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Abstract 
Programming is a complex learning activity that involves coordination of cognitive processes and affective states. 
These aspects are often considered individually in computing education research, demonstrating limited 
understanding of how and when students learn best. This issue confines researchers to contextualize evidence-
driven outcomes when learning behaviour deviates from pedagogical intentions. Multimodal learning analytics 
(MMLA) captures data essential for measuring constructs (e.g., cognitive load, confusion) that are posited in the 
learning sciences as important for learning, and cannot effectively be measured solely with the use of programming 
process data (IDE-log data). Thus, we augmented IDE-log data with physiological data (e.g., gaze data) and 
participants’ facial expressions, collected during a debugging learning activity. The findings emphasize the need for 
learning analytics that are consequential for learning, rather than easy and convenient to collect. In that regard, our 
paper aims to provoke productive reflections and conversations about the potential of MMLA to expand and advance 
the synergy of learning analytics and learning design among the community of educators from a post-evaluation 
design-aware process to a permanent monitoring process of adaptation. 
 

Notes for Practice 

• Multimodal learning analytics gathers insights into learners’ actual behaviour and their cognitive-
affective states, expanding the context and impact of learning analytics research by posing new 
methods and techniques to move forward the synergy between learning analytics and learning design. 

• Measures from multimodal data can expand learning analytics that have the capacity to align with 
learning design and learning theories from the learning sciences, are consequential for learning, and 
can inform and influence the design (or its refinement) of learning activities and objectives in digital 
settings. 

• Use of predictive modelling based on combinations of multimodal data streams affords generation of 
relevant learning analytics measures and showcases how the alignment between learning analytics 
and learning design can be achieved in computing education context. 
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1. Introduction 
Ten years of research in learning analytics (LA) has generated valuable data-driven approaches that assist educators to 
comprehend and evaluate their efforts and innovations in the design of learning activities (Lockyer & Dawson, 2012). 
However, data-driven approaches are not sufficiently informative for explaining inconsistencies, avoiding misconceptions, 
and clarifying contextual conditions that affect learning (Reimann, 2016). In fact, theoretical grounding is essential to 
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identifying relevant associations between LA and learning-oriented phenomena (Gašević, Kovanović, & Joksimović, 2017; 
Neelen & Kirschner, 2017). Although attempts to connect LA with the learning sciences (LS) is emphasized by various 
researchers (Neelen & Kirschner, 2017; Reimann, 2016), the role of theory in this connection is underexplored, both in terms 
of creating effective learning designs (LDs), as well as informing measures and models used in LA. To that end, we aim to 
emphasize the need for LA that are consequential for learning, rather than easy and convenient to collect, as well as 
aligned with LD and learning theories from the LS for which there is adequate empirical evidence (Neelen & Kirschner, 
2017; Reimann, 2016). 

Computing education (CE) is an area in which the use of LA to inform LD offers much promise (Blikstein et al., 2014; 
Hundhausen, Olivares, & Carter, 2017), as programming allows us to capture fine-grained digital traces of learners (Blikstein 
et al., 2014) and is a skill that requires mastering proper teaching strategies and support (Kurland, Pea, Clement, & Mawby, 
1986). Programming is more than just the capability to generate code; it requires application of problem-solving in open-ended, 
unbounded solution spaces (Marion, Impagliazzo, St. Clair, Soroka, & Whitfield, 2007). Educators teach programming through 
authentic learning tasks based on practical educational approaches (e.g., problem-solving), which are considered essential for 
learning (Van Merriënboer, Kirschner, & Kester, 2003). Thus, as a problem-solving activity, programming entails many 
behavioural and cognitive steps, governed by metacognitive awareness and emotions, to accomplish the goal of the task at 
hand (Beattie, Collins, & McInnes, 1997; Dörner & Funke, 2017). For example, when solving complex problems, learners 
need to alter many interrelated variables, some of which cause cognitive disequilibrium (D’Mello & Graesser, 2012) that 
intertwine various behavioural (e.g., attention), cognitive (e.g., memory load), and affective (e.g., frustration) learning 
dimensions. This is also shown in the work of Snow, Corno, and Jackson III (1996) who hypothesize that cognition, motivation, 
and emotions are the three fundamental components of learning, and as such, all should be considered when designing learning 
activities that facilitate deep learning (Beattie et al., 1997). 

Whilst important achievements have been obtained in the last decade in CE using LA (Blikstein et al., 2014; Hundhausen 
et al., 2017), most of the work focuses on modelling and predicting behaviour, and strategies from programming process data 
(i.e., IDE-log data). This approach helped researchers to understand students’ compilation behaviour and design accurate 
scaffolds (Jadud, 2006), explore differences between novices and experts (Blikstein et al., 2014) to improve the pedagogical 
content knowledge (Shulman, 1986), and distinguish various programming strategies students employ to arrive at their 
solutions (Bruce et al., 2004; Perkins, Hancock, Hobbs, Martin, & Simmons, 1986; Turkle & Papert, 1992). As a result, the 
connection between CE and LD has not been sufficiently established (O’Grady, 2012), first, because most of the research in 
LA and CE has been focused on ways that LA can be used to support computer programming (Hundhausen et al., 2017; 
Ihantola et al., 2015), and second, because CE is a relatively young discipline, very dynamic, and highly interdisciplinary. 

To emphasize the importance of LD in CE (Schulte, Magenheim, Müller, & Budde, 2017), we elaborated on the potential 
of multimodal learning analytics (MMLA) to capture data essential for measuring constructs (e.g., cognitive load, confusion, 
frustration, selective attention) that are posited in the LS as important for learning, and cannot effectively be measured solely 
with the use of programming process data (i.e., IDE-log). We also focused on how MMLA can be used to understand how 
effectively students use the opportunities for learning as given in the LD. This exploration assumes the existence of 
comprehensive data generated at various levels (Hundhausen et al., 2017), which can inform and influence the design (or its 
refinement) of learning activities and objectives, particularly in digital settings. For example, if a learner is disengaging because 
there is an increase in cognitive demand, compared to a disengagement situation when a learner is frustrated or bored, a 
proactive intervention should consider different approaches (e.g., explaining misconceptions versus challenging the user). The 
MMLA approach gathers insights into learners’ actual behaviour (not recalled behaviour or subjective impressions as self-
reported data does) and their cognitive-affective states, expanding the context and impact of LA research by posing new 
methods and techniques to move forward the synergy between LA and LD (Blikstein & Worsley, 2016; Ochoa & Worsley, 
2016; Oviatt, Grafsgaard, Chen, & Ochoa, 2018). To that end, MMLA provides significant insights for LDs based on learner 
behaviours that consider the temporal dimension (associated with natural frequencies of behaviour and emotions), as well as 
strategies employed from the LS (e.g., affective learning). Hence, we aim to extend the discussion and provide practical 
guidelines by addressing the following research questions: 

RQ1: What insights can we derive from MMLA that can augment traditional LA with respect to LD in the context of CE? 
RQ2: What implications can MMLA provides to advance the alignment between LA and LD in CE? 
Consequently, we designed an open-ended learning activity (i.e., debugging task) that requires the application of problem-

solving via code generation and adjustment. The IDE-log data was augmented with physiological data (i.e., gaze, electro-
dermal activity [EDA], heart rate, BVP, and skin temperature) and participants’ facial expressions. The findings were used to 
interpret learners’ actual behaviours with respect to potential LD guidelines based on learning theories from the LS for which 
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there is adequate empirical evidence, and selection of LA (informed by theories and grounded in evidence) that are relevant 
and consequential for learning. 

2. Background 
2.1. Learning Analytics for Learning Design 
Learning analytics (LA) is an interdisciplinary field that embraces a holistic approach to study learning and learning contexts, 
and to address questions in educational research (Gašević, Dawson, & Siemens, 2015). However, understanding and 
optimizing learning involves more than just collecting and processing data (Gašević et al., 2017); it also tackles theory and 
learning design activities. For example, educators need to decide how to (re)design the teaching–learning process when 
learning behaviour deviates from the pedagogical intention, and frame aspects of evidence-driven recommendations within a 
socio-technical system (Wise & Jung, 2019). Thus, aligning LA with LD emphasizes the idea that “human decision-making 
and consequent actions are as much a part of any successful analytics solution as its technical components” (Van Harmelen & 
Workman, 2012, p. 4). 

 Lockyer and Dawson (2012) were among the first researchers to highlight the potential of integrating LA and LD, to 
increase the understanding of student behaviour and their engagement with different LDs. The ideas of Lockyer and Dawson 
(2012) have generated research at the intersection of LA and LD that produced several conceptual frameworks (Bakharia et 
al., 2016; Hernández‐Leo, Martinez‐Maldonado, Pardo, Muñoz‐Cristóbal, & Rodríguez‐Triana, 2019; Persico & Pozzi, 2015; 
Rienties, Nguyen, Holmes, & Reedy, 2017). Bakharia et al. (2016) proposed a framework with five LA dimensions that can 
support educators with evaluations of their LDs, and highlighted their role in bringing context to data interpretation. The main 
benefit of this approach where the focus is in the pedagogical intent and centred around the instructor, is that the selected LA 
will be useful and meaningful to the instructor. However, this approach overlooks other relevant LA for which instructors are 
ignorant. Similarly, the work of Hernández‐Leo et al. (2019) extends the role of educators as designers of learning activities, 
and presents a framework of layers (i.e., LA, design analytics, and community analytics) as guidelines for how to leverage the 
benefits of LA into the LD space. Others, such as Persico and Pozzi (2015) focused on representations and tools to connect 
LA with LD, while Rienties et al. (2017) investigated patterns in a ten-year data set to understand what and how LD elements 
affect the engagement, behaviour, and performance of students. The main benefit of Rienties et al.’s (2017) approach is the 
focus on the overall patterns in the data, rather than on the needs instructors have from the generated data. This way, researchers 
might discover relevant associations that are latent and difficult to notice because they are not covered by pedagogical 
objectives. Nonetheless, all the proposed frameworks emphasize the potentially valuable integration of LA with LD; however, 
the content of these frameworks is presented at highly descriptive levels, making any meaningful operationalization difficult 
(Corrin et al., 2016). 

2.2. Multimodal Learning Analytics Research 
Most of the research in LA thus far has focused on computer-mediated learning (Mangaroska & Giannakos, 2018) and highly 
structured learning activities (Blikstein & Worsley, 2016). However, learning is multimodal in nature and not restricted solely 
to interactions with technology or in front of a computer screen (Kress, 2001). Therefore, we need innovative approaches that 
education researchers can use to generate more nuanced understanding of the learning process and its complexities (Blikstein 
& Worsley, 2016; Ochoa & Worsley, 2016; Oviatt et al., 2018). One such example is MMLA, which extends the context and 
application of LA, by considering not only activity patterns (e.g., user behaviour from click-stream data), but also learners’ 
physiological and neural patterns (e.g., gaze data, brain activity data; Oviatt et al., 2018). 

As a term, MMLA does not have a generally accepted definition, but for the purpose of this paper, we will use the following: 
“a set of techniques employing multiple sources of data (video, logs, text, artifacts, audio, gestures, biosensors) to examine 
learning in realistic, ecologically valid, social, mixed-media learning environments” (Blikstein & Worsley, 2016, p. 233). So 
far, insights generated with MMLA have opened a wide array of research opportunities to challenge previously held 
assumptions about learning (e.g., better to be frustrated than bored; Baker, D’Mello, Rodrigo, & Graesser, 2010), which 
coupled with theory, can facilitate research towards creating novel assessment methods (Worsley & Blikstein, 2013), feedback 
(Echeverria, Martinez-Maldonado, & Buckingham Shum, 2019; Ochoa et al., 2018), and teaching–learning practices 
(Martinez-Maldonado et al., 2020; Rodríguez-Triana, Prieto, Martínez-Monés, Asensio-Pérez, & Dimitriadis, 2018), or 
learning environments (Melero, Hernández‐Leo, Sun, Santos, & Blat, 2015; Ogan, 2019) that correspond to the current 
technological and sociocultural advancements. 

At present, research in MMLA has focused on studying and modelling learning strategies (Mangaroska, Sharma, 
Giannakos, Træteberg, & Dillenbourg, 2018; Worsley & Blikstein, 2015), predicting high-level constructs such as learners’ 
attention and engagement (Chan, Ochoa, & Clarke, 2020), building more accurate learner models (Giannakos, Sharma, Pappas, 
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Kostakos, & Velloso, 2019), designing multimodal learning interfaces (Echeverria et al., 2019), or generating new insights 
into teaching and learning at a more fine-grained level (Martinez-Maldonado et al., 2020; Prieto, Sharma, Kidzinski, 
Rodríguez‐Triana, & Dillenbourg, 2018). In fact, MMLA promises to bridge theory and complex learning behaviour (Worsley, 
2014), support educators’ role in addressing students’ individual needs, expectations, and skills in physical (Ogan, 2019) and 
digital (Ochoa et al., 2018) learning settings, as well as tackle the complexities of orchestrating (e.g., designing, managing, 
adapting) learning activities at multiple social levels beyond the challenges (e.g., time, mental effort) instructors face in their 
everyday practice (Prieto et al., 2018). 

Although these previously mentioned studies demonstrated methods and techniques to deconstruct learning at fine levels 
of detail, and derived more comprehensive and nuanced insights into learner behaviours, actions, and states, only few at present 
(Echeverria et al., 2019; Rodríguez-Triana et al., 2018) touched upon the importance of aligning learning analytics with 
learning design, considering the applicability of these novel techniques in learning and teaching. Consequently, we add to the 
body of knowledge how that alignment can be further advanced by harnessing MMLA, and how the complexity of this 
approach is congruous with learning theories and their practical application in education, as well as beneficial to be studied at 
scale. 

2.3. Multimodal Learning Analytics Research in Computing Education 
In computing education, students spend most of their time working on programming assignments in integrated development 
environments (IDE). Thus, it is logically educators and researchers who use IDEs to collect continuous streams of data (i.e., 
IDE-log data) in order to make sense of learners’ actions and behaviours, and improve the processes of teaching and learning 
programming (Altadmri & Brown, 2015; Hundhausen et al., 2017). Nowadays, the functionality of many IDEs can be extended 
with plugins that collect data with additional features, lifting the previous technological restrictions (Hundhausen et al., 2017). 
Examples of such research are asynchronous discussion posts (Carter & Hundhausen, 2015), automatic testing against test 
cases (Edwards & Perez-Quinones, 2008), survey/quiz data to get insights into learner attitudes and conceptual understanding 
of tasks (Ihantola, Sorva, & Vihavainen, 2014), studies collecting data from eye trackers (Busjahn et al., 2014; Kevic et al., 
2015; Mangaroska et al., 2018), mouse and keyboard pressure (Arapakis, Lalmas, & Valkanas, 2014; Begel, 2016), heart rate 
(Ahonen et al., 2016), and electro-dermal activity (Müller, 2015). Although some of the studies tried to harness MMLA 
(usually utilizing one modality), none captured cognitive, affective, and behavioural states of learners simultaneously, nor 
explored programming as a problem-solving activity. 

Multimodal learning analytics does not yet have wide application in computing education (Hundhausen et al., 2017). One 
early example is the study by Parnin (2011), who used electromyography (EMG) to measure programmers’ sub-vocal 
utterances and found that “subvocalization was strongly associated with making edits to the code” (p. 200). Later, Fritz, Begel, 
Müller, Yigit-Elliott, and Züger (2014) used data from gaze, electroencephalographic (EEG) activity, and EDA, to classify the 
difficulty of code comprehension tasks for the purpose of developing programming support tools. Crk and Kluthe (2014) 
explored alpha and theta band frequencies and found that a decrease of alpha activity, and often an increase in theta activity, 
reflects an increase in cognitive load. Müller (2015) used eye tracking, EEG, and physiological data to assess the change in 
programmers’ emotions while coding and to model their perceived difficulty. Lastly, Grover et al. (2016) used data from gaze, 
gesture, posture, and body movement to develop a computational model that can automatically detect collaboration in 
collaborative programming scenarios. 

All these studies show that data from multiple modalities, captured when learners work within unbounded solution spaces, 
can generate rich information about behaviour and cognition, while accounting for the unique artifacts that learners develop. 
None have discussed how these findings can be translated in applicable design guidelines to improve the design of learning 
activities, instructional methods for teaching particular skills/concepts, and overall course redesign. In that respect, there is 
limited research discussing or exploring a co-occurrence of cognitive and affective states in learners in CE, and what significant 
features this co-occurrence brings that promise to support versatile improvements in the learning design (e.g., setting the right 
feedback loop, design of interventions, modelling learning strategies) in digital learning settings. 

3. Methodology 
3.1. Approach 
The baseline of our analysis is a model (i.e., M1) that solely relies on programming process data (i.e., IDE-log data) and can 
easily be compared with MMLA-models (i.e., M2–M8) that include sensor-data coming from various devices (e.g., eye tracker, 
wristband, camera). Our baseline (i.e., base model) is inspired by the work of Turkle and Papert (1992) and Sharma, 
Mangaroska, Trætteberg, Lee-Cultura, and Giannakos (2018), who uncovered different programming strategies (i.e., methods 
of solving programming problems) among learners using the number of test runs and the improvements in unit test success. 
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Their reported strategies include “thinkers” (low number of main method runs, but high time difference between two runs) and 
“probers” (high number of main method runs, but low time difference between two runs). The base model in this study captures 
the activity of learners in terms of how much time they allocate to understanding the code (i.e., reading) and fixing the bug 
(i.e., writing). Moreover, it also includes prior knowledge (i.e., expertise) and the use of IDE support tools for debugging 
(e.g., DebugView). 

For the study, we designed and implemented a debugging activity1 for computer science (CS) students (i.e., participants). 
The main task was debugging a Java class, named Person, that manages parent–child relationships (Mangaroska et al., 2018). 
The provided code tried, but failed, to ensure consistent object relationships, such as the mother of a child is female. The 
participants could check the correctness of the code by running the provided print statements in the main method of the code. 

Next, we deconstructed the debugging process in three main stages: comprehension, changing-testing, and fixing. For each 
of the stages, we examined the IDE-log data, the fixation-duration on the defined Areas of Interest (AOIs; Figure 1), the two-
way transitions between the various AOIs, and the rest of the features that could be automatically extracted from eye, skin, and 
facial data (Table 2). 

3.2. Participants and Procedure 
During Spring 2019, an experiment was performed at a contrived computer lab setting at the Norwegian University of Science 
and Technology with 46 CS majors (8 females and 38 males). The mean age of the participants was 21.87 years (Std. Dev. = 
1.44 years). All participants had already taken a Java course where they were predominantly using Eclipse2. 
 

 
Figure 1. AOIs in Eclipse IDE 

 
Upon arrival in the lab, the participants signed an informed consent form, after which the lead researcher placed a sensor 

device (i.e., Empatica E4) on the participant’s wrist. Prior to the debugging tasks, each participant was asked to pass an 
automatic calibration routine. The wristband data streams were calibrated using the in-built calibration from the Empatica 
mobile app, while the eye tracker was calibrated using a 5-point calibration process. 

Next, the participants were asked to finish three small debugging tasks (easy, medium, difficult) within 20 minutes. This 
pre-task test was used to decide the participants’ expertise. After this, the participants were given 40 minutes to solve the main 
task, accompanied by five debugging sub-tasks (i.e., questions) presented as a part of the main method. The main task was 
cognitively challenging, requiring participants to maintain sustained attention and engagement. The steps from the study are 
shown in Figure 2. 

 
1 Debugging consists of four stages: understanding the code, testing the code, locating the bugs, and fixing the bugs. 
2 https://www.eclipse.org/ide/  
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Figure 2. The steps of the debugging study 

 

3.3. Data Collection 
Data was collected from four main sources: eye tracker (i.e., gaze data), wristband sensor (i.e., physiological data: HR, BVP, 
temperature, and EDA), camera (i.e., video data with participants’ faces), and IDE-logs (i.e., click-streams). 

Eye-tracking data. To record participants’ gaze, we used a Tobii X3-120 eye-tracking device at 120 Hz sampling rate and 
using 5-point calibration. The device is non-invasive and mounted at the bottom of a computer screen. The resolution was 
1920x1080 and participants’ distance from the screen was 50–70 cm. 

Physiological data from a wristband sensor. To record arousal data, we used the Empatica E4 wristband sensor. Four 
different measurements were recorded: 1) heart rate at 1 Hz, 2) EDA at 64 Hz, 3) body temperature at 4 Hz, and 4) blood 
volume pulse at 4 Hz. 

Video data. To capture facial expressions, the authors used a LogiTech web camera, pointed straight at the participants’ 
faces from the computer screen, capturing video at 30 frames-per-second (FPS). The web camera focus zoomed at 150% onto 
their faces. During the task, participants exhibited minimal body and gesture interaction; hence, the video recordings held high-
quality data from participants’ facial expressions. The video resolution was 640x480. 

Log data. An Eclipse plugin (Mangaroska et al., 2018), was used to gather the reading and writing behaviour. This plugin 
captures the state of the program every time a student saves the program, either by clicking on the “save” button or by pressing 
“CTRL+S.” 

3.4. Data Pre-Processing 
Biosensor recordings contain artifacts as a result of excessive hand movement, adjustments of sensors, variations in the 
pressure between the skin and the sensor, or variations due to eye blinks. To prevent distortions in the analysis and to ensure 
validity in the results, we detected and removed such artifacts as follows: 

Eye-tracking data. Tobii’s default algorithm was used to identify fixations and saccades (for details please see Olsen, 
2012). A filter was used to remove the raw gaze points that were classified as blinks. 

Facial data. In most of the frames in the video recordings, only one face was visible. However, sometimes the lead 
researcher appeared in the field of view of the camera. Due to the settings of the experimental space, the researcher could only 
appear to the right side of the participant. Moreover, the algorithm in the OpenFace recognition software gave each face in the 
frame an ID from left to right. This means that in the frames where both the researcher and the participant were present, the 
participant’s face ID was always zero. For frames with two faces (as this was the highest number of faces in any frame), the 
researcher’s face, which had the ID value of one, was systematically removed. 

Physiological data from a wristband sensor. A simple smoothing function was used to remove any unwanted spikes in 
the time series in the four data streams coming from Empatica E4 device. This was a simple running average with a moving 
window of 100 samples and an overlap of 50 samples between two consecutive windows. 

Physiological data (such as pupil dilation, HR, BVP, and skin temperature) is susceptible to many personal and contextual 
biases. These biases include time of day, physical health condition, gender, age, overnight sleep, and so on. All the features, 
except the facial expression data, were normalized using the first 30 seconds of the data streams to remove the subjective and 
contextual bias from the data. Thus, for normalization, every data point was expressed as a proportion of the means of the first 
30 seconds. Furthermore, the pupil dilation was also normalized with the darkest and the brightest screen shots in the whole 
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interaction for each participant. Finally, the time series were normalized using the MinMax normalization. None of the 
participants were removed from the data set. 

3.5. Variables 
As learner performance depends on internal cognitive processes, we selected debugging performance (i.e., performance) to be 
our dependent variable. Moreover, expertise is a complex phenomenon that develops with experience over time and is highly 
contextualized (McCauley et al., 2008). Thus, it was necessary to examine whether expertise affects learner performance and 
how much explanation power adds to the models. Furthermore, since we allowed the participants to edit the code and execute 
it as many times as they want it, rather than finding and reporting bugs, there were frequent switches among the code, errors, 
and output areas of the IDE. Consequently, we took these next steps for greater understanding of participants’ coding 
behaviour, as well as for higher validity and reliability of the study results: 1) look into the AOIs fixation proportions, and 2) 
calculate two-way transitions. The selected variables are continuous, with exception of the variables’ use of a debugger and 
variable view, which are categorical variables. 

Expertise. The expertise of the participants was decided by the pre-task test where the students were presented with three 
small debugging tasks. Each task contained three bugs that did not differ in difficulty. We expected students to remove all bugs 
within 20 minutes. The level of expertise ranged between 0 and 3, depending on the number of assignments successfully solved 
by the participants. For example, three bugs per assignment needed to be removed so that the assignment could be counted as 
solved. Forty percent of participants solved none of the assignments, 25% solved one assignment, 27.5% solved two 
assignments, and 7.5% solved all three. 

Debugging performance. To finish the main debugging task, students were required to solve five questions in a particular 
order within 40 minutes. After 40 minutes, they were asked to stop, and the number of solved questions, ranging between 0 
and 5, was taken as the measure of performance. The percentage of students who solved none of the questions was 17.5; 2.5% 
solved one question; 17.5% solved two questions; 10% solved three questions; 32.5% solved four questions, and 20% solved 
all five questions. 

Table 2 contains the measures extracted from the collected multimodal data. These measures are informed by the literature 
(see below), are often used as measures in education and problem solving research (see related work), are ideally suited to 
capture and measure cognition and affect objectively (Azevedo, 2015), and are of most interest for the purpose of this study. 

Eye-tracking related measures. Eye movements are mostly controlled by unconscious processes; hence, they give direct 
information of learners’ perceptual and cognitive processes (Holmqvist et al., 2011). Measured alone, gaze features provide 
information only about visual processing; however, when combined with learning performance measures, they provide 
information regarding cognitive processing and mental effort (Mayer, 2010). 

Physiological-related measures. Skin conductance, also known as electro-dermal activity (EDA), is an important indicator 
of nervous system arousal. The features commonly used to define affective states in education in combination with EDA are 
heart rate (HR), skin temperature, and blood-volume pulse (BVP) (Andreassi, 2010). 

Face-related measures. Ekman, Freisen, and Ancoli (1980) developed the Facial Action Coding System to measure facial 
expressions using “facial actions.” During complex learning tasks, students often experience confusion, frustration, boredom, 
and delight, as reported in previous findings (Craig, Graesser, Sullins, & Gholson, 2004; D’Mello & Graesser, 2012). These 
are learning-specific or epistemic emotions (McDaniel et al., 2007) and are of interest to our study. 

Table 1. Descriptions of the AOIs in Eclipse IDE 
Area of Interest (AOI) Description 
Toolbar The toolbar of the IDE. 
Variable View During a debug, allows changing the value of a variable to test how your 

program handles a particular value or speeds through a loop. 
DebugView Allows managing the debugging or running a program in the workbench. 
ProjectExplorer 
ProblemView 

Provides a hierarchical view of the artifacts in the workbench. 
Automatically log problems, errors, or warnings and groups them by severity. 

MainTask Panel where the code is written. 
Question Five debugging sub-tasks as part of the main method. 
Console Shows the output of the code. 
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Table 2. Measurements of the Collected Data Streams 
Data Stream Measurement and Definitions 
Logs 
(8 features  
in total) 

Reading-writing (R-W) episodes: depicts the difference between the 
time when students are editing versus the time when they are reading the 
code. The writing episodes were detected using the frequency of the 
keystrokes. If there was a gap of more than 40 seconds (i.e., a data-driven 
threshold) we marked the episode as reading. We compute the mean and 
standard deviance of R-W episodes (i.e., 4 features). 
Use of debugger: a binary variable that shows whether students used the 
debugging support tool from the IDE or not (i.e., 2 features). 
Use of variable view: a binary variable that shows whether students used 
the variable declaration and the current value panel from the IDE (i.e., 2 
features). 

Face videos 
(17 features) 

Action Units: we used OpenFace (Baltrusaitis, Zadeh, Lim, & Morency, 
2018) to detect the 17 Action Units (Ekman & Friesen, 1978) from the 
facial expressions (i.e., a continuous value between 0 and 1 as features for 
prediction). 

Physiological 
data 
(7 features) 

Empatica E4 provided us with four data streams: heart rate (HR), blood 
volume pulse (BVP), skin temperature (TMP), and electrodermal 
activation (EDA). We computed the mean and SD of BVP, TMP, and 
EDA (6 features in total) and the mean of HR (1 feature). 

Eye-tracking 
(40 features  
in total) 

Mean fixation duration (1 feature) 
Mean saccade length and duration (2 features) 
Pupil diameter (1 feature) 
Individual Areas of Interest (AOIs): Eclipse IDE was divided into eight 
functional AOIs (i.e., 8 features), which are the basic panels in the 
interface of the IDE, shown in Figure 1 and described in Table 1. During 
the analysis, the researchers computed the proportion of time spent on 
each of the AOIs. The results for the AOIs were later compared to the 
participant performance and expertise. 
Two-way Transitions among AOIs: We computed a two-way transition 
probability of the eyes moving from one AOI to any other AOI. This type 
of transition shows the attention shift from one part of IDE to another, 
which might correspond to a specific behavioural pattern, or when 
summed up, a programming strategy. For example, the transition from 
code to console might depict the behaviour of having a hypothesis about 
the functionality of the code after changing a few lines of code and 
checking for the output in the console in order to verify the hypothesis. 
The sum of all the probabilities of “moving away from or into” one AOI 
is equal to one. Since there are eight AOIs, we have 28 unique AOI (8*7/2) 
transitions (i.e., 28 features). 

3.6. Data Analysis 
To explore how much explanation MMLA adds on top of the IDE-log data, we created eight predictive models (Table 3). We 
define the model based on the data and the classifier. Thus, once the data changes, the model changes itself. For example, 
model 1 (M1) is defined by the measures from the IDE-log data and a Random Forest (RF) classifier, while M2 is defined by 
the measures from the IDE-log data, gaze data, and a RF classifier. M1 is the basic model because it includes only measures 
from IDE-log data. The basic model was used to compare the value with the other models (i.e., M2–M8), which are augmented 
with features from multimodal data. The data was segmented using a variable length time window. Each time window 
corresponds to one student solving one debugging problem. Table 3 summarizes the scheme that we used to build the predictive 
models. 
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Table 3. Predictive Models Built with Multimodal Data 
Model Dependent 

Variable 
Independent  
Variable 

M1 Debugging 
performance 

Expertise + Features from log data 
[Reading episode + Writing episode + 
Debugger View + Variable View + N° of 
times the main method was run + Time 
difference between two main method runs] 

M2 Debugging 
performance 

M1 + features from eye-tracking data 

M3 Debugging 
performance 

M1 + features from facial data 

M4 Debugging 
performance 

M1 + features from physiological data*  

M5 Debugging 
performance 

M1 + features from eye-tracking and  
facial data 

M6 Debugging 
performance 

M1 + features from eye-tracking and 
physiological data* 

M7 Debugging 
performance 

M1 + features from facial and 
physiological data* 

M8 Debugging 
performance 

M1 + features from eye-tracking, facial, 
and physiological data* 

* Physiological data from wristband sensor. 
 

For our analysis we decided to use RF as the predictive algorithm. Since we have continuous and categorical variables, 
combining them in one classifier other than RF was difficult. Moreover, RF offers easy extraction of features importance, and 
has been found to be a top-performing algorithm in a large comparative study (Fernández-Delgado, Cernadas, Barro, & 
Amorim, 2014). We also looked into neural networks (NNs), but since the outcomes cannot be explainable in terms of the way 
the NN algorithm combines the features to produce the output, and we cannot calculate the importance of features, we 
concluded that NNs were not a smart approach. Finally, we looked into the support vector machine (SVM), but since SVM 
can be biased based on the chosen support vectors, we decided to avoid the risk of overfitting the models. 

Next, we divided the whole dataset into training (90% of the students) and testing (10% of the students) sets. To remove 
the selection bias in the training set, we performed a 10-fold cross validation. All models used the following scheme of training-
validation-testing. First, a 10% sample of the data (based on student ID) was kept aside for “out of sample” testing. Then, the 
remaining 90% of the data was used to train the model using a 10-fold cross-validation. In each cross-validation step, 10% of 
the data was used to validate the training. The best model from the 10-fold cross-validation was finally tested on the data kept 
for “out of sample testing.” This reduced the variability and presented more accurate estimates of performance. We also 
employed precision, recall, and f-measure, to evaluate the robustness of the models. Finally, in order to compare the models, 
we used adjusted R2 as an evaluation metric that considers the number of estimated parameters while evaluating the models. 
The adjusted R2 does not increase if the number of predictors increases; it increases only if the new predictor improves the 
model more than what would be expected by chance. 

4. Results 
The models from M2 to M8 significantly outperformed M1 (see Figure 3), with M1 exhibiting a significantly lower adjusted 
R2 value of 0.42 (std.dev. = 0.116). The biggest improvement appears in M8 (R2= 0.81; std.dev. = 0.142) and the smallest in 
M4 (R2= 0.54; std.dev. = 0.102). The eight models are presented in Figure 3 with the adjusted R2 values and their 95% 
confidence interval. In addition, Table 4 depicts the statistical difference between the R2 values of the eight models by 
conducting a t-test, identifying differences that in some cases are relatively strong. 
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Figure 3. Adjusted R2 values and the confidence interval (95%) of the eight prediction models 

Table 4. Pairwise Model Comparison 
 M2 M3 M4 M5 M6 M7 M8 
M1 3.89** 3.61** 2.55* 6.21*** 6.09*** 5.68*** 6.92*** 
M2 - 0.77  1.73 1.96 1.67 1.82 2.97* 
M3 - - 1.11 3.03** 2.76* 2.75* 4.04** 
M4 - - - 4.04** 3.82** 3.67** 4.96** 
M5 - - - - 0.38 0.00 1.20 
M6 - - - - - 0.32 1.43 
M7 - - - - - - 1.12 

* p < .05, ** p < .01, *** p < .001 
 

To evaluate the robustness of the eight models, we also computed the precision, recall, and f-measure based on majority 
class prediction baseline. The results are depicted in Table 5, showcasing relatively high values. 

Table 5. Precision, Recall, and F-Measure 
 precision recall F-measure 
M1 0.73 0.68 0.70 
M2 0.82 0.80 0.81 
M3 0.80 0.76 0.77 
M4 0.78 0.74 0.76 
M5 0.85 0.83 0.84 
M6 0.84 0.81 0.82 
M7 0.83 0.80 0.81 
M8 0.86 0.84 0.85 

 
Next, we performed features importance analysis; that is, we calculated the importance with regards to predicting student 

performance of the extracted individual measures/features (Table 2) for each data stream. As shown in Table 2, from the log 
data we extracted eight features, ranked by importance in Figure 4. One can observe that the expertise is the most important 
feature in predicting performance, with the number of times the main method was run, and the time difference between two 
runs, as the second and third most significant features. 

From the eye-tracking data, we extracted 40 features (Table 2), with Figure 5 depicting the 12 most important features (on 
a scale from 100 to zero). The most important feature for predicting performance is the mean saccade length; next in line is the 
pupil diameter, which in research is considered a physiological marker of processing load, cognitive effort, or use of attentional 
resources (Buettner, 2013). 

From the facial data we extracted 17 features (i.e., action units), all ranked in importance on a scale from 100 to zero 
(Figure 6). In our study, the most important features for predicting performance are nose wrinkle, followed by blinking, both 
coming from the upper part of the face. 
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Figure 4. Feature importance for log data scaled from 100 to zero 

 

 
Figure 5. Feature importance for eye-tracking data scaled from 100 to zero 

 

 
Figure 6. Feature importance for facial data scaled from 100 to zero 

 
Finally, from the physiological data captured by the wristband sensor, we extracted seven features (Table 2). From all 

seven features (Figure 7), the stress measured by skin temperature (i.e., average temperature of the skin) is the most important 
predictor of performance, followed by arousal, measured by the BVP variability. 
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Figure 7. Feature importance for physiological data scaled from 100 to zero 

5. Discussion and conclusion 
5.1. Interpreting the Results with Respect to the Research Questions 
As educators continue to struggle to understand what technology to use and how it can improve learning (Perrotta, 2013), 
MMLA offers an additional lens through which to investigate student experiences when learning with technology (Blikstein, 
2013; Cukurova, Giannakos, & Martinez‐Maldonado, 2020; Ochoa, 2017; Oviatt et al., 2018). Findings generated with MMLA 
can inform the (re)design of learning activities and objectives in computer-mediated learning settings (Järvelä, Malmberg, 
Haataja, Sobocinski, & Kirschner, 2019; Mangaroska & Giannakos, 2018), because they capture learner behaviour and actions 
in real time and in an objective way, along the cognitive and affective dimensions of learning (Azevedo, 2015). 

To elaborate on the potential of MMLA in augmenting traditional LA with respect to LD in the context of CE (RQ1) we 
refer to Table 4. Hence, adding measures from individual multimodal streams of data (e.g., gaze data, facial data, or 
physiological data) on top of the IDE-log data, as shown through M2, M3, and M4, demonstrated improvement compared to 
the basic M1 model, but less improvement compared to M5, M6, M7, and M8, where we had combinations of measures from 
more than one data stream. These improvements are evident despite the fact that expertise (i.e., previous knowledge) was 
included in the basic model. In other words, our findings do not ignore the fact that expertise is a valuable indicator of learner 
performance in programming and problem solving, but also indicate the value of MMLA regardless of student experience. 
Overall, our results support the premise that behaviour captured by multimodal data provides additional understanding of 
learner performance (e.g., specific behavioural patterns when moving from one AOI to another during hypothesis verification) 
that cannot be captured with programming process data as expertise can. Moreover, the model with gaze data (i.e., M2) is 
improved only by the model that carries all modalities (i.e., M8). This is in line with previous work that demonstrated gaze 
data to be a key element in understanding and predicting learner behaviour and performance in problem solving activities 
due to the direct relation with cognitive load and mental effort (Beatty, 1982; Bednarik, 2012; Bednarik et al., 2020; Kaller, 
Rahm, Bolkenius, & Unterrainer, 2009). 

On the other hand, facial and physiological data combined on top of M2 (i.e., M7), provided a significantly higher 
prediction rate than M2. This finding suggests that facial and physiological data provide different information than gaze 
data (i.e., M2). Because of that, researchers should not be ignorant in using facial and physiological data, both in terms of 
creating effective LDs, as well as informing measures and models used in LA (D’Mello & Graesser, 2012; D’Mello, Lehman, 
Pekrun, & Graesser, 2014). Furthermore, combining features from facial, physiological, and log data, created M7, which is 
easily comparable to the best model in our analysis (i.e., M8). From a design perspective, cameras and wristband sensors carry 
the notion of “at scale” (Ogan, 2019). Therefore, through the prism of LD, the ubiquitous nature of facial and physiological 
data can have strong design potential at a classroom level (Ogan, 2019), where measures from models build on these data 
streams can easily be used to inform LD decisions for classroom orchestration (Dillenbourg, 2013). 

To strengthen the link and move forward the alignment between LA and LD, we need a consolidated model of theory, 
design, and data science, as proposed by Gašević et al. (2017). So far analyzing LDs considering mostly the pedagogical intent, 
has supported the creation of valuable models and frameworks of LA (Mangaroska & Giannakos, 2018). However, these 
models and frameworks are insufficiently linked with foundational disciplines, in particular the LS (Gašević et al., 2017; 
Neelen & Kirschner, 2017; Reimann, 2016; Wiley, Dimitriadis, Bradford, & Linn, 2020). This creates a lack of evidence-
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informed practices that can help educators to understand how and when their students learn best, so that the planning, 
execution, and evaluation of their LDs (including the learning objectives) can be more effective (Kirschner, 2017). Thus, if we 
aim for LA that are consequential for learning, and can support educators to create effective LDs and optimize the process of 
learning, we need to attach value to the evidence from the LS and synthesize it with design and data science, as a common 
comprehensive language for educators to use and act upon in their own educational practice (Gašević et al., 2017). 

To answer the second RQ and draw implications for potential further advancement of the synergy between LA and LD in 
computing education, we performed a feature importance analysis. The most significant features from log data (Figure 4) 
indicate the presence of strategies similar to the ones found by Sharma et al. (2018) and Turkle and Papert (1992). The number 
of main method runs and the time difference between two runs are measures that educators can use to model learning 
strategies in programming (e.g., “thinkers” vs. “probers”), as there is already evidence for the significance of these measures 
in the literature. Moreover, the time difference between the two runs might also be influenced by the average duration of the 
writing episodes, signalling that some students might be slow at writing and not necessarily make less change in the code size. 
These examples show the potential capacity that log data has to inform on learning strategies and facilitate the design of 
personalized interventions. 

The most significant features from gaze data (Figure 5) are considered to be physiological markers of cognitive load, 
mental effort, and sustained attention (Hollender, Hofmann, Deneke, & Schmitz, 2010; May, Kennedy, Williams, Dunlap, & 
Brannan, 1990). According to CLT, an increase in mental effort is desirable in complex learning tasks that facilitate deep 
learning (Hollender et al., 2010). Thus, measures such as pupil diameter, average fixation duration, and average saccade 
duration, can assist educators to know when learning activities cause an undesirable level of mental effort that can transition 
into cognitive “overload,” and adjust the LD accordingly. Furthermore, measures from gaze transitions can be used for 
developing LA feedback tools that can orchestrate basic behavioural regulation (Mangaroska et al., 2018), such as visual 
attention or following instructions (Baumeister & Vohs, 2004) when students enter into educationally unproductive states. 

The most significant features from facial data (Figure 6) and physiological data (Figure 7) must be combined or linked 
with specific actions during learning to make sense of and unfold the complex coordination of cognitive-affective states. 
Looking at action units individually makes it difficult to make the link between an action unit (e.g., lips apart) and an action 
during coding (e.g., syntax error; McDaniel et al., 2007). Even in face-to-face non-verbal communication, humans tend to 
connect more features from the face to understand a facial expression (Ekman, 1993). Considering the mapping that McDaniel 
et al. (2007) provided, we can link specific affective states of learners to particular learning design instructions. Such mapping 
can aid educators in supervising and managing undesirable cognitive-affective learner states (e.g., frustration, boredom) in 
digital settings, to mitigate disengagement and prevent negative cognitive loops and partial learning (Craig et al., 2004; 
D’Mello et al., 2014). 

 Using machine learning, we looked at the overall patterns in the data and performed feature importance among the 72 
measures extracted from the multimodal data. Findings like ours combined with pedagogical intent from educators and theories 
from the LS, can advance the synergy between LA and LD by translating results in applicable design guidelines that can lead 
to improvements in the design of learning activities, instructional methods for teaching particular skills, and even the overall 
course (re)design. The complexity of the MMLA approach is congruous with learning theories because it can be used to 
understand how effectively students use the opportunities for learning as given in the LD. Such understanding promises to 
support versatile improvements in the LD in digital environments, from setting the right feedback loop (e.g., explaining 
misconceptions vs. challenging the student), to the design of personalized interventions, and modelling effective learning 
strategies considering skills and knowledge proficiency. 

5.2. Implications 
Our paper aims to provoke deeper, more productive reflections and conversations about the potential of MMLA to expand and 
advance the synergy of LA and LD among the community of educators from a post-evaluation design-aware process to 
permanent monitoring process of adaptation (Schmitz, Van Limbeek, Greller, Sloep, & Drachsler, 2017). For now, we offer 
the following implications that should further inform the research and practice of LA and LD: 

• Pedagogical intent alone (Bakharia et al., 2016) is not sufficient for expanding learning analytics that have the capacity 
to align with learning design and learning theories from the learning sciences; thus, exploration of the overall patterns 
in the data should also be considered, as it can identify and validate meaningful associations (Rienties et al., 2017) for 
which educators might be ignorant. 

 
 

• Different data streams provide different information for learner behaviour, and offer different design potential. For 
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example, facial and physiological data have strong design potential at the classroom level (Ogan, 2019), while gaze 
data has design potential at the individual level (Bednarik et al., 2020). 

• To optimize learning and make accurate changes in the LD, we need to understand how and when students learn best. 
Using mainstream LA, without considering the context is not always sufficient. For that we need understanding of 
learner states (i.e., cognitive, motivational, emotional) during learning, and knowledge of evidence-informed practices 
from the LS (Kirschner, 2017; Nathan & Wagner Alibali, 2010) to compare with and make adjustments/improvements 
accordingly. 

• Relevant LA (theory informed and grounded in evidence) can inform on domain-specific strategies (e.g., what steps an 
individual uses to reach a solution) and help to understand how effectively the opportunities for learning as given in 
the LD are used (Mangaroska et al., 2018). 

• MMLA research in CE should extend the taxonomy of design dimensions for IDE-based interventions proposed by 
Hundhausen et al. (2017), and set the foundation for developing consolidated model of theory, design, and data science 
in CE. Moreover, along with the increase in MMLA studies, datasets should be made publicly available, so that 
researchers can compare, consolidate, and verify theories and results. 

5.3. Limitations 
Our findings speak in favour of the potential of MMLA, but are subjected to certain limitations. Although MMLA methods 
for measuring complex internal conditions are objective and indirect, as defined by Brunken, Plass, and Leutner (2003), we do 
not exclude the possibility of measuring complex internal conditions with other methods such as think-aloud protocols, pre-
tests/post-tests, or self-reporting questionnaires (Azevedo, 2015). This might shed light on outcomes different than the ones 
reported in this study, but those outcomes would be based on recalled behaviour and subjective impressions, rather than on 
learners’ actual behaviour. Moreover, our findings originate from authentic learning tasks based on problem-solving practised 
by an individual; thus, the generated features might be characteristic for individual learning activities where students engage 
with a computer screen for the entire activity, compared to learning activities where students work collaboratively and with 
less focus on computer devices. Next, the study was performed in a controlled environment that might affect its ecology 
because participants signed a consent form and were aware of the physiological data collection, which may increase the desire 
“to perform” and generate good biomarker metrics. Furthermore, in our analysis we applied only one ML algorithm (i.e., 
Random Forest) and have not explored what outcomes we might get by applying different or combined algorithms on different 
data streams. However, we consider the chosen approach to be appropriate and relevant to establish examples of how MMLA 
can advance the synergy between LA and LD. Finally, the LD guidelines based on features importance analysis are only 
explored in an initial way and have not been applied to make changes in the current LD; thus, we welcome future studies to 
further explore the implementation of changes based on the reported measures and recommendations. 
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