find evidence that there is greater variability in standard deviations across

districts than within districts over time.

The Pooled HETOP Model

When analysts have test score proficiency counts from multiple test admin-

istrations across years or grades for the same G groups, it is possible to pool

information across administrations, resulting in a more general model that may

also improve the estimates of some parameters, such as the estimates of sg. To

define the model, suppose there are coarsened proficiency counts for a set of G

schools across R grades. We now assume there is an underlying variable y� that is

normally distributed within each school g and grade r,

y�gri*N mgr;sgr

� �
; ð5Þ

and that the observed data, xgri 2 1; : : : ;Krf g, consist of ordered proficiency

scores that arise from coarsening these y� values with grade-specific cut scores

such that

xgri ¼ k; if cr k�1ð Þ < y�gri � crk : ð6Þ

The goal is to estimate the school and grade-specific parameters mgr and sgr for

each school in each grade simultaneously.

If we model the mean and standard deviation parameters with parametric

functions of grade and group, with mgr ¼ f g; rð Þ and ggr ¼ ln sgr

� �
¼ h g; rð Þ,

the model-implied probability of student i in group g scoring in proficiency

category k in grade r can be written as
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pgrk ¼ F
f g; rð Þ � cr k�1ð Þ

eh g;rð Þ

� �
� F

f g; rð Þ � crk

eh g;rð Þ

� �
¼ Pr cr k�1ð Þ < y�gri � crk

� �
: ð7Þ

Let ngrk be the number of students in group g scoring in proficiency category k in

grade r and let ngr ¼ SK
k¼1ngrk . We can write the log-likelihood of the model in

terms of the parameters in f ðÞ and hðÞ as

l f; h;CjNð Þ ¼ Aþ
XG

g¼1

XR

r¼1

XK

k¼1

ngrk ln F
f g; rð Þ � cr k�1ð Þ

eh g;rð Þ

� �
� F

f g; rð Þ � crk

eh g;rð Þ

� �� �
: ð8Þ

For now, we assume there are the same number of cut scores in each grade level

(though they do not need to be equal across grades), but it is possible to relax this

assumption.2

To connect with the models above, fitting the HETOP model separately within

each grade is equivalent to having fully nonparametric functions f g; rð Þ ¼ mgr

and h g; rð Þ ¼ ggr. Fitting the HOMOP model separately within each grade,

which constrains all groups in a given grade to have the same standard deviation,

uses h g; rð Þ ¼ gr. We consider two alternative forms for hðÞ that leverage infor-

mation across grades but within groups. First, we define a model that estimates a

single scale parameter for each group using

ggr ¼ h g; rð Þ ¼ gg: ð9Þ

Because this model estimates a single standard deviation parameter per group

that is constant across grades, we refer to it as a “fully pooled HETOP model.”

Second, we define a model that estimates the scale parameter for each group with

a group-specific linear function of grade using

ggr ¼ h g; rð Þ ¼ b0g þ b1g � r: ð10Þ

We refer to this as the “linear trend pooled HETOP model.” In Equation (10), b0g

is a unique scale parameter for each group corresponding to the grade level coded

as 0, and b1g is the rate of change in this scale parameter across grade levels.

Although there may be very little information with which to estimate a

group’s mean and standard deviation in a single year or grade, these models

leverage additional data by pooling across multiple grades of data. While the

model described here assumes data from multiple grades are available, the

extension to additional dimensions (e.g., years or subjects) is straightforward.

Pooled HETOP models can be applied most flexibly when pooling across time

(e.g., grades or years) rather than subjects, although this will depend on both

statistical and substantive considerations as we discuss below. In addition, while

we focus on using the pooled model to improve small-sample standard deviation

estimates, the models could be extended to have a functional form for the means

or to include additional covariates in the model that represent other group

variables (such as school characteristics or aggregate student demographic
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information). We focus on the standard deviations because prior work suggests

small-sample standard deviation estimates are more problematic than small-

sample mean estimates.

The pooled HETOP models defined here treat the group parameters as fixed

effects to be estimated individually. The data structure described above can also

be conceptualized as a multilevel data structure, with repeated observations

nested within groups. One could potentially treat the group-level parameters as

random effects, estimating the distributions of random effects and using a second

step to predict values for specific observations. However, because the tests and

cut scores can vary across the different levels (i.e., repeated grades or years), the

model allows for heteroskedasticity, and individual-level data are not available,

estimating these models would likely not be possible using standard ordered

mixed effects regression models. The Bayesian HETOP model described in

Lockwood et al. (2018), for example, treats the group parameters as random

variables but was developed under the assumption that a single, common set

of cut scores was used to coarsen all observed scores. Lockwood et al. discuss

additional considerations when selecting between models that treat group para-

meters as fixed (i.e., directly estimated) or random effects.

Pooled HETOP Model Identification

Because the latent y� metric is unobserved and indeterminate, constraints are

needed to identify the scale of the estimates. In the standard HETOP model for a

single grade, for example, two constraints are needed: one constraint to set the

location of the latent y� metric and one to define the scale of the y� metric. To

generalize this for the pooled HETOP models, let Pm be the number of para-

meters used per group to model the means, Ps be the number of parameters used

per group to model the standard deviations, and K be the number of categories per

grade (again assuming an equal number of cut scores in each grade, and assuming

that K � 3 in each grade). In total, the model defines G Pm þ Psð Þ þ R K � 1ð Þ
total parameters and requires at least Pm þ Ps constraints on these parameters to

set the location and the scale of y�. The fully pooled HETOP model, for example,

uses R parameters per group to model the means (i.e., a separate mean estimated

in each grade), but only one additional parameter per group for the standard

deviations, and thus requires Rþ 1 constraints; R constraints to define the loca-

tion for each grade and one additional constraint to set the scale of the standard

deviation parameters. The linear trend pooled HETOP model requires Rþ 2

constraints. Fitting the HETOP model separately within each grade requires

2R constraints to set the location and scale of the estimates in each grade.

There are different ways to select constraints that satisfy these requirements

and that result in statistically equivalent models, where parameters will be linear

transformations of one another, and the model log-likelihoods will be equal. One

possibility, for example, would be to fix the first cut score in each grade level to a
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fixed value (e.g., to 0) and then constrain the second cut score for Ps of the grade

levels to another fixed value (e.g., to 1). In the linear trend pooled HETOP model,

another option is to constrain the weighted sum of group means to be 0 within

each grade and constrain the weighted sum of the b0g and b1g parameters to be 0

across groups.

These constraints assume that ML estimates exist for each relevant para-

meter. Certain patterns of sampling zeroes can prevent finite ML estimates

from existing for some samples, even when the model specifications and data

structure (e.g., number of grades, number of categories, and number of con-

straints) should, in theory, support model estimation. For example, if all obser-

vations in a single group are in the highest or lowest category in a given grade, a

finite ML estimate will not exist for this group mean and hence for the model

overall, despite having a sufficient number of grades, categories, and con-

straints to identify the model as described above. This problem arises due to

patterns in some samples of data rather than due to the specification of the

model. In the Simulation section, we describe an adjustment that can be made to

sampled frequency counts to ensure the existence of finite ML estimates for all

samples. Placing additional structure on the model, for example, by modeling

the group means with a linear trend in f ðÞ, is another potential option for

overcoming problems caused by sparseness.

Pooled HETOP Model Assumptions and Standardization

The HETOP model assumes that the test score distributions are respectively

normal and were coarsened with common cut scores within grades, years, and

subjects. The fully pooled and linear trend pooled HETOP models place addi-

tional constraints on the relative magnitude of group standard deviations, which

imply assumptions about the overall structure of group standard deviation para-

meters. To aid with the interpretation of results, once estimates of m̂gr and ŝgr ¼
exp ĝgr

� �
have been obtained subject to necessary identification constraints, the

estimates can be linearly transformed to a standardized within-grade metric in

which the overall distribution of y� has a marginal mean of 0 and a marginal

standard deviation of 1 within each grade. Parameter estimates and standard

errors on the within-grade standardized metric can be obtained by applying the

formulas described in the appendix of Reardon et al. (2017) to estimates from

each grade separately. Letting m̂0gr and ln ŝ0gr

� �
¼ ĝ0gr be the parameter estimates

after standardizing within grades, standardization leads to the following

relationships:
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m̂0gr ¼
m̂gr � xr

exp Grð Þ
;

ln ŝ 0gr

� �
¼ ĝ0gr ¼ ĝgr � Gr;

ð11Þ

where xr is an estimate of the overall mean in grade r and exp Grð Þ is an estimate

of the overall standard deviation in grade r, in the metric defined by the con-

straints used for identification.

Standardizing estimates within grades makes the assumptions of the pooled

HETOP models slightly less restrictive. In the fully pooled HETOP model, for

example, ggr ¼ gg is constant across grades, but this implies only that for a fixed

pair of grades, r1 and r2, the ratio of any single group’s standard deviations in the

standardized metric will be constant, not that the standard deviations will be

equal in absolute value. That is, the fully pooled HETOP model implies that

s0gr1

s0gr2

¼
exp gg � Gr1

� �
exp gg � Gr2

� � ¼ exp Gr2
� Gr1

ð Þ; ð12Þ

will be constant across all schools (g) for a fixed pair of grades r1 and r2. The

model also implies that the ratio of standard deviations for any pair of groups g1

and g2 will be constant across grades, meaning that s0g1r=s
0
g2r will be constant for

any choice of r. This implies that the rank ordering of group standard deviations

remains constant across grades in the fully pooled model.

The linear trend pooled HETOP model instead implies that the ratio of any

single group’s (standardized) standard deviations across a pair of grades will

depend on the group’s slope, distance of the grades, and grade-specific standar-

dization constants:

s0gr1

s0gr2

¼
exp ggr1

� Gr1

� �
exp ggr2

� Gr2

� � ¼ exp b0g þ b1g � r1 � Gr1

� �
exp b0g þ b1g � r2 � Gr2

� �
¼ exp b1g r1 � r2ð Þ þ Gr2

� Gr1
ð Þ

� �
:

ð13Þ

Likewise, the ratio of standard deviations for any pair of groups changes by a

common factor across grades:

s0g1r

s0g2r

¼
exp b0g1

þ b1g1
� r � Gr

� �
exp b0g2

þ b1g2
� r � Gr

� � ¼ exp b0g1
� b0g2

� 	
þ b1g1

� b1g2

� 	
� r

� �
: ð14Þ

Thus, the linear trend pooled HETOP model does not require that the rank

ordering of group standard deviations remains constant across grades.

We have described the assumptions of the pooled HETOP models when

pooling across grades here. The same assumptions would apply to other dimen-

sions as well. If the model were used to pool across years, for example, the

assumptions would apply to the relative magnitudes of group standard deviations
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across years; if the model were used to pool across subjects, the assumptions

would apply to the relative magnitudes of group standard deviations across

subjects. In addition to the statistical assumptions described here, one must

consider whether it makes sense substantively to pool across dimensions, some-

thing we discuss further below. In the next section, we evaluate the plausibility of

these assumptions about the relative magnitudes of group standard deviations

within subjects across grades and years in an empirical data set.

Empirical Test of Pooled Model Assumptions

This section analyzes district-level test score proficiency data from 40 states

to evaluate whether there is evidence that the patterns among relative magnitudes

of district-level standard deviations are consistent with the assumptions made by

the pooled HETOP models introduced above. We use publicly available data

from the Stanford Education Data Archive Version 2.1 (SEDA; Reardon et al.,

2018). SEDA contains estimated mathematics and English/Language Arts (ELA)

Grade 3 through 8 test score means and standard deviations for nearly every U.S.

public school district in the 2008–2009 through 2014–2015 school years.

The means and standard deviations in SEDA are estimated by fitting partially-

constrained HETOP models separately in each state, grade, year, and subject

using aggregate district-level proficiency counts obtained from the EDFacts

database (Fahle et al., 2018). Because our goal is to study variation among group

standard deviations, we exclude standard deviation estimates that were con-

strained during estimation and focus only on freely estimated standard devia-

tions. The exact sample restrictions are described in the Appendix available in

the online version of this article. The final sample consists of 620,588 unique

standard deviation estimates across 40 states and 9,266 unique districts. Each

district has between 1 and 42 repeated observations (across six grades and 7

years) in each subject, with an average of approximately 34 observations per

district–subject. On average, there are 231 districts per subject and state, ranging

from 54 to 699.

Models

SEDA contains estimates of s0grt with an associated standard error for each

district g in grade r and year t in each state and subject. These estimates are on a

standardized metric such that within each state, subject, grade, and year, the

weighted sum of the means is 0 and the total student-level variance is equal to

1. If the assumptions about the relative magnitudes of standard deviations for the

fully pooled or trend models are met for a particular state by subject data set, then

the natural log of the standardized values should be related to the ggrt values that

would be obtained by fitting a fully pooled or trend HETOP model as
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ln s0grt

� �
¼ g0grt ¼ ggrt þ Grt ¼ b0g þ b1gr þ b2gt þ Grt: ð15Þ

This implies that if the fully pooled or trend HETOP model assumptions

are valid, the g0grt parameters should follow a linear function of grade and

year, net of grade-year specific fixed effects Grt. In the case of the fully

pooled HETOP model with constant gg parameters, b1g ¼ b2g ¼ 0 for all

groups, and the g0grt parameters would be a group-specific constant plus a

grade-year-specific fixed effect.

We fit two precision-weighted hierarchical linear models (Raudenbush &

Bryk, 2002) for each state–subject data set, with estimates ĝ0grt ¼ ln ŝ0grt

� �
as

outcomes. The first model includes grade–year fixed effects and a random inter-

cept for each district and represents the structure assumed by the fully pooled

HETOP model in each state–subject data set. The second model includes grade–

year fixed effects as well as random intercepts, grade trends, and year trends for

each district and represents the structure assumed by the linear trend HETOP

model with both year and grade trends for each district. These models are used to

study two important patterns in the data. First, we use results from Model 1 to

estimate the proportion of variance in ggrt values that is between rather than

within districts. If there is more variability between than within districts (net

of grade and year fixed effects), this suggests that pooled or trend HETOP models

are likely to be preferable to models that place constraints across districts. Sec-

ond, we test whether adding grade and year trends in Model 2 explains a statis-

tically and practically significant amount of the within-district variability of ggrt

values. If the grade and year trends explain a substantial proportion of within-

district variability, it suggests that the trend HETOP model will be preferable to

the fully pooled HETOP model.

Results

Across the 80 state–subject data sets, in Model 1 on average, 65% of the total

variance in ggrt values in ELA (range 41%–88%) and 64% in Math (range 43%–

89%) was between rather than within districts. The ratio was less than 50% in

only 7 of the 80 models. This suggests that in nearly all cases, the fully pooled

HETOP model that places constraints within districts (across years and grades)

would be preferable to the HOMOP model that places constraints across districts

(within years and grades). In Model 2, the variance of year and grade trends was

statistically significant in all but in 1 of the 80 state–subject data sets, suggesting

that a linear trend pooled HETOP model with district-specific grade and year

trends would be preferable to a fully pooled model without these trends. Adding

the grade and year trends reduced the unexplained within-district variability in

ggrt values by approximately 35% for ELA and 29% for Math, on average,
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relative to the fully pooled HETOP model. This suggests that including district-

specific linear trends explains a substantial proportion of variability that is not

explained by the fully pooled HETOP model.

We can also use the magnitude of the estimated variance components to

quantify the anticipated gains in accuracy obtained by fitting one of the pooled

HETOP models relative to a HOMOP model. Based on the magnitude of the

estimated variance components across models, we would expect HOMOP stan-

dard deviation estimates to be within approximately +14% of the true ggrt values

in ELA and +17% in Math. Similar calculations suggest that on average, esti-

mates should be within approximately +8% in ELA or +10% in Math when

using the fully pooled HETOP model, and within +7% in ELA or +9% in Math

when using the linear trend pooled HETOP model. These results indicate that

when placing constraints on standard deviation estimates within subjects, the

linear trend pooled HETOP model should generally produce more accurate esti-

mates of ggrt than either the fully pooled HETOP model or HOMOP model. In the

next section, we use a computer simulation to evaluate model performance under

known conditions.

Simulation

A Monte Carlo computer simulation was used to investigate the small (i.e.,

finite) sample performance of the fully pooled HETOP model and the linear

trend pooled HETOP model (referred to in this section as the “trend HETOP”

model) relative to the standard HETOP and HOMOP models when pooling

data across repeated observations. Data were generated for a set of 25 groups

observed across six occasions. This scenario could represent having data for

25 schools across six grades, and hence, we refer to the occasions as “grades.”

The simulation varied the true group standard deviation structure (either con-

stant values or following group-specific linear trends across grades), group

sample size (sizes of 10, 25, 50, 100, or 200), and cut score locations. The cut

scores used to coarsen the data were placed at either the 20th/50th/80th (mid),

5th/30th/55th (skewed), or 5th/50th/95th (wide) percentiles of the overall

distribution within each grade or were mixed such that scores in the first three

grades were coarsened using the mid, skewed, and wide cut scores, respec-

tively, with the same pattern for grades four through six. Overall, there were

(2 group structures) � (5 sample size conditions) � (4 cut score conditions)

for a total of 40 simulation conditions. We generated and analyzed 1,000

replications (i.e., samples) in each condition. All simulations and analyses

were carried out using Stata v14.2 (StataCorp, 2015), with estimation of the

HETOP models conducted using a custom program written by the authors and

based on the Stata -ml- functions. All simulation code is available upon

request from the authors.
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Data Generation

For each group standard deviation structure by sample size condition, we

began by defining a population of 25 groups with fixed mean and standard

deviation parameters at each grade level. Defining the true group mean and

standard deviation parameters began by creating a 5 � 5 grid of b0g and b1g

values, where the log standard deviation for group g in grade r ¼ 0; 1; : : : ; 5f g
is ggr:

ggr ¼ b0g þ b1g � r: ð16Þ

To determine the true values, we first assigned values of sg equal to 0.75,

0.85, 0.95, 1.05, or 1.15 to each group and defined b0g ¼ ln sg

� �
. These values

were then recentered such that Sgb0g ¼ 0. In the constant standard deviation

condition, b1g ¼ 0 for all groups. In the linear trend condition, a grid with all

possible combinations of the five b0g values and the five b1g values

�0:10; �0:05; 0:0; 0:05; 0:10f gwas defined. These values are more extreme

than the linear trends found in the national district-level data analyzed above but

were similar to those found in the school-level example below and are used in the

simulation to evaluate model performance across a broader range of conditions

that might be encountered in practice. The mean for each group was randomly

sampled (with replacement) from the values �0:6; �0:3; 0:0; 0:3; 0:6f g
within each grade. These group means and standard deviations were standardized

within each grade so that the marginal mean and standard deviation in each grade

were 0 and 1, respectively. The standardized values were used to generate the

random samples for each group in each grade and are the target of recovery.

The standardized sgr and mgr values varied across grades based on the random

assignment of group mean values but produce approximately grid-like structures

of group means and standard deviations within each grade of data in the stan-

dardized metric. The ICC also depends on the randomly selected group para-

meters and ranged from 0.1 to 0.18 (mean 0.14) within grades. The coefficient of

variation among standardized group sg values ranged from approximately 0.15

to 0.39 (mean 0.20) across conditions. These values are similar to those found in

prior analyses with real test score data (e.g., Fahle & Reardon, 2018; Hedges &

Hedberg, 2007). In each replication of each sample size and standard deviation

condition, a normally distributed random sample of size n (either 10, 25, 50, 100,

or 200) was generated from each group for each of the grades and was coarsened

using each set of cut scores (mid, skewed, wide, or mixed).

Parameter Estimation

For each of the four coarsened data sets in each condition, we fit the HETOP

and HOMOP models separately within each grade and fit the fully pooled and

trend HETOP models simultaneously to all grades. The fully pooled HETOP
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model was expected to perform best when the data generating model specified

constant gg values across grades, while the trend HETOP model was anticipated

to perform best in the linear trend condition. The HETOP model fit separately in

each grade is correctly specified given the data generation process but is less

parsimonious than the fully pooled or trend models. The HOMOP model is

incorrectly specified in all conditions. Although we anticipate the separate

HETOP and HOMOP models will suffer from some of the problems described

above, we include them in the simulation to compare their relative performance

to that of the pooled and trend HETOP models.

We used the following procedure to ensure finite ML estimates exist for all

samples. When a sampled count vector had only one nonzero count, had nonzero

counts in only the top and bottom categories, or had nonzero counts in only two

adjacent categories, we replaced the sampled counts for that group with

n̂grk ¼ ngr �
ngrk þ a

ngr þ K � a
; ð17Þ

where ngr ¼ SK
k¼1ngrk is the total group sample size for group g in grade r and

a ¼ 1
K
¼ 1

4
. This process has been referred to as “flattening” (Fienberg & Hol-

land, 1972) or “smoothing” (Simonoff, 1995) the observed frequency counts. The

degree of smoothing depends upon the choice of a, and the resulting proportions

in each cell tend to get flattened toward a uniform distribution. The use of a ¼ 1
K

was suggested by Perks (1947). This method is similar to the common technique

of adding a small constant (often 0.5) to cells in sparse contingency tables

(Agresti, 2013), but it has the desirable property that it leaves the total sample

size for each group unaltered.

Outcomes

Evaluation of model performance is based on four outcomes. First, the con-

vergence rate for each model was recorded, indicating whether the ML algorithm

could reach a solution. We then evaluated the bias, root mean squared error

(RMSE), and confidence interval (CI) coverage for the estimated group means

and standard deviations (in the within-grade standardized metric). The bias,

RMSE, and CI coverage was aggregated across all groups and grades for a

particular condition (i.e., it is the average bias or pooled RMSE across groups

and grades for a given condition). The CI coverage was evaluated by determining

the proportion of individual estimates for which the estimated parameter value

was within +1.96 estimated standard errors of the true parameter value.

To compare the relative gain in efficiency when using a fully pooled HETOP

model rather than separate HETOP models in each grade, we conducted one

additional analysis. For each replication in the equal standard deviation condi-

tion, we fit a fully pooled model using only the first two, three, four, or five

grades of data, in addition to the model using all six grades. We then compared
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the empirical sampling variance of the group standard deviation estimates in

these pooled models relative to the separate HETOP models fit within each

grade. The efficiency ratio between the fully pooled and separate HETOP models

was defined as the ratio of the average observed sampling variance in the sep-

arate HETOP models relative to each of the fully pooled HETOP models, com-

puted as

Efficiency ratio ¼

XG

g¼1
Var ŝg;HETOP

� �
XG

g¼1
Var ŝg;pooled

� � : ð18Þ

This ratio indicates how much smaller the sampling error would be if the group

standard deviations remain constant, and we pool across either two, three, four,

five, or six grades rather than using only a single grade to estimate standard

deviations. A ratio of 1 indicates that sampling error in the separate and pooled

models is equal, ratios greater than 1 indicate the separate HETOP model esti-

mates have larger sampling error, and ratios less than 1 indicate the pooled model

has larger sampling error. A similar calculation was also made to compare the

efficiency of the trend pooled HETOP model to the separate HETOP models.

Results

All models converged successfully. Table 1 summarizes the proportion of

count vectors that were smoothed across simulation conditions. Across all con-

ditions, approximately 6% of all sampled vectors were smoothed, and these were

primarily concentrated in the wide and mixed cut score conditions with small

sample sizes. In the wide cut score condition with n ¼ 10, for example, approx-

imately 43% of vectors were smoothed, while in the mixed cut score condition

with n ¼ 10, approximately 20% were smoothed. While smoothing the count

vectors ensures existence of ML estimates, it may also lead to positive bias in

standard deviation estimates by artificially adding variance to the observed count

vectors, something we discuss below.

TABLE 1.

Proportion of Smoothed Count Vectors Across Simulation Conditions

Cut Scores

N ¼ 10 N ¼ 25 N ¼ 50 N ¼ 100 N ¼ 200

Equal Trend Equal Trend Equal Trend Equal Trend Equal Trend

Mid .035 .057 .000 .003 .000 .000 .000 .000 .000 .000

Mixed .182 .218 .054 .097 .012 .053 .003 .028 .000 .022

Skewed .107 .137 .013 .030 .003 .005 .000 .001 .000 .000

Wide .412 .455 .139 .224 .040 .116 .007 .058 .000 .040
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Group means. We do not show detailed results for the estimated means here

because these were not the primary outcome of interest and because there was

little variation in the results across models. Average bias in estimated means was

indistinguishable from 0 for all conditions. There was very little difference in the

RMSE of means across models, and sample size was the primary factor influen-

cing this outcome. CI coverage was generally good and converged toward the

expected rate (95%) as sample sizes increased, with the following exceptions:

Coverage rates became too low for the HOMOP model as sample sizes increased,

and with skewed cut scores, rates were as low as 90% for the separate HETOP

models with n ¼ 10 and for the pooled HETOP model with n ¼ 200 in the trend

SD condition.

Group standard deviations. Figures 1 and 2 display the bias and RMSE for

estimated standard deviations. Each panel displays results for a single cut score

by group standard deviation structure condition; the x-axis depicts group sample

sizes, the y-axis depicts the outcome of interest, and each line represents a

FIGURE 1. Bias in estimated standard deviations (SDs) by SD structure, cut score type,

and sample size for each model. Constant SD and trend SD refer to different patterns of

true group standard deviations described in text. The mid, skewed, wide, and mixed

headings refer to different cut score locations; mid ¼ symmetric cut scores at approxi-

mately the 20th/50th/80th percentiles; skewed ¼ asymmetric cut scores at approximately

the 5th/30th/55th percentiles; wide¼ symmetric cut scores at approximately the 5th/50th/

95th percentiles; mixed ¼ mix of mid/skewed/wide cut score locations across grades;

HETOP ¼ heteroskedastic ordered probit model; HOMOP ¼ homoskedastic ordered

probit model; pooled ¼ fully pooled HETOP model; trend ¼ linear trend pooled HETOP

model.
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different model. With n ¼ 10 and n ¼ 25, there was a reduction in bias for the

fully pooled and linear trend models relative to the separate HETOP models. An

exception was the wide cut score condition, in which all models slightly over-

estimated group standard deviations, on average, with very small sample sizes; as

noted above, this is likely due to the correction factor applied to ensure ML

existence, which was applied most often in the wide cut score condition. The

fully pooled and trend models tended to slightly overestimate standard deviation

estimates with samples of size n ¼ 10, but this bias was smaller in magnitude

than the negative bias in the separate HETOP model estimates and was reduced

to near 0 with samples of size 25 or larger. The separate HOMOP models

produced a small positive bias on average across nearly all conditions, which

was larger when there were true trends in the standard deviations. This indicates

that the single common standard deviation estimated in the HOMOP model was

slightly larger than the true average within-group standard deviations and is

likely due to the misspecification of the HOMOP model.

FIGURE 2. Root mean squared error of estimated standard deviations (SDs) by SD

structure, cut score type, and sample size for each model. Constant SD and trend SD

refer to different patterns of true group standard deviations described in text. The mid,

skewed, wide, and mixed headings refer to different cut score locations; mid ¼ symmetric

cut scores at approximately the 20th/50th/80th percentiles; skewed ¼ asymmetric cut

scores at approximately the 5th/30th/55th percentiles; wide ¼ symmetric cut scores at

approximately the 5th/50th/95th percentiles; mixed ¼ mix of mid/skewed/wide cut score

locations across grades; HETOP ¼ heteroskedastic ordered probit model; HOMOP ¼
homoskedastic ordered probit model; pooled ¼ fully pooled HETOP model; trend ¼
linear trend pooled HETOP model.
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Figure 2, depicting the RMSEs of the estimated standard deviations, is simpler

to summarize. The separate HETOP models had the largest RMSEs when n � 25

across all conditions, except when there were true trends in the standard devia-

tions, where the separate HOMOP models sometimes had the largest RMSE

when n ¼ 25. The difference was substantial for all conditions except the wide

cut score condition; again, the correction factor used for existence appears to

have caused this difference. The separate HOMOP models had constant RMSE

across different sample size conditions, with similar RMSE to the fully pooled

model when n ¼ 10 but larger RMSE than all other models when group sample

sizes were greater than 50. In the constant SD conditions, the fully pooled

HETOP model had the lowest RMSEs in all but the skewed cut score condition,

where the separate HOMOP models had slightly lower RMSE when n ¼ 10.

While the fully pooled model RMSEs were only slightly lower than the trend

model RMSEs, they were substantially smaller than the RMSEs for the separate

HETOP models in all but the largest sample size conditions. In the trend SD

conditions, the trend HETOP model had the lowest RMSEs in all conditions

except when n ¼ 10 with mid or mixed cut scores, when the pooled HETOP

model had slightly smaller RMSEs. These results were anticipated; the pooled

HETOP model is correctly specified (and most parsimonious) in the constant SD

conditions but is mis-specified in the trend SD conditions. In additional simula-

tions using smaller trends in standard deviations (not reported), the pooled

HETOP model often had lower RMSEs than the linear trend HETOP model,

suggesting that whether the pooled or trend HETOP model achieves lower

RMSEs will depend in part on the magnitude of the standard deviation trends.

The CI coverage rates (not presented graphically) followed anticipated pat-

terns. For the separate HETOP models, coverage rates were between 92.5% and

97.5% for all conditions when n � 100 and were too low in small sample size

conditions (as low as 86% when n ¼ 10) except in the wide cut score condition

where they were too high (99% when n ¼ 10), likely due to the smoothing

correction. For the trend HETOP model, coverage rates were between 92.5%
and 97.5% for all conditions except the wide cut score, constant standard devia-

tion condition when n ¼ 10, where they were also too high. The trend HETOP

model coverage rates were always more accurate than the separate HETOP

coverage rates, except in the wide cut score condition where there were minor

differences. For the fully pooled HETOP model, coverage rates were similar to

the trend model for the constant SD condition but became substantially less

accurate in the trend SD condition as sample sizes increased due to the model

mis-specification. Coverage rates for the HOMOP model were too low across all

conditions due to model mis-specification (never higher than 25% in any con-

dition) and were less accurate with larger sample sizes.

Figure 3 displays the efficiency ratio of the separate HETOP models relative

to the pooled models when pooling across varying numbers of grades. Each panel

represents a different cut score condition, and each line represents the efficiency
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ratio when pooling across a different number of grades. When using only one

grade, the fully pooled model is equivalent to the separate HETOP models,

indicated by the efficiency ratio of 1. In general, the efficiency ratios approach

a value of p, the number of data sets being pooled, indicating that the mean

squared error (MSE) of estimates using the fully pooled model is approximately

1=p times the MSE using the separate HETOP models, a substantial reduction.

Figure 4 plots the observed efficiency ratios of the trend model estimates

relative to the separate HETOP model estimates for the trend SD condition.

Each panel represents a different cut score condition, and each line plots the

efficiency ratio at a single grade level. The trend model has the greatest gains in

efficiency for the middle grades (2 and 3), and the smallest efficiency gains for

the extreme grades (0 and 5), in all but the mixed cut score condition (which we

discuss below). This result is expected because the standard deviations are

effectively predictions from a linear regression model, and regression predic-

tions near the center of the predictor distribution will have smaller variance

than predictions at the extremes. The estimated (or predicted) scale parameter

in the trend model is ĝgr ¼ b̂0g þ b̂1gr, where r is the grade level. In least

squares (LS) regression, the sampling variance of the prediction is (Casella

& Berger, 2002, pp. 557–558) as follows:

FIGURE 3. Efficiency ratios between HETOP and pooled HETOP models by cut score

type, sample size, and number of pooled grades in the constant SD condition. The “p”

refers to the number of grades used to estimate the fully pooled HETOP model. The mid,

skewed, wide, and mixed headings refer to different cut score locations; mid ¼ symmetric

cut scores at approximately the 20th/50th/80th percentiles; skewed ¼ asymmetric cut

scores at approximately the 5th/30th/55th percentiles; wide ¼ symmetric cut scores at

approximately the 5th/50th/95th percentiles; mixed ¼ mix of mid/skewed/wide cut score

locations across grades.
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Var b̂0g þ b̂1gr
� �

¼ s2

n
1þ r � �rð Þ2

Var rð Þ

� �
; ð19Þ

where s2 is the residual error variance, n is the number of observations, �r is the

mean of r, and Var rð Þ is the variance of r. The sampling error in LS thus depends

on the specific value of r being considered—it will be s2=n at the mean of r and

become larger as r gets further from the mean of r. If we assume that the

sampling variance of the scale parameter estimates using the separate HETOP

models represents s2, and the sampling variance of the trend model estimates

can be approximated by the LS result in Equation (19), then the anticipated

efficiency ratio of the trend model estimates for a model with p ¼ 6 grades

coded as r ¼ 0; 1; : : : ; 5 would be approximately 1.91 (for r ¼ 0 and 5), 3.39

(for r ¼ 1 and 4), and 5.53 (for r ¼ 2 and 3). The dashed horizontal lines in

Figure 4 depict these anticipated efficiency ratios.

The approximations appear to work well for the mid, wide, and skewed cut

score conditions but are less accurate for the mixed cut score conditions. In the

mixed cut score conditions, the sampling variance of the separate HETOP esti-

mates varies across grade levels depending upon the distribution of the cut

scores, resulting in the equivalent of a heteroskedastic error term. These results

suggest that the efficiency ratio of the trend model relative to separate HETOP

FIGURE 4. Efficiency ratios between HETOP and trend pooled HETOP models by cut

score type, sample size, and grade in the trend SD condition. The “g” represents each of

the six possible grade levels. The mid, skewed, wide, and mixed headings refer to different

cut score locations; mid ¼ symmetric cut scores at approximately the 20th/50th/80th

percentiles; skewed ¼ asymmetric cut scores at approximately the 5th/30th/55th percen-

tiles; wide ¼ symmetric cut scores at approximately the 5th/50th/95th percentiles; mixed

¼ mix of mid/skewed/wide cut score locations across grades. The mixed cut score con-

dition used mid cut scores for grades 0 and 3, skewed cut scores for Grades 1 and 4, and

wide cut scores for Grades 2 and 5.
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models can be approximated using results from standard LS regression. When cut

score locations vary substantially across grade levels, the approximations may be

less accurate, but substantial gains in efficiency remain. Hence, although the

trend estimates are more efficient than the separate HETOP estimates, the gain

in efficiency depends on factors such as the number and coding of the grades and

the cut score locations.

Summary. These results suggest that when data for repeated test administrations

are available, the fully pooled and trend HETOP models can substantially reduce

bias and sampling error of standard deviation estimates relative to fitting separate

HETOP models, particularly with very small sample sizes. The reduction in bias

is smaller with larger samples or more equally spaced cut scores, but gains in

efficiency remain across conditions. The fully pooled and trend models also had

smaller sampling variance than the separate HOMOP models across nearly all

conditions. Use of the smoothing correction did appear to induce some positive

bias in standard deviation estimates, as anticipated. The results illustrate that the

relative performance of the models depends on many factors including the num-

ber of waves (grades) of data available, group sample sizes, cut score locations,

and the true values of the standard deviations. In the next section, we illustrate

how analysts might go about selecting and estimating a pooled HETOP model

with real data.

Real Data Example

Determining whether to use the fully pooled, linear trend, HOMOP, or full

HETOP model depends on a number of factors including the type of data avail-

able, group sample sizes, location of the cut scores, average values of s0gr, and the

true structure of the s0gr values. If all group sample sizes are large, full HETOP

models that estimate a unique standard deviation for each group will likely be

preferred. Often, however, the choice for estimating parameters of small groups

will be either a model placing constraints across groups (e.g., a HOMOP model)

or a model placing constraints within groups (e.g., a pooled HETOP model). If

data are only available from a single measure or time point, then between-group

constraints are the only option. When data are available from multiple measures

or waves, the choice of model will depend on a combination of statistical and

substantive factors. In this section, we use a single year of publicly reported

coarsened proficiency data from a statewide mathematics assessment adminis-

tered in Grades 3 through 8 to illustrate how analysts might go about selecting a

pooled HETOP model in practice. Here, we will consider models that pool

information from students taking mathematics tests in the same school and year

across different grades.

The data contain coarsened proficiency counts for 124 schools that enrolled at

least 16 students in each grade (data for schools with smaller sample sizes were

Shear and Reardon

25



not reported publicly), resulting in 124� 6 ¼ 744 school–grade cells. There are

K ¼ 4 proficiency categories in each grade, but the tests and cut scores vary

across grades; the third grade cut scores (approximately 7th/26th/65th percen-

tiles) are similar to the skewed cut score simulation condition, while the eighth

grade cut scores (approximately 19th/47th/75th percentiles) are more similar to

the mid cut score condition. The goal is to estimate the mean and standard

deviation of math achievement scores within each school–grade cell from the

coarsened proficiency data. The within-grade sample sizes range from 16 to 310

(mean ¼ 67.9, median ¼ 58), suggesting that small sample bias and sampling

error could be a concern for a large proportion of school–grade cells. There are

also eight school–grade cells that do not have sufficient data to estimate both a

mean and standard deviation without pooling or additional constraints.

The analyses of national district-level data above suggest that, a priori, when

test score data are available across multiple grades, we would expect a linear

trend HETOP model with linear grade trends to be optimal. We also use statis-

tical criteria to select a HETOP model for this particular data set. To do so, we fit

a series of nested HETOP models that can be compared with likelihood ratio

tests. Model 1 estimates a unique mean for each school in each grade while

constraining the log standard deviation to be equal across schools within grades

and is equivalent to estimating a separate HOMOP model in each grade. Model 1

is identified by constraining the weighted sum of the means to be 0 within grades

and constraining the common scale parameter, ln srð Þ ¼ gr, to be 0 in all grades.

Model 2 is the fully pooled HETOP model introduced above that estimates a

unique mean for each school in each grade and a single log standard deviation

parameter for each school, pooled across grades. Model 2 is identified by con-

straining the weighted sum of the means to be 0 within grades and the weighted

sum of the school-specific log standard deviations to be 0 across schools. Finally,

Model 3 is the linear trend pooled HETOP model that estimates a unique mean

for each school in each grade and a pooled log standard deviation with a linear

grade trend for each school. Model 3 is identified by constraining the weighted

sum of the means within each grade to be 0 and constraining both the weighted

sum of the intercepts and the weighted sum of the linear trends to be 0. All three

models allow the cut score locations to vary across grades.3

Table 2 summarizes the results across all three models. First, to determine

whether between- or within-school constraints on the log standard deviations are

preferable for these data, we compare the fit of Models 1 and 2. A likelihood ratio

test at a ¼ 0:01 suggests that Model 2 provides a statistically better fit to the data

(w2 ¼ 481:11, df ¼ 123, p < :001), indicating that constraints within schools

(across grades) are preferable to constraints across schools (within grades). Sub-

stantively, this suggests that the relative variability in student performance tends

to be more similar for students in different grades of the same school than it is for

students across different schools within the same grade. Next, a likelihood ratio
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test comparing Models 2 and 3 suggests adding linear trends to the scale para-

meters for each school also leads to a statistically better fit (w2 ¼ 171:47,

df ¼ 123, p ¼ :0026), implying there is enough systematic change in the relative

variability of student mathematics performance across grades to include the

additional parameters. Thus, for these data, we would select the linear trend

pooled HETOP model to estimate means and standard deviations for each school

in each grade.

Table 2 also summarizes the estimated log standard deviation intercepts and

trends for Models 2 and 3. The summary statistics are not weighted by school

sample size; in which case, the average intercepts and trends would have been

exactly 0 by construction. The average estimated intercepts were similar in

Models 2 and 3 although there was slightly more variation in Model 3 estimates.

The linear trends in Model 3 ranged from �0.136 to 0.120 across schools

(mean ¼ 0.002, SD ¼ 0.044), suggesting a level of heterogeneity in standard

deviations that would lead the linear trend model to provide more accurate

estimates than the fully pooled model based on the simulations. The table also

summarizes the resulting means and standard deviations in the grade-

TABLE 2.

Summary Statistics for Estimated HETOP Models

Statistic Model 1: HOMOP Model 2: Pooled Model 3: Trend

Log likelihood �58,869.534 �58,628.980 �58,543.246

Free parameters 756 879 1,002

w2 GOF 2,031.925 1,556.515 1,380.347

MAD P 0.037 0.032 0.030

b̂0 Mean –0.013 –0.018

SD 0.115 0.151

Range [–0.386, 0.394] [–0.344, 0.483]

b̂1 Mean 0.002

SD 0.044

Range [–0.136, 0.120]

ŝ 0 Mean 0.856 0.852 0.850

SD 0.013 0.098 0.117

Range [0.837, 0.877] [0.569, 1.304] [0.475, 1.413]

m̂0 Mean –0.019 –0.020 –0.020

SD 0.526 0.518 0.519

Range [–1.249, 1.753] [–1.254, 1.512] [–1.266, 1.631]

Note. The rows corresponding to b̂0 and b̂1 represent 124 unique estimates across schools; the rows

summarizing ŝ 0 and m̂ 0 represent 744 estimates although in Model 1 there are only six possible

unique values of ŝ 0. Means and SDs are unweighted. MAD P ¼ mean absolute difference between

predicted and observed proportions; SD ¼ standard deviation; GOF = goodness of fit.
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standardized metric, m̂0gr and ŝ0gr. The estimated means were similar across

models, but as anticipated, the estimated standard deviations differed. While

average ŝ0gr values were similar across models, Models 2 and 3 indicate sub-

stantial additional variability among these estimates (with estimates ranging

from 0.475 to 1.413 across schools and grades in Model 3).

In addition to comparing the relative fit of models, different approaches might

be used to assess overall goodness of model fit. Table 2 reports an overall w2

goodness of fit statistic based on the observed and expected frequency counts in

each category in each school–grade cell. These may be of limited value because

the large sample size could indicate statistically significant misfit that is not

practically significant and because these statistics do not indicate the nature of

model misfit. As a descriptive measure of fit, Table 2 also reports the mean

absolute difference between observed and expected proportions of students scor-

ing in each category for each school–grade cell. Across the 744 school–grade

cells in Model 3, for example, the average difference was 0.030 (range 0:001–

0:137; median ¼ 0.026), indicating that Model 3 appears to accurately charac-

terize the observed proportions for most schools.

Discussion

This article presented a generalization of the HETOP model described by

Reardon et al. (2017) that can be used to analyze grouped, ordered-categorical

data when there are multiple waves of data available for each group. The fully

pooled HETOP model leverages the repeated observations by estimating a con-

stant scale parameter for each group across data sets, while the linear trend

pooled HETOP model is more flexible and allows each group’s scale parameter

to vary linearly across the data sets. The simulations and empirical analyses

above document four primary reasons the pooled HETOP models might be

preferred to standard HETOP models in practice. First, the pooled HETOP mod-

els can be estimated in some cases where there are not sufficient data to support

estimation of full HETOP models. Second, the pooled HETOP models may

better represent observed patterns in group standard deviations than do models

placing constraints across groups, which provides another method to address

sparse data problems. Third, the pooled models reduce bias in standard deviation

estimates relative to full HETOP models when sample sizes are very small,

particularly when cut scores are widely or asymmetrically placed as is common

in coarsened proficiency data. And, fourth, the pooled HETOP models improve

the precision (i.e., reduce RMSE) of estimated standard deviations beyond gains

made through reductions in bias.

Whether these gains are realized in practice will depend on the nature of the

data. When multiple waves of data are available, the pooled or trend HETOP

models will be preferable to models placing constraints across groups if there is

more variability between groups than within. Our empirical analysis of national
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district-level data suggests that constraints within districts and subjects are likely

to produce more accurate estimates than constraints across districts in the context

of coarsened proficiency data and that linear trends are likely to produce slightly

more accurate estimates than fully pooled models. Analysts must also consider

whether it is reasonable to expect greater heterogeneity between or within

groups, and whether a linear trend is conceptually appropriate based on the nature

of the data. It may not be reasonable, for example, to fit a linear trend across data

from different subjects, where the repeated observations cannot be placed in a

logical order as is possible with grades or years. However, it may still be rea-

sonable to fit fully pooled models across subjects if the assumptions about the

relative magnitudes of group standard deviations across subjects are plausible.

The example in the Real Data Example section demonstrated how analysts could

select an appropriate model using theoretical and statistical criteria. The simula-

tion results provide additional information about the conditions under which

pooled HETOP models are expected to lead to the greatest reductions in bias

or RMSE relative to full HETOP or HOMOP models. The anticipated reductions

in sampling error, for example, can be approximated based on the number of

pooled data sets and the coding of the linear predictors used in the trend models.

This article also leaves important directions for future work. As with any

simulation study, many additional factors could have been varied. These factors

include additional structures for the standard deviations (including structures that

do not conform to the linear trends) as well as violations of respective normality.

Another avenue for additional work revolves around the problems caused by

nonexistence of ML estimates. Essentially, this is a problem of small samples

containing limited information about the parameters of interest. In some simula-

tion conditions, for example, when sample sizes were n ¼ 10 for each group and

cut scores were widely spaced, a substantial proportion of group count vectors

needed to be adjusted to guarantee existence of the ML estimates when group

means were freely estimated. A more complete proof of existence conditions for

the ML estimates was not provided and would be a useful extension of the results

here. It would also be worth testing models that place additional constraints (e.g.,

linear trends) on the estimated means as another method for overcoming sparse

data problems and evaluating additional model fit statistics.

As mentioned above, Bayesian and random effects models provide an alter-

native approach to addressing existence and small-sample problems but were

beyond the scope of the present investigation. These models rely on specifying or

estimating prior distributions rather than attempting to estimate each term indi-

vidually (e.g., Hedeker et al., 2009; Kapur et al., 2015). Recent work pursuing a

Bayesian HETOP model (Lockwood et al., 2018) is similar to the framework

described here with an additional random component. However, these Bayesian

models have not yet been extended to simultaneously model data from multiple

measures with potentially varying cut scores. While Bayesian approaches can

overcome problems with the nonexistence of the ML estimates and potentially
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produce estimates with smaller RMSE, they can increase the bias in estimates for

individual groups, require appropriate specifications or estimates of prior dis-

tributions, and as with the HOMOP and PHOP models, they have so far relied on

constraints across rather than within groups. Under certain conditions, including

when estimates might be used in secondary analyses, ML estimates may be

preferable, and in those cases, the models described here are a useful alternative.

Pursuing extensions to these models that incorporate multiple sets of data would

be a useful area for further study.

Finally, we note that the models described in this article can be applied to a

wide range of ordered-categorical data beyond coarsened test scores. The pooled

HETOP models described here are applicable any time analysts have multiple

sets of grouped, ordered-categorical data for a common set of groups and wish to

estimate distributional parameters of an underlying continuous variable. These

data could arise from test scores reported only on ordinal scales such as

Advanced Placement scores, from responses to Likert survey items, or from

continuous variables such as income that are often reported in a coarsened form.
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Notes

1. In some cases, researchers may know the operational cut scores used to

coarsen the original test scores. However, because the original test score

metric may not be the same as the latent, normal y� metric, these cut scores

cannot necessarily be used as fixed values when estimating the other model

parameters. In cases where researchers believe the original scale score metric

meets certain normality assumptions, then it would be possible to treat the cut

scores as fixed values and estimate the remaining parameters relative to those

cut scores. Reardon et al. (2017) discuss this issue in greater detail.
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2. If we restrict consideration to cases where K is equal across grades, the three-

way K � G � R table could be collapsed to a two-way K � ðGRÞ table, thus

making the model equivalent to the heteroskedastic ordered probit (HETOP)

model described above. However, this is only possible if K is equal across all

grades and one constrains the locations of the cut scores across grades to be

equal, neither of which are assumed for the pooled HETOP model in Equa-

tions 5 through 8.

3. Because the tests differ across grades, we do not expect the cut scores to be

equal, but we also compared the fit of models that constrained the cut score

locations to be equal across grades. For all three models, allowing cut scores

to vary across grades provided statistically significantly better fit to the data.

Therefore, we only report the results of models allowing cut scores to vary.
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