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Interventions to support children with mathematical learning difficulties 
typically address deficits in domain-specific knowledge. However, not all 
students benefit from these instructional programs. In this case, some 
authors suggest an even more intensive instructional program combined 
with other factors assumed to be relevant for learning. Previous research 
has demonstrated that working memory is such a factor. It underpins 
a range of cognitive abilities, including arithmetic and mathematical 
development. For this reason, we developed an integrated approach, a 
working memory sensitive math intervention. This new approach aims 
at domain-specific knowledge, while a) taking poor working memory 
into account and b) stimulating learners to invest cognitive resources in 
mental confrontation with the learning content. The present multiple-
case study was designed to investigate its effects. On the basis of their 
low performance in a standardized test of mathematical precursors, we 
identified 13 first graders (mean age 6.8 years) to take part in our study. 
Over a period of four weeks, the children participated in 12 half-hour 
sessions of our program. Results show small to large positive training 
effects on competencies that are near to the training, though not for 
all participants. We discuss why the intervention works well for some 
children, only moderately for others, or fails to work.
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Introduction

Many children struggle with basic mathematical skills, and their challenges 
may go undetected until they fall behind at school. The reason for their mathematical 
difficulties, however, often lies in their early development (e.g., Aunola, Leskinen, 
Lerkkanen & Nurmi, 2004; Krajewski & Schneider, 2009a; Passolunghi, Vercelloni 
& Schadee, 2007). Precursors such as counting abilities and quantity-number 
competencies (connecting numbers with quantities) are important predictors of 
later mathematical achievement (Jordan, Glutting & Ramineni, 2010; Krajewski 
& Schneider, 2009a; Locuniak & Jordan, 2008). There is an effective approach in 
supporting these domain-specific skills. Several studies have shown that support 
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of precursors improves later mathematical skills (Ennemoser, Sinner & Krajewski, 
2015; Kroesbergen & van Luit, 2003; Griffin, 2004). Despite these promising findings, 
not all children benefit from such interventions, and some show little or even no 
improvement. This phenomenon, known as nonresponsiveness, can occur in all 
learning areas (Fuchs, Compton, Fuchs, Paulsen, Bryant, & Hamlett, 2005; Fuchs & 
Fuchs, 2006).

Another capacity whose influence on learning has been discussed 
widely is working memory. In their model of good information processing, Pressley, 
Borkowski, and Schneider (1989) present factors that are considered to be individual 
requirements for successful learning. Working memory is one essential characteristic 
that differentiates between good and weak information processors. To date, several 
studies have demonstrated a close relationship between working memory and 
mathematical learning (Alloway & Alloway, 2010; Alloway & Passolunghi, 2011). 
Regarding domain-unspecific factors, working memory explains more variance in 
mathematical performance than other known predictors such as intelligence (Cragg 
& Gilmore, 2014). Findings indicate that children with mathematical learning 
difficulties show weaker working memory functioning (Klesczewski et al., 2018; 
Raghubar, Barnes & Hecht, 2010; Vukovic & Siegel, 2010). 

It is obvious that an appropriate intervention should address as many of 
these problems as possible. We argue that a greater consideration of working memory 
might be a useful approach for math intervention. To close this instructional gap, we 
have developed an intervention that aims at mathematical precursors as domain-
specific skills and includes working memory as an additional factor. In the present 
study we investigate the effects of the newly developed intervention in single cases.

Working memory and mathematical learning
The construct of working memory refers to a limited-capacity storage 

system in which information is maintained and manipulated over a short period of 
time (Baddeley, 1986, 2012). Thus, it plays an important role in every mental task as 
well as mathematical learning and math performance. There are various models of 
working memory which are still discussed (Baddeley, 2012; Wilhelm, Hildebrandt 
& Oberauer, 2013). In this work, we refer to the domain-general model proposed 
by Baddeley (1986, 1996, 2012). This multicomponent model with its components 
phonological loop, visuospatial sketchpad and the central executive is a widely 
accepted theoretical framework. The phonological loop stores acoustic and verbal 
information, whereas the visuospatial sketchpad temporarily stores static visual and 
dynamic spatial information. The central executive is a composite of mechanisms 
that coordinate and control information processing (Miyake, Friedman, Emerson, 
Witzki, Howerter & Wager, 2000). Miyake et al. (2000) found that three executive 
functions – shifting, inhibition, and updating – are correlated with each other, but still 
clearly separable (e.g., in factor analysis). Shifting, also referred to as task switching, 
concerns shifting between multiple tasks or operations (Monsell, 2003). The updating 
function requires simultaneous storing and processing of information relevant to a 
specific task. Thereby irrelevant items held in working memory are replaced by new 
relevant items. The ability to suppress dominant response tendencies and attention 
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to irrelevant stimuli is labeled as inhibition. In many studies, the results of Miyake et 
al. (2000) are used to specify the construct of the central executive. 

The functional working memory capacity limits the amount of information 
held in consciousness (Pressley et al., 1989). If only a small amount of information 
can be held in working memory, unfavorable conditions arise that are reflected in 
limitations in learning (Kirschner, Sweller & Clark, 2006). Here, working memory 
influences math performance in two ways: 1) There is a direct impact of working 
memory during the mental arithmetic process called online impact (Raghubar, Barnes 
& Hecht, 2010). Students confronted with complex mental arithmetic problems have 
to deal with many subtasks, for example retaining partial results while calculating 
the next step. 2) Efficient working memory functions are required for mathematical 
learning, e.g., for the acquisition of precursors that in turn have an influence on later 
mathematical learning (offline impact; Bull, Espy & Wiebe, 2008; Grube & Seitz-
Stein, 2012). The functional working memory capacity also depends on strategy use 
and prior knowledge (e.g., schema construction and automation). Here, the use of 
automated skills can free up working memory resources. For example, the retrieval 
of basic addition facts requires less resources than effortful calculation over several 
steps. As a result, the children cannot meet the working memory demands of the 
learning situations and therefore, cannot benefit from typical math interventions. 
As a further consequence, they cannot take advantage of automation to free up their 
working memory resources, which again causes them to be unable meet the working 
memory requirements of the learning situation and so on.

All working memory functions are relevant for mathematical learning 
(Clearman, Klinger & Szucs, 2017; Friso-van den Bos, van der Ven, Kroesbergen & 
van Luit, 2003). However, the component involved depends on age as well as on the 
specific mathematical skill (Friso-van den Bos et al., 2013; Alloway & Passolunghi, 
2011). The phonological loop seems to be especially relevant for early mathematical 
precursors such as acquiring the correct number word sequence (Preßler, Krajewski 
& Hasselhorn, 2013; Viesel-Nordmeyer, Ritterfeld & Bos, 2020). Some studies 
also indicate an indirect influence of the phonological loop via language skills 
on mathematical precursor skills (e. g. Nys et al., 2013, Röhm et al., 2017; Viesel-
Nordmeyer et al., 2020). The visuospatial sketchpad seems to be relevant for linking 
number words to quantities (Ansari et al., 2003; Preßler et al., 2013). 

Simanowski and Krajewski (2017) investigate the predictive value of executive 
functions on various aspects of mathematical skills. The results reveal a relationship 
between updating and mathematical precursors at a very early stage (number word 
sequence). Only an indirect influence was seen on higher precursors (e.g., the 
quantity-number concept), mediated by previous skills. However, we suspect that 
the small influence observed is a result of the research design. The authors measured 
quantity-number competencies that were already automated rather than complex 
arithmetic problem solving. Furthermore, they showed that a combined factor of 
inhibition and shifting has a significant influence on the acquisition of contents that 
require a conceptual understanding of numbers. 

Weak working memory functioning “[…] therefore places a child at a 
high risk of slow rates of academic progress […]” (Gathercole & Alloway, 2008, p. 
53). They are not able to cope with the working memory demands of many of the 
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interventions that are designed to help them learn (Gathercole & Alloway, 2008). 
Swanson (2014, 2015) showed that this applies to the effects of strategy training as 
well. His findings suggest an interaction between the type of strategy instruction and 
working memory. Children with relatively better working memory were more likely 
to benefit from strategy instruction than children with a weaker working memory. 
On the contrary, cognitive strategies decreased problem-solving accuracy in children 
with lower working memory (Swanson, 2014).

Consideration of working memory 
Theoretically, there are two options in dealing with limited working 

memory: (1) direct training and (2) preservation of available resources through 
more efficient usage. Whether working memory capacity can be increased directly 
by training is a long-discussed question. There is no clear answer, but the results 
from training studies are mixed and not very promising (Sala & Gobet, 2017). 
Training effects tend to be short-term and often occur in learners with weak working 
memory starting conditions (Melby-Lervåg & Hulme, 2013; Sala & Gobet, 2017). 
Furthermore, as far as the benefits of math performance are concerned, the “curse 
of specificity” (Strobach & Karbach, 2016, p. 2) has to be considered. That means, 
if children already have deficits in mathematical competencies, we cannot expect 
them to eliminate these gaps through a pure working memory training (Schulze & 
Kuhl, 2019), because it doesn’t compensate for the instruction and practice they have 
already missed. Therefore, an intervention for children with persistent difficulties 
should always include mathematical content.

Research on the second possibility (more efficient usage) refers to cognitive 
load theory (CLT; Sweller, 1988, 1989; Sweller & Chandler, 1991). According to the 
CLT, all tasks contain a high number of elements that have to be processed to induce 
learning (Paas & Van Gog, 2006). This cognitive load occurs at different instances 
during the learning process. Commonly, we differentiate between load that is caused 
by the complexity of the learning task (intrinsic load) and cognitive load that is caused 
by the instructional design (extraneous load; Paas & Sweller, 2014). The third type of 
load, called germane load, refers to the development of cognitive schemata (Paas & 
Sweller, 2014). As many resources as possible should be free for this process, which 
we also call learning. Thus, the learning environment and learning material should 
fit the limited functioning of working memory, especially in children with learning 
difficulties. Some authors have explored principles that aimed at preserving cognitive 
resources during learning (e.g., Hecht, 2014; Magner, Schwonke, Aleven, Popescu & 
Renkl, 2014; Wiley, Sanchez & Jaeger, 2014) or provided guidelines for instructional 
design (Gathercole & Alloway, 2008; Krajewski & Ennemoser, 2010). Exemplary 
principles are the omission of seductive details (Harp & Mayer, 1997), spatially close 
and integrated presentation of associated pieces of information, and unambiguous 
representations (Hecht, 2014). Gathercole and Alloway (2008) integrated several 
recommendations that refer to classroom support for children with poor working 
memory functioning. (1) Using familiar and meaningful content, (2) reducing the 
amount of material used, (3) using repetitions, and (4) restructuring complex tasks 
are only some of them. Many of these principles relate to the learning environment 
and material, but there are also principles related to individual competencies, for 
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example the development of basic skills or the automation of sub-competencies. 
Single elements can be subsumed into a schema that can be treated as a single element 
in working memory, thus decreasing the number of interacting elements (Paas & Van 
Gog, 2006). We assume that children with weak working memory functioning cannot 
use the latter principle because the offline working memory impact confounds the 
development of knowledge in long-term storage. 

Some authors point out the limitation of these principles, emphasizing 
that vacant resources are not supposed to automatically lead to germane load (Paas, 
Tuovinen, Tabbers & van Gerven, 2003; Paas & van Gog, 2006). The surplus working 
memory resources can be devoted to activities that further contribute to learning. But, 
such activities are unlikely to be spontaneous in children with learning difficulties, 
because they tend to work less systematically and reflect on their solutions less often 
(Smith, 2004). Learners must be encouraged to actively engage with the content (Paas 
et al., 2003; Paas & van Gog, 2006). We suggest that this is necessary at both behavioral 
and cognitive dimensions, in particular for students with learning difficulties, as they 
are hindered from learning by several factors (Jacobs & Petermann, 2007; Smith, 
2004). Therefore, we assume that the existing evidence should be combined into one 
approach.

Idea of a working memory sensitive math intervention
Based on empirical findings and theoretical models, it is repeatedly discussed 

that working memory should be integrated more strongly into conventional learning 
or be given greater attention (Passolunghi & Costa, 2019; Röhm, 2020; Viesel-
Nordmeyer et al., 2020). 

We developed a working memory sensitive math intervention that embeds 
mathematical content in classical working memory tasks to address relevant working 
memory functions directly. Thus, it is a combination of relieving and challenging 
methods that extend the conventional learning material. From this point of view, 
the approach aims at the improvement of mathematical precursors while a) weak 
working memory is considered and b) learners are stimulated to invest cognitive 
resources in mental confrontation with the learning content. Consequently, the freed-
up working memory capacity can be used directly for mathematical learning. With 
regard to the latter, the approach can also be situated in the larger construct of self-
regulation. In the paradigm of information processing, self-regulating activities can 
take place in the storage and integration of information, which are essential points 
of the intervention.

In order to implement these aspects, we have to consider which working 
memory function is essential for which mathematical task (Schulze & Kuhl, 2019). 
It is therefore not a matter of including an additional task with an additional 
requirement, but rather of finding a format in which the mathematical content and 
the relevant working memory function can be combined. When trying to master the 
number word sequence, we should integrate the phonological loop and tasks that 
directly activate it. Such a task is the digit span task (forward or reverse), which is 
typical for measuring working memory. There is also evidence for a relationship 
between updating and building the number word sequence (Simanowski & Krajewski, 
2017), so it should also include tasks that require this function. If working memory 
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is burdened as less as possible by the use of suitable learning materials and a small 
step-by-step procedure that is adapted to the learners previous knowledge, working 
memory functions should be used as well as possible during the learning process.

Our training aims at mathematical precursors. In this piloting study we aim 
at evaluating the effects of our newly designed intervention. We expected a gradual 
improvement during the training. The children’s performance should improve in 
both level and slope. However, mathematical learning does not occur immediately. 
We are investigating a rather new intervention; hence, the first indications of effects 
should be reflected, so that further evaluation steps with more comprehensive 
research designs can follow.

Method

Participants
The study took place in seven primary school classrooms of a metropolitan 

area in Germany. At mid-term, we contacted class teachers and asked them to 
name students with low arithmetic skills who do not respond to the current 
classroom instruction. We obtained parental consent for all nominated students 
and assessed their basic mathematical competencies using a German standardized 
quantity-number competencies test (“Test mathematischer Basiskompetenzen ab 
Schuleintritt”; MBK 1+ by Ennemoser, Krajewski, & Sinner, 2017). Students below a 
percentile rank of 16 were included in our study.

Thirteen first grade students (five male and eight female; see Table 1 for 
detailed information on participants) from these seven schools participated in our 
study. They all took part throughout the entire study. Their average age was 6.8 
years (SD = 0.60) at the start of our study. Given the available time slots, it was not 
possible to assess the participants’ language skills systematically. Instead, we collected 
judgments of the respective classroom teachers. Emma (we changed all names to 
ensure anonymity) is the only second-language learner in this sample. Teachers 
evaluated all participants as having sufficient German language skills to understand 
the instructions used in our study. This was later confirmed by the unproblematic 
course of the sessions. One of the children, Mason, was already receiving special 
educational services, due to learning difficulties (“Förderschwerpunkt Lernen”). 
The mean score in the test of basic mathematical competencies (MBK 1+) was 
21.19 (SD = 4.04), corresponding with a mean percentile of 11.23 (SD = 4.90) and 
a percentile range from Min = 2 to Max = 18. Our sample consists of students with 
clear mathematical learning difficulties, even based on a very strict cutoff.
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Table 1. Participant Overview

MBK 1+ 
Raw Score

MBK 1+ 
T Scores

  Sex Age Grade Pre Post Pre Post nA nB

Ava female 6 1 21.50 40.50 31.00 51.00 6 12

Benjamin male 7 1 24.00 43.50 34.00 55.00 5 12

Charlotte female 7 1 22.50 35.50 24.00 38.00 5 11

Destiny female 7 1 18.50 22.50 18.00 20.00 5 11

Emma female 8 1 21.50 35.00 23.00 39.00 5 11

Faith female 8 1 12.00 20.50 10.00 16.00 5 11

Gabriel male 7 1 26.00 28.50 30.00 28.00 5 12

Harper female 7 1 22.50 24.00 24.00 22.00 5 10

Isaac male 7 1 24.50 37.50 28.00 42.00 5 12

Julia female 6 1 19.50 35.50 21.00 39.00 5 12

Kevin male 6 1 25.00 44.50 29.00 53.00 5 11

Lily female 6 1 15.00 40.50 14.00 46.00 5 11

Mason male 8 2 23.00 33.50 25.00 36.00 5 10

Notes. MBK 1+ = German standardized quantity-number competencies test; nA = Number of 
observations in phase A; nB = Number of observations in phase B.

Research design and procedure
We implemented a single-case intervention study, using an AB multiple-

baseline design across participants (Gast, Lloyd, & Ledford, 2018) to evaluate the effects 
of this new intervention approach. All sessions took place as one-on-one situations in 
a quiet room on the premises of the respective primary school. Participants received 
12 30-minute intervention sessions over a period of three to seven weeks depending 
on their presence in school. Every measurement session took about 15 minutes. We 
ensured that the baseline (A phase) had a minimum of five measurements. During 
the intervention (phase B), measurements followed the intervention session. We 
made sure that every participant worked with the same instructor from our team 
(first author and five pre-service special education teachers) for the entire study. To 
ensure that the intervention was carried out as intended, the instructors were trained 
by the first author in at least four meetings. The meetings were also held during 
the intervention process to review the progress of the intervention and discuss any 
problems. 

Intervention
On the basis of an integrated approach (Schulze & Kuhl, 2019), we developed 

an intervention for children with persistent difficulties in acquiring mathematical 
precursors that considers working memory as an additional factor. We focus on 
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working memory while supporting the development of mathematical precursors, 
and, as mentioned above, aim at combining two essential aspects: (a) extraneous and 
intrinsic load should be reduced to a minimum, and (b) free capacities should be 
reallocated to the mental examination of the learning object.

On the domain-specific part (mathematical precursors), we focus on 
Krajewski’s developmental model of quantity-number competencies (QNC; 
Michalczyk, Krajewski, Preßler & Hasselhorn, 2013; Krajewski, 2008; Krajewski & 
Schneider, 2009a, 2009b) and address the development of counting and quantity 
knowledge. The QNC model postulates three levels of development through which 
children acquire a deeper understanding of quantity to number-word linkages. On 
the first level, children acquire the awareness of numbers and the correct number 
word sequence. The milestone on the second level is when children become aware 
that number words are linked to quantities. At the end of the second level, children 
understand that the number-word sequence represents an order of strictly increasing 
quantities (5 is exactly one more than 4). They develop a precise quantity to number-
word linkage. On the third level, children understand the relations between numbers. 
Their understanding of the principles of composition and decomposition is now 
applicable on numerical relations (Krajewski & Schneider, 2009a; Kuhl, Sinner & 
Ennemoser, 2012). 

On the mathematical part, our concept consists of two modules, which 
in turn consist of different blocks. The blocks are further divided into units. The 
first module refers to the numbers up to 20, whereby the first block in this module 
aims for the acquisition of the exact and flexible number word sequence (module 1, 
block 1: unit number word sequence to 20). This competence requires the repetition 
of single number words but also depends on the updating of the relevant segment 
of the number word sequence in working memory for the correct reproduction. In 
accordance with Simanowski and Krajewski (2017), we assume that the demands 
of updating are reduced if exercises include strictly defined content that is worked 
on and deepened until it is finally automated. This assumption leads us to a highly 
structured concept. 

To comply with point a), we have ensured that the principles above have 
been considered (restructuring complex tasks, reducing the amount of material used 
etc.). In this way, working memory should not be unnecessarily loaded. 

In order to comply with point b), we have embedded the mathematical 
content into specific working memory tasks; for example, we challenge updating and 
phonological loop specifically when the number word sequence is learned. In this 
way, the resources available should be used as efficiently as possible for the learning 
process.

In the first block of module 1, the phonological loop is especially required, 
therefore, we create tasks where the students need to update the phonological 
information. To illustrate how we realized this, we would like to give an example of 
a very simple exercise: In one task, the children were verbally given a short sequence 
of unsorted numbers (e.g. 3-1-2). Depending on their previous knowledge, the 
sequences of numbers were of different lengths. The children were asked to remember 
the numbers while putting them in the right order (3-1-2 ª 1-2-3). During this task, 
the phonological loop should be activated directly, simply because they work on it. In 
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this way we address mathematical concepts and working memory at the same time. 
If the children become more confident with the number word sequence, the task can 
also lead to automation. 

The second block of the first module focuses on insight into the link between 
quantity and number word representations. When the children learn to deal with 
quantities, we use tasks that require the visuospatial sketchpad. For example, changes 
in quantities can be trained with tasks similar to the classical matrix span. Here, the 
children are asked to recognize changes of structured points (like a matrix pattern), 
to store them or to make changes themselves mentally. The working memory load 
can be adjusted via the size of the quantities. Finally, there is a third block in which 
the quasi-simultaneous recording of quantities is trained.

The second module targets the relational understanding of numbers. In 
particular it aims at the automation of number bindings, which means that children 
instantly know that 10 can be split into 5 and 5 or into 7 and 3 and so on. These 
number-related part-whole relationships represent an essential milestone on the way 
to a deep understanding of numbers and are crucial for later arithmetic (Krajewski, 
2005). In this module, we structured three blocks based on the number space. First, 
we work on all bonds of 5, followed by all bonds of 10, and finally, we focus on all 
bonds of the remaining numbers.

A special feature of our concept is that all units are divided into one of three 
areas: introduction, deepening, or automation. This allows for flexible use of these 
units according to individual learning progress.

Measures

Quantity-number competencies
Based on Krajewski’s developmental model of quantity-number competen-

cies (QNC; Krajewski, 2003, Krajewski & Schneider 2005; 2009a, 2009b), this test is 
used for the early detection of mathematical development risks in first grade. Fur-
thermore, MBK 1+ is a test for short- and long-term evaluation of interventions in 
a variety of longitudinal and training studies (Ennemoser et al., 2015, Sinner, 2011). 
The norm sample consists of 6084 students; of these, 5604 students were available 
for the first grade (Ennemoser et al., 2017). For the first quarter of the first grade, the 
MBK 1+ has a wide range of item difficulties (p = .20 to p = .96). Retest reliability 
varies between sub-scales (.66 < r < .78; Ennemoser et al., 2017); internal consisten-
cies are good (.88 < a < .95). Previous studies have shown that it is correlated with 
later math performance: MBK1+ scores in first grade are a good predictor of math 
performance in fourth grade (ß = .65, p < .01; Ennemoser et al., 2017).

The test consists of several subtests that measure competencies at three 
levels of the developmental model (for the description of the three levels, see page 
11). In addition to its screening function, we used the MBK 1+ as a first diagnostic to 
plan our intervention sessions. After the intervention phase, the children performed 
the test a second time, similar to a post-test measurement.
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Working memory
All working memory subtests were administered using a span procedure 

in which the difficulty level increases across blocks of trials, using two errors as a 
stop criterion. We used the digit-span-forward and backward tasks (German version 
of the Wechsler Intelligence Scale for Children; WISC-V, Petermann, 2017) to assess 
students’ phonological loop and updating of phonological information. In order to 
measure the visual-spatial sketchpad, we implemented the Corsi block paradigm 
(Corsi, 1972) and designed a Corsi block task forward and backward. Here, the ex-
perimenter points to a sequence of nine unsystematically located squares that are 
arranged randomly on a board. The child must reproduce the sequence presented in 
the same or reverse order. In the latter case, demands are also placed on the central 
executive. To test the stability of the working memory performance, we constructed 
parallel test forms.

Relational understanding of numbers
To operationalize the understanding and automation of relations between 

numbers, we developed a number-bonds task. The task uses number bonds in the 
form of the so-called pyramid notation. In this notation form, the whole stands on 
top and the two parts are noted to the right and left below the initial number (Figure 
1). Thus, the task refers only to the bond of numbers without using the plus, minus, 
or equal sign.

Figure 1. Instruction number-bonds task.
Note. Children are instructed to fill in the missing number in the square. 

Each bond lacks one part that needs to be supplemented and requires the 
children to fill in the missing part. The test is available for two levels: The first level 
refers to all bonds of all numbers up to 5 (number-bonds level 1), whereby the second 
level includes the bonds from 6 to 10 (number-bonds level 2).
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Arithmetic
Numeracy skills were measured by a simple arithmetic test where children 

had to solve typical addition problems (e.g., 3+2; 7+3). We measured the number of 
errors (out of 6 tasks) as a dependent variable.

Data Analysis
In addition to visual judgment and descriptive statistics, we report a set of 

overlap and correlation-based effect sizes: We calculated the percentage of all non-
overlapping data (PAND; Parker, Hagan-Burke, & Vannest, 2007), standardized mean 
differences (SMD; Glass, 1976), and the baseline corrected Tau (Tarlow, 2017). The 
PAND is the percentage of original data remaining after removal of the fewest data 
points leading to non-overlap between phases. It ranges between 50 (chance level) 
and 100 (no removal). We report the simple standardized mean difference suggested 
by Glass (1976), which uses phase means and the overall variance. Baseline corrected 
Tau (Tarlow, 2017) conceptualizes the homogeneity of phases as effect size after cor-
recting for monotonic baseline trends using Theil-Sen regression. It ranges between 
-1 and 1 and is easily interpreted as a rank correlation coefficient. All analyses and 
graphs were created using the package scan (Wilbert & Lüke, 2019) for R (R Core 
Team 2013).

Results

Our main goal was to examine the potential effect of a newly designed work-
ing memory sensitive intervention. All participants received at least 10 training ses-
sions (n

B
 ≥ 10) following the baseline phase (nA ≥ 5), resulting in 15-18 observations 

per individual (see Table 1 for details).

Number bonds (errors)
Visual analysis of the number bonds (errors) results over all participants of 

the multiple baseline design indicate an intervention effect. Not, however, for all par-
ticipants: Destiny, Gabriel, and Harper show no change in their error rates agreeable 
to the phase changes. Emma reduced her error rates within the first sessions of the 
baseline phase, leaving no further room for improvement in this specific variable. 
The remaining majority of the students showed small (e.g., Faith) to large reductions 
of their error rates. With few exceptions the average number of errors was reduced in 
the intervention phase (M

A
–M

B
: M = -3.68, Min–Max = -11.35–0.40), and the trend 

remained or improved toward a reduction of errors (T
A
–T

B
: M = -0.10, Min–Max = 

-0.70–1.17). Correspondingly standardized mean differences indicate moderate to 
strong intervention effects for all participants except for Destiny, Faith, and Harper. 
Tau values indicate a strong intervention effect for five participants (Ava, Emma, 
Kevin, Lily, Mason), a moderate intervention effect for another five (Benjamin, Char-
lotte, Gabriel, Isaac, Julia), but no relevant intervention effect for Destiny, Faith, and 
Harper.
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Figure 2. Number bonds errors for all participants in baseline and intervention phase.
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Figure 2 (continued)
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Figure 2 (continued)

Addition (errors)
Visual analysis of the addition (errors) outcomes indicates an intervention 

effect for Lily, unclear results for Ava, Benjamin, and Charlotte, and no intervention 
effect for the remaining majority of the students. The average number of errors was 
slightly reduced or remained the same in the intervention phase for all but three 
students (M

A
–M

B
: M = -0.35, Min–Max = -2.98–1.05). The majority of graphs show 

negligible trends for this outcome, corresponding with no improvements in students’ 
error rates over time (T

A
–T

B
: M = -0.07, Min–Max = -0.49–0.19). The standardized 

mean differences indicate increases in errors comparing phases A and B for five par-
ticipants (Benjamin, Destiny, Emma, Julia, Mason), and small to large positive effects 
(lower error rates) for the majority of participants. Baseline-corrected Tau values in-
dicate strong intervention effects for Destiny and Lily, moderate intervention effects 
for six participants (Ava, Benjamin, Charlotte, Faith, Isaac, Kevin), but no effect for 
Emma, Gabriel, Harper, and Mason.
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Figure 3. Addition errors for all participants in baseline and intervention phase.
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Figure 3 (continued)
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Figure 3 (continued)



Learning Disabilities: A Contemporary Journal 18(2), 213-240, 2020

231

Ta
bl

e 
3.

 D
es

cr
ip

tiv
e 

St
at

is
tic

s a
nd

 E
ffe

ct
 S

iz
es

 fo
r A

dd
iti

on
 (E

rr
or

s)

A
B

A
 v

s. 
B

 
M

 (S
D

)
M

d 
(M

A
D

)
Tr

en
d

 
M

 (S
D

)
M

d 
(M

A
D

)
Tr

en
d

 
M

A
-M

B
T A

-T
B

SM
D

PA
N

D
Ta

u

Av
a

1.
83

 (1
.3

3)
2.

00
 (0

.7
4)

-0
.1

8
0.

83
 (0

.8
3)

1.
00

 (0
.0

0)
0.

00
-1

.0
0

0.
19

-0
.7

5
88

.8
9

-0
.4

1

B
en

ja
m

in
1.

20
 (1

.1
0)

1.
00

 (0
.0

0)
0.

39
2.

25
 (1

.4
8)

2.
00

 (1
.4

8)
-0

.0
9

1.
05

-0
.4

9
0.

96
52

.9
4

-0
.3

7

C
ha

rlo
tte

4.
00

 (1
.0

0)
4.

00
 (1

.4
8)

0.
11

3.
36

 (1
.1

2)
3.

00
 (1

.4
8)

0.
00

-0
.6

4
-0

.1
1

-0
.6

4
75

.0
0

-0
.2

5

D
es

tin
y

5.
60

 (0
.5

5)
6.

00
 (0

.0
0)

0.
12

5.
64

 (0
.5

0)
6.

00
 (0

.0
0)

-0
.0

1
0.

04
-0

.1
3

0.
07

59
.3

8
-0

.6
8

Em
m

a
0.

60
 (0

.8
9)

0.
00

 (0
.0

0)
0.

14
0.

64
 (0

.6
7)

1.
00

 (1
.4

8)
0.

00
0.

04
-0

.1
4

0.
04

62
.5

0
0.

06

Fa
ith

3.
60

 (0
.5

5)
4.

00
 (0

.0
0)

-0
.1

3
2.

82
 (0

.8
7)

3.
00

 (0
.0

0)
0.

00
-0

.7
8

0.
13

-1
.4

3
75

.0
0

-0
.4

3

G
ab

rie
l

4.
20

 (1
.1

0)
4.

00
 (0

.0
0)

0.
17

3.
67

 (1
.3

7)
4.

00
 (1

.4
8)

-0
.0

1
-0

.5
3

-0
.1

8
-0

.4
9

64
.7

1
-0

.1
5

H
ar

pe
r

2.
20

 (0
.4

5)
2.

00
 (0

.0
0)

0.
01

2.
10

 (0
.5

7)
2.

00
 (0

.0
0)

0.
00

-0
.1

0
-0

.0
1

-0
.2

2
73

.3
3

-0
.0

8

Is
aa

c
3.

00
 (1

.0
0)

3.
00

 (1
.4

8)
-0

.0
2

2.
33

 (0
.7

8)
2.

00
 (0

.0
0)

-0
.0

2
-0

.6
7

0.
00

-0
.6

7
76

.4
7

-0
.3

1

Ju
lia

3.
20

 (0
.4

5)
3.

00
 (0

.0
0)

0.
08

3.
75

 (1
.2

9)
3.

50
 (1

.4
8)

0.
03

0.
55

-0
.0

5
1.

23
52

.9
4

0.
18

K
ev

in
1.

20
 (0

.4
5)

1.
00

 (0
.0

0)
0.

02
0.

73
 (0

.7
9)

1.
00

 (1
.4

8)
-0

.0
3

-0
.4

7
-0

.0
4

-1
.0

6
75

.0
0

-0
.3

2

Li
ly

3.
80

 (0
.4

5)
4.

00
 (0

.0
0)

0.
04

0.
82

 (0
.7

5)
1.

00
 (1

.4
8)

-0
.0

3
-2

.9
8

-0
.0

7
-6

.6
7

10
0

-0
.7

5

M
as

on
4.

20
 (0

.4
5)

4.
00

 (0
.0

0)
-0

.0
1

 
5.

10
 (1

.2
0)

5.
50

 (0
.7

4)
0.

02
 

0.
90

0.
03

2.
01

33
.3

3
0.

42



Learning Disabilities: A Contemporary Journal 18(2), 213-240, 2020

232

Quantity-number competencies (MBK 1+)
It is atypical for a single-case design, but we did the MBK 1+ a second time 

as a post-test measure. The children showed some surprising improvements after the 
intervention. Their mean score is 34.00 (SD = 7.90), and the mean percentile rank 
is 43.70 (SD = 23.82). Only three of the children have a percentile rank less than 18.

Discussion

In this study we examined the effects of a new working memory sensitive 
math intervention on mathematical precursors, in particular the relational under-
standing of numbers, of 13 primary school students. The results of our multiple-
baseline design demonstrate that this treatment can potentially lead to enhancement 
in children’s performance.

Participants for which we conclude effects show a gradual improvement in 
the number-bonds task. This task measures the understanding and automation of 
relations between numbers and is especially appropriate to show near training effects. 
As expected, improvements did not occur immediately, but rather after a few sessions. 
Only two cases showed an immediate change (Kevin and Lily), and were both taught 
by the same instructor. We could think of at least two explanations for this result: (1) 
Maybe the instructor always starts with the same task, which is particularly effective. 
It would therefore be an effect of the task. For example, in a recent paper Hawes and 
Ansari (2020) assume that tasks addressing spatial thinking are more appropriate 
for stimulating mathematical learning. It is possible that the greatest potential for 
mathematical learning lies in the combination and integration of spatial and nu-
merical instruction. We have examined the possibility of a task effect for Kevin and 
Lily and can exclude it based on our material. (2) The second possibility refers to the 
classical experimenter effect. Characteristics of the instructor can also be associated 
with improvement as well as its absence. This could also be the case with Gabriel 
and Harper, who both did not improve their error rates. The implementation of the 
treatment – like any teaching situation – depends on the expertise of the instructor. 
Despite previous training of the instructors, their content knowledge and their peda-
gogical content knowledge (Shulman, 1987) may affect the participants’ results. If the 
implementation of the approach turns out to be a major challenge, this would also 
limit its ecological validity. A practical approach should also prove its worth outside 
a laboratory situation.

The performance of Mason shows a very large variability. He received spe-
cial educational services, due to learning difficulties, and showed some other traits 
that are unfavorably associated with learning: He showed impulsive behavior and 
attention problems and was easily frustrated, which might have hindered his learning 
progress. This assumption is in line with models that summarize influencing factors 
of impaired mathematics learning processes, e.g., the model of Jacobs and Petermann 
(2007). The treatment, or the mental confrontation with the learning object, requires 
a certain amount of attention. For some students it is possible to combine the treat-
ment with an additional behavioral intervention in future studies.

The results of the addition test are less positive. Not surprisingly, the children 
who show no improvement in the number-bonds task also show no improvement in 
their numeracy skills. Only Lily reduced her error rates. Although the results of the 
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other indices are much more positive, there was no effect at all for Emma, Gabriel, 
Harper and Mason. Nevertheless, this does not speak against the effectiveness of our 
intervention, since arithmetic was not explicitly addressed. The treatment focused on 
the understanding of numbers, so the solution of typical addition problems could al-
ready be seen as a far transfer effect. In connection with appropriate classroom-based 
instruction, such transfer effects are quite conceivable; however, we can’t expect that 
to happen over a relatively short intervention period.

Although the results show an improvement in mathematical precursors 
measured by the MBK 1+, it is not clear whether this improvement is valid. For one 
thing, pre-test / post-test measurement is not the adequate analysis for a single-case 
design, and we interpret the pre-test / post-test comparison conservatively as a trend. 
Except for two students (Gabriel and Harper), the participants show an improvement 
in their MBK 1+ t-scores after the short time of our intervention. Within three weeks, 
the children enhanced their scores by 12.81 on average. Unfortunately, the retest reli-
ability of the test varies between r = .67 and r = .77; we must consider the possibility 
that this is an effect of retesting. Despite all limitations, the improvement in MBK 1+ 
is compatible with the other results. Gabriel and Harper are not improving in any 
component during the intervention. It is equally consistent that Destiny and Faith 
show the smallest improvement. The remaining children increased their t-scores by 
at least 11 points. After the intervention, 6 out of 13 children were no longer at risk 
for mathematical learning difficulties (all above a percentile rank of 16). Considering 
the measurement error, only four children are still at risk. 

Destiny was reported to be unfocused in conventional lessons. This problem 
was also noticed during the intervention sessions. Even if the tasks are very limited, 
they require a certain amount of attention.

We also measured a few working memory functions throughout the study. 
For the interpretation of the mathematical performance, we can only see one remark-
able aspect here. The evidence suggests that Gabriel and Harper benefited least from 
the intervention. In terms of their working memory, they are by far the weakest in the 
Corsi block backward. At t1 both students were not able to remember a single item, 
so their memory span for this function is zero. The mean memory span at t1 is 2.31 
(SD = 1.32). In the forward Corsi block task they do not show these difficulties. Here 
Gabriel showed a memory span of five, marking the upper end of the values. Harper 
has achieved a memory span of two, which indicates that the testing has generally 
worked. It seems that especially the combination of storing and processing dynamic 
visual-spatial information is critical. In some ways this fits with research suggesting 
that visual-spatial working memory is strongly related to numerical reasoning and 
mathematical skills in general (e.g., Raghubar, Barnes, & Hecht, 2010), even though it 
is not clear to what extent visual or rather spatial processes are involved (e.g., Hawes 
& Ansari, 2020; Passolunghi & Mammarella, 2012). Holmes, Adams and Hamilton 
(2008) provide evidence that the spatial subcomponent is particularly relevant in 
younger (seven- to eight-year-old) children; a block recall task predicted mathemat-
ics performance in this age group. Further evidence comes from Passolunghi and 
Mammarella (2012), who showed that children with poor mathematical skills exhibit 
particular deficits in dynamic spatial working memory measured by a Corsi block 
task. In our results, however, it is remarkable that both Corsi block tasks relate to 
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spatial processes. Perhaps the critical point is the processing or rather manipulating 
component. This could indicate the particular importance of combining central ex-
ecutive and dynamic visual-spatial functioning.

Unfortunately, to this point the relationship between working memory 
and mathematics is scarcely understood, and we can only describe the phenomenon 
in our data. Working memory is operationalized very differently, which presents a 
general problem for comparing and interpreting the findings. Furthermore, there 
are hardly any studies that have used a backward condition of the Corsi block. Our 
purpose with this intervention was to offer a new approach especially to students 
like Gabriel and Harper, and we still assume that many nonresponders have limited 
cognitive resources. However, we assume that these children especially need a larger 
number of intervention sessions.

Limitations

There are, however, some limitations to this study. (1) This multiple-case 
design allows for no generalization beyond the context of this experiment, neither to 
the population with mathematical learning difficulties nor to the population of non-
responders. The validity of our findings needs to be verified through their replication 
and through more comprehensive research (Kazdin, 2011).

(2) Furthermore, we were able to show that the program has potential effects. 
But our intervention is composed of two aspects: working memory and mathematics. 
Since the two are integrated, it is difficult to show which parts of the intervention lead 
to an effect. Is it working memory, or the strongly structured mathematical content, 
or a combination? At the moment we cannot make any statements about the “con-
struct validity” (Kazdin, 2011, p. 36). In order to clarify this, future studies should ex-
amine these questions, perhaps by varying crucial aspects of the experimental design. 
More complex single-case designs are also conceivable, e.g., an A-B-C design.

(3) Since the children have already been tested a lot, we did not capture 
other interesting variables such as intelligence or attention. These might help us to 
understand causal relationships in future studies. Current hypotheses about missing 
effects can also be tested in this manner. Relationships to working memory perfor-
mance should also be focused further.

(4) Unfortunately, we did not collect any follow-up data. Upcoming school 
vacation prevented us from continuing with the measurement. The practical signif-
icance of the intervention also results from the stability of the effects (Prentice & 
Miller, 1992). Have the children overcome their knowledge gaps? Can these children 
now participate in conventional lessons without supplemental instruction? Or do 
they continuously need such intensive support? On the other hand, through follow-
up studies we can see whether delayed effects occur in the children who have not 
improved yet.

 (5) We couldn’t check whether the germane cognitive load was actually in-
creased by our intervention, because there are no standard, reliable, and valid mea-
sures for the different types of cognitive load (Moreno, 2010).

(6) Finally, no observational data could be collected to ensure treatment 
fidelity; and we rely on regular meetings with the instructors and their statements 
regarding treatment fidelity. In future studies the implementation of the intervention 
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should be monitored more closely.

Conclusion

Despite its limitations, this study provides first empirical support for the 
newly designed working memory sensitive intervention. Most of the participants 
showed small to large positive training effects, mainly with regard to the number-
bonds task, which is near to the treatment. Further research is now needed to un-
derstand why the intervention works well for some children, works only moderately 
for others, or – just as important – fails to work. At this point we can only make 
cautious assumptions. However, considering the relatively short intervention period, 
our results are encouraging. Pressley et al. (1989) emphasize that good information 
processing cannot be achieved by time-limited interventions but is rather a product 
of many years of good teaching practice. Perhaps this also applies to our approach, 
and the working memory sensitive math intervention and its principles should be 
linked more closely to conventional classroom teaching. 

Working memory can be situated in the broader construct of self-regula-
tion, and in this sense, our intervention can be seen as a way of influencing the regu-
lation of learning. Here, we refer to the phase during learning, but in this context, 
it is possible to include further aspects, perhaps those that are more conscious (e.g. 
student-centered strategies, which cause children to become more autonomous). The 
intervention itself, but also research, can be extended in this way. In the future, a bet-
ter understanding of mathematical learning processes and their relationship to work-
ing memory should help to further develop interventions such as ours.
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