

 EURASIA Journal of Mathematics, Science and Technology Education, 2020, 16(5), em1841

 ISSN:1305-8223 (online)

 OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/116600

© 2020 by the authors; licensee Modestum LTD. This article is an open access article distributed under the terms and

conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

 arachma@ncsu.edu bakram@ncsu.edu dmboulde@ncsu.edu bwmott@ncsu.edu kristy@learndialogue.org

 lester@ncsu.edu wiebe@ncsu.edu (*Correspondence)

Development and Validation of the Middle Grades Computer Science Concept
Inventory (MG-CSCI) Assessment

Arif Rachmatullah 1, Bita Akram 1, Danielle Boulden 1, Bradford Mott 1, Kristy Boyer 2, James Lester 1,

Eric Wiebe 1*

1 North Carolina State University, USA
2 University of Florida, USA

Received 17 October 2019 ▪ Accepted 14 January 2020

Abstract

The increasing interest in computer science (CS) and CS-integrated STEM teaching and learning

has created a need for assessment instruments that can be used to evaluate the efficacy of

innovative instructional approaches to K-12 CS education. However, there is a lack of validated

assessment tools aligned to core CS concepts for younger students. This paper reports on the

development and validation of a CS concept assessment for middle grades (ages 11-13) students.

A total of 27 multiple-choice items were developed, guided by focal knowledge, skills and abilities

associated with the concepts of variables, loops, conditionals, and algorithms. These items were

administered to 457 middle grades students. The items were presented in form of block-based

programming code and administered in a week-long computational modeling intervention. A

combination of classical test theory and item response theory approaches were used to validate

the assessment. Based on results, it was found that only 24 items are considered valid and reliable

items to measure CS conceptual understanding. The results also suggested that the assessment

can be used as a pre and post-test to investigate students’ learning gains. This work fills an

important gap by providing a key resource for researchers and practitioners interested in

assessing middle grades student CS conceptual understanding.

Keywords: assessment, computer science, concept inventory, middle grades, validation

INTRODUCTION

The past decade has seen an increased international
policy push for more emphasis on K-12 Computer
Science (CS) education (Barr & Stephenson, 2011; Cuny,
2011; Grover & Pea, 2018). In the US, a key area of focus
has been on the middle grades (ages 11-13), where
specific courses have been developed and research into
integration strategies for core STEM curricula has been
undertaken (code.org, 2018; Goode & Chapman, 2016;
Manila et al., 2014; Settle et al., 2012). This policy push
has resulted in bringing CS focused interventions into
middle grades classrooms, but has done so without the
development of effective assessment tools for use by
practitioners and researchers (de Araujo, Andrade, &
Guerrero, 2016; Decker & McGill, 2019).

While there are assessments associated with
standalone courses, these instruments are tuned to the
specific content of the corresponding course and
typically reflect localized contextual factors of the
curricula, including the specific programming language
used or technical elements that interface with the code
(e.g., robotics, gameplay elements) (Bienkowski, Snow,
Rutstein, & Grover, 2015; Buffum et al., 2014). There is a
significant need for a more general middle grades CS
concept inventory assessment, similar to those
developed for other STEM curricular areas (e.g.,
Hestenes, Wells, & Swackhamer, 1992) and for other age
ranges in CS (Parker, Guzdial, & Engleman, 2016). Such
an instrument could be used in a wide variety of ad hoc
and small-scale middle grades CS interventions, and for
research-based activities. We argue that such an
assessment should be (1) based on the emerging student

https://doi.org/10.29333/ejmste/116600
http://creativecommons.org/licenses/by/4.0/
mailto:arachma@ncsu.edu
mailto:bakram@ncsu.edu
mailto:dmboulde@ncsu.edu
mailto:bwmott@ncsu.edu
mailto:kristy@learndialogue.org
mailto:lester@ncsu.edu
mailto:wiebe@ncsu.edu

Rachmatullah et al. / MG-CSCI Validation

2 / 24

learning standards (Computer Science Teachers
Association – CSTA, 2017; k12cs.org, 2016) and thus
representative of the current well-accepted CS curricular
concepts of primary interest for this grade range, (2)
administrable with standard testing platforms, and (3)
be completed by students within a standard class period,
thus the teachers can use it in their classes. Finally,
assessment items should utilize block-based
programming, the most popular programming
representation used in middle grades (Brown, Mönig,
Bau, & Weintrop, 2016). This paper provides a
foundational literature review, and development and
validation of the MG-CSCI, a CS concept inventory
assessment for middle grades.

RELATED WORK

CS education researchers interested in analyzing the
impact of prior programming experience have often
resorted to asking students to self-report the level and
kind of prior experience (Korkmaz, Çakir, & Özden,
2017). However, it is widely recognized that an
assessment of core concepts (i.e., a concept inventory)
provides more accurate, detailed information of
students’ prior knowledge (Smith IV, Hao, Jugodzinski,
Liu, & Gupta, 2019). Such a concept inventory can also
be used pre and post to measure the impact of an
intervention. Taylor et al.’s (2014) review of CS concept
inventories noted that the CS education community has
generally lagged behind other areas in STEM education
(especially physics) in the development and utilization
of assessments of students’ conceptual understanding. A
recent large-scale effort to catalog current instruments
has also concluded that research on assessment
development needs to continue (Decker & McGill, 2019).

One of the challenges with the current work has been
the lack of a clear construct definition for computational
thinking (CT), as opposed to computer science (CS)
knowledge. For the purposes of this work, CT can be
thought of as a general cognitive ability linked to fluid
intelligence (i.e., problem-solving ability), spatial ability,
and working memory (Román-González, Pérez-
González, & Jiménez-Fernández, 2017; Tukiainen &
Mönkkönen, 2002; Wiebe et al., 2019). In contrast, CS
conceptual understanding is linked to core concepts
identified by curricular frameworks as necessary for
engaging in CS practices. While there is likely high
correlation between instruments that measure these two

constructs, they would be used differently depending on
the measurement goal.

Historically, much of the work on CS concept
inventory development has focused on the
undergraduate CS1 course (Gross & Powers, 2005).
Caceffo, Wolfman, Booth, and Azevedo (2016) notes that
typically the goal for a concept inventory for a course
such as this is to develop items that are diagnostic at the
single concept level, though this goal is often challenging
to achieve (Luxton-Reilly et al., 2018). Because of the
concept-guided nature of such an inventory, many of
these types of assessments focus on a few, or even just
one core concept, such as recursion (Hamouda,
Edwards, Elmongui, Ernst, & Shaffer, 2017). FCS1 was
developed as a concept inventory for an introductory
undergraduate programming course with the goal of
assessing all of the core concepts covered in the course
(Tew & Guzdial, 2017). The SCS1 assessment (Parker,
Guzdial & Engelman, 2016) was a revision and
revalidation of the FCS1, though even through this
refinement process other researchers continue to
question the high difficulty level of some of the items
(Xie, Davidson, Li, & Ko, 2019).

At the K-12 level, there has been work on developing
assessments of student CS conceptual understanding. A
prominent example is the Fairy Performance
Assessment (Werner, Denner, Campe, & Kawamoto,
2012), which used coding in Alice to assess students’
ability to think algorithmically and make effective use of
abstraction and modeling. However, the assessment was
a practicum exercise and required students to code
constructions, thus limiting its scalability. Other
assessments have been reported in the literature
specifically associated with research-based
interventions, especially at the middle grades level. This
includes an assessment of a game-based learning
environment (Boulden et al., 2018; Buffum et al., 2015),
pair programming with Scratch (Lewis, 2011), and a
teacher PD intervention with Scratch (Meerbaum-Salant,
Armoni, & Ben-Ari, 2013). Due to the focused, research
nature of this prior work, none of these instruments
underwent further validation as a general use
instrument. As formal curricula have been developed,
assessments have been created matched to the curricular
content and practices. These include the Exploring CS
middle grades curriculum (Bienkowski et al., 2015) and
the FACT curriculum (Grover, Pea, & Cooper, 2015).

Contribution to the literature

• The paper summarizes the previous literature on the CS assessments and indicates the need for a core
concept-aligned assessment for use at the middle grades level (ages 11-13).

• The paper demonstrates a robust development and validation process of an instrument to measure
middle grades students’ understanding of computer science (CS) concepts.

• The use of a recent and well-accepted inventory of CS concepts is the focus of the assessment
development.

EURASIA J Math Sci and Tech Ed

3 / 24

Another direction has been the inclusion of nine
assessment items on the Israeli nationwide exam aligned
with a required middle grades CS course (Zur-Bargury,
Pârv, & Lanzberg, 2013).

CURRENT WORK

The goal for the research reported here is to develop
a validated concept inventory at the middle grades level
that is independent of any specific curricula but is well
aligned with an emerging set of student CS outcome
standards for middle grades (ages 11-13). We focused on
the K-12 Computer Science Framework (k12cs.org, 2016)
as our main CS outcome standard. Furthermore, we
utilized two sets of student outcome standards designed
based on the K-12 Computer Science Framework: the
CTSA framework that is designed to guide both
curriculum and assessment development at the state
level (CSTA, 2017) and a set of 16 FKSAs (focal
knowledge, skills, and abilities) that were developed by
Grover and Basu (2017) with the goal of developing CS
concept assessment items. The instrument developed by
Grover et al. (2017) contained items that covered
multiple FKSAs and open-ended items. In contrast, we
created finer-grained items focused on single concepts,
which were all multiple-choice, to facilitate automated
grading. In addition, this concept inventory underwent
validation with a large population of students of varying
prior programming experience and representative of a
broad U.S. demographic.

In addition to using an evidence-centered design
approach for item development, the representation of
the example code in the items (e.g., text-based,
pseudocode, or block-based), as both foundational
cognitive affordances and prior programming
experience will interact with the representational form
(Werner, Denner, Campe, & Kawamoto, 2012). Research
by Weintrop and colleagues (Weintrop, Killen, & Franke,
2018; Weintrop, Killen, Munzar, & Franke, 2019) has
indicated that independent of individual differences,
block-based representations that are independent of
specialized syntax are the most accessible form for
students of varying abilities.

Once items are developed, classical test theory (CTT)
and item response theory (IRT) approaches, combined,
have proven to be a robust approach to assessment
validation. Specifically, IRT is sample-independent by
virtue of a latent attribute underlying the model so that
psychometric results computed through IRT are stable
across different samples. CTT contributes to the
dimensionality verification process and strengthens the
testing performed through IRT. Moreover, IRT produces
ratio-scaled scores that facilitate a more accurate score
inference and comparison between item and person.
Lastly, it reports a variety of fit statistics that allows for
more thorough item evaluation (Bond & Fox, 2001;
Boone, Staver, & Yale, 2013). A number of researchers

have advocated specifically for IRT approaches to be
utilized in the development of CS assessments (Werner,
Denner, Campe, & Kawamoto, 2012; Winters & Payne,
2005; Zendler, 2019). In addition, utilization of both
evidence-centered design for item development and
Rasch modeling (a form of IRT) for validation has
effectively been used for a focused CS concept inventory
(only for control structures understanding) development
for grades 7-10 (Mühling, Ruf, & Hubwieser, 2015), and
provides an example for this research to utilize.

DATA AND METHODS

Item Development

Following an evidence-centered assessment design
(ECD) approach (Bienkowski et al., 2015; Mislevy,
Steinberg, & Almond, 2003), we designed a CS inventory
for assessing middle grades student knowledge of
essential CS constructs. ECD provides a process for
identifying conceptual learning targets for students, and
assessing the degree to which tasks (i.e., assessment
items) provide warrantable evidence that students have
mastered that concept. This methodology has been
widely used in assessment development, including an
assessment for the Exploring Computer Science
curriculum (Goode, Chapman, & Margolis, 2012). For
the MG-CSCI, we focused on the CS concepts that are
commonly taught at the middle grades level and are
shown to be challenging for novice programmers.
Focusing on common and challenging CS concepts
enables us to use the MG-CSCI assessment to evaluate
students’ proficiency related to the most important CS
concepts and the effectiveness of an instructional
intervention or curriculum in teaching them. Prior work,
as noted in the previous section, was used to frame and
identify the target concepts. Using an ECD process,
Grover and Basu (2017) had operationalized important
CS concepts for middle grades into 16 focal knowledge,
skills, and abilities (FKSAs). Grover and Basu’s work, in
turn, was guided by the K-12 CS framework (k12cs.org,
2016). The 11 out of 16 FKSAs were used to develop the
assessment and covered four primary conceptual
categories: variables (3 FKSAs), loops (4 FKSAs),
conditionals (1 FKSA) and algorithms (3 FKSAs). The
other five FKSAs did not align with current U.S. middle
grade computer science curriculum standards (CSTA,
2017) and thus were not included in this assessment
development. However, in order to have comprehensive
coverage of the middle grades curriculum, during early
stage development, it was decided to also use definitions
and examples of algorithms contained in the CSTA K-12
CS Standards (CSTA, 2017), also derived from the K-12
CS framework (k12cs.org, 2016). The list of the FKSAs
and CSTA Standards used in this study is available in
Appendix 1.

For item development around block-based
programming code, prior work on high-school and

Rachmatullah et al. / MG-CSCI Validation

4 / 24

middle-school assessments were used to guide our work
(Du Boulay, 1986; Shneiderman, & Mayer, 1979,
Weintrop & Wilensky, 2015; Xie et al., 2019). For each
concept, we designed items with varying levels of
difficulty and question types: comprehension of a code
snippet, debugging a partially wrong code snippet, and
developing/completing a partially built code snippet.
We piloted our inventory to identify the difficulty span
of the questions and refined them to maintain the
appropriate balance for middle grades students.
Example assessments items are a development question
on variables (Figure 1) and a comprehension question on
algorithms (Figure 2). After devising the first draft of the
items, they were piloted with two CS graduate students
and three non-CS graduate students to check for
appropriate language, level of difficulty, and balance of
the question types. We then revised the items based on
feedback collected from this pilot study.

Sample and Administration

A total of 457 students consented to participate in the
current study. The consenting students were middle
grades students in sixth grade to eighth grade (ages 11-
13). Sixth-grade students were 52% of the total
participants and seventh and eighth grade students
represented 2% and 36% of the sample, respectively. The
male students were 49% of the sample. Regarding
ethnicity, Caucasian, Latinx, and African-American
were the most common ethnic groups in the current data
set with 30%, 18%, and 17%, respectively, while the
remaining 35% identified as Asian, Middle Eastern and
Other. Of the total sample, 68% of students indicated that
they had never experienced or were only occasionally
exposed to programming activities.

Administration of the study was done in conjunction
with a week-long classroom computational modeling

intervention that involved block-based programming
centered on science topics. Students were involved in
either food web or epidemic disease modeling activities.
Both activities consisted of unplugged (without
computer) and plugged (with computer) sessions. The
activities were developed based on the Use-Modify-
Create (UMC) model of learning suggested by Lee et al.
(2011). In the food web activity students were engaged
in building a simulation of energy transfer in food web
through coding, and in the epidemic disease activity,
students were engaged in creating a simulation that
shows the spread of disease and its treatment. The study
collected data before and after the intervention, though
not all students took the instrument both pre- and post-
test. After data cleaning, the study used a total of 608
data samples from 457 students, in which 410 of them
were post-test data, and 198 were pre-test data. The
combination of pre- and post-test data was intended to
capture a broader range of students’ performance and
enable additional analyses. Among the students who
took both the pre- and post-test, only 148 eighth grade
students had data usable for further analyses.

Data Analysis

Missing Data. Before we analyzed the collected data,
we checked for missing values within the 608 data
samples. While the main statistical analysis used in the
current study, IRT-Rasch, uses Maximum Likelihood
Estimation (MLE) which can accommodate a small
percentage of missing data, both the percentage of
missing data and the pattern of missingness needed to
be confirmed. Thus, we explored whether the data are
missing completely at random (MCAR), missing at
random (MAR), or missing not at random (MNAR)
(Schlomer, Bauman, & Card, 2010). We used Little’s
MCAR test to determine the amount and category of
missingness for our data set. The null hypothesis for this

Figure 1. Item 12 Variable development type question

Figure 2. Item 16 Algorithm comprehension type question

EURASIA J Math Sci and Tech Ed

5 / 24

test is the data is MNAR. Based on the analysis, 2.42%
data were missing, and the missingness was categorized
as MCAR (missing completely at random), X2 = 961.12,
df = 985, p = .70. Based on the results of this test, we
concluded the data set was ready for analysis (Allison,
2001).

Validity and Reliability. The current study used the
Classical Test Theory (CTT) and Item Response Theory
(IRT) method concurrently to collect evidence of
construct validity and reliability. IRT in the form of
Rasch analysis was our primary guide to analysis, with
CTT methods used to supplement analysis of the
statistical model of the assessment instrument. In this
study, using the literature reviewed, we worked on the
assumption that the assessment is unidimensional
meaning that it measures the FKSAs as a unitary whole.
Therefore, no dimensionality test was run.

Compared to CTT methods, Rasch analysis provides
more robust results of validation that tend to be more
stable across different samples and administrations
(Boone et al., 2013). We followed the procedure
suggested by Boone et al. (2013) and Bond and Fox (2001)
to identify items to remove and to retain. Boone et al. and
Bond and Fox suggest looking at the values of infit and
outfit mean-square (MNSQ) to evaluate the quality of
the item. Items were removed when the MNSQ values
were outside the acceptable cutoff range of 0.70 to 1.30
(Wright & Linacre, 1994). In addition to MNSQ values,
the current study also used the Item Characteristic Curve
(ICC) to evaluate the quality of the item. ICC visualizes
the association between students’ ability and the
probability of correct and incorrect answers. Items were
removed when the probability of high-ability students to
answer those items correctly is lower than the low-ability
students. This outcome indicates a poorly functioning
item, especially for differentiating between low and
high-ability students. Moreover, we sought a stable
assessment instrument where item difficulty levels
would be stable across different time points in an
intervention and demographic factors. To do so, we used
DIF contrast values to investigate stability (item-bias),
where contrast values more than 0.64 indicated likely
bias (Boone et al., 2013).

After all the items were evaluated with regards to
retention or removal, we then performed a Rasch
Dimensionality test to compare whether the model of the
assessment after item removal was better than the model
of the original assessment. Bond and Fox (2001) and
Adams and Wu (2010) suggest using three statistics: Chi-
square, Final Deviance (FD), and Akaike Information
Criterion (AIC), to determine the best model. The model
with lower values on these criteria would be considered
superior. Additionally, we also ran a Confirmatory
Factor Analysis (CFA) as a supplement to the Rasch
Dimensionality test. Hu and Bentler (1999) suggest that
the value of the Comparative Fit Index (CFI) >.90 and
RMSEA < .06 are needed for an acceptable model. We

also used a target acceptable value of X2/df less than 2 to
evaluate the models (Tabachnick, Fidell, & Ullman,
2007).

Regarding the internal consistency of the assessment,
we calculated several reliability values using both CTT
and Rasch methods. We report separation and person
(plausible value–PV) reliabilities computed through
Rasch analysis, Cronbach’s alpha, composite reliability–
CR (Raykov, 1997), and test-retest reliability. These
calculations were evaluated using a cutoff value of
greater than .70 (DeVellis, 2016). A paired-sample t-test
was also performed for those students who took the
assessment pre- and post-intervention (n = 148) to
examine the change in student scores. The IRT-Rasch
analysis was performed in ConQuest 4.14.2 (Adams,
Wu, & Wilson, 2015), while other statistical analyses
(CFA, paired-sample t-test, Cronbach’s alpha, CR, and
test-retest reliability) were run in Stata 15.1.

RESULTS

Rasch Modeling Analysis

Based on the Rasch modeling analysis, we found that
only one out of 27 items had infit and outfit MNSQ
outside the acceptable range. The item, Item_7_Con2,
had values of infit and outfit MNSQ 1.39 and 1.66,
respectively. We also investigated the response pattern
using each item’s Item Characteristic Curve (ICC) and
confirmed that item Item_7_Con2 had the pattern
showing low-ability students were more likely to answer
the item correctly than high-ability students. Also, we
identified two other items with the same pattern. Those
items were Item_11_Loo4 and Item_15_Loo5 (ICCs and
questions are in the Appendix 2 and Appendix 3).
Item_11_Loo4 and Item_15_Loo5 did not initially have
MNSQ values beyond the range; however, when we
removed Item_7_Con2 from the assessment, and re-ran
the analysis, the items became misfitting (MNSQ values
outside the cutoff). This indicates that the three items are
likely in the same dimension, but not in the same
direction with the other 24 items. Thus, we removed
these three items from the assessment. The remaining 24
items are in one dimension, and thus are measuring the
same single latent construct. We believe this construct is
represented by our FKSAs. The list of the final 24
questions and their corresponding FKSAs and CSTA
standards are provided in Appendix 4.

We then compared the model of assessment with 27
items and 24 items using Rasch dimensionality test.
Table 1 shows the results of this comparison. Based on
the comparison, the model of 24 items had lower X2, FD,
and AIC values than the 27-items model, indicating that
the 24-item assessment is superior. In line with the lower
values, the chi-squared difference also showed that the
difference between the two models was significant, ΔX2
= 488.14, Δdf = 3, p < .001. Removing the three items also

Rachmatullah et al. / MG-CSCI Validation

6 / 24

increased the reliability values, except for the separation
reliability. The models also had reliability values that
were categorized as high internal consistency (> .80) as
shown in Table 2.

Table 3 shows the alpha if item deleted, item fit
statistics, and the DIF contrast of the items in the 24-item
model. It can be seen that there is no item that has alpha
if item deleted higher than the full model value of .834
and there is no item with MNSQ values beyond the
cutoff. Moreover, the assessment had a good distribution
of item difficulty, as shown by a Wright Map in Figure 3.
These results further support the 24-item model. The DIF
analysis of the 24-item assessment resulted in most of the
values of the DIF contrasts being less than 0.64,
indicating low bias. Item_2_Con1 had DIF pre/post
contrast value of 0.74; however, we still believe that the

value is acceptable given its proximity to the cutoff (cf.,
Cameron, Scott, Adler & Reid, 2014).

Confirmatory Factor Analysis (CFA)

Table 4 shows the comparison results between the 27
and 24-item models based on CFA. Both models can be
categorized as a good model. However, the 24-item
model had higher CFI and lower X2 than the 27-item
model, indicating a better fit. Based on the chi-squared
difference test, this difference was significant at a .05
alpha level, ΔX2 = 97.47, Δdf = 72, p = .025. It is worth
noting the level of improvement in X2 even as the df
decreases, as indicated by a near stable X2/df ratio lower
than the target cut-off of 2.0 (Cole, 1987). The
visualization of the CFA for the model with 24 items is
shown in Figure 4.

Table 1. Comparing the Models

Model X2 df FD AIC

27 items 1221.07 26 19189.28 19245.28
24 items 732.93 23 17328.92 17378.92

Table 2. Comparing the Reliability Values of the Two Models

Model Separation Reliability PV Reliability α CR

27 items .983 .809 .826 .859
24 items .972 .819 .834 .862

Table 3. Alpha if Item Deleted and Rasch Item Fit Statistics for the 24-item Model

Item α if Item Deleted Measure Infit MNSQ Outfit MNSQ DIF Contrast Pre/post

Item_1_Var1 .827 -0.003 0.98 0.97 0.15
Item_2_Con1 .829 0.836 1.03 1.10 0.74

Item_3_Loo1 .827 0.486 0.99 1.02 0.33
Item_4_Loo2 .825 -1.065 0.91 0.81 0.17
Item_5_Alg1 .834 0.074 1.15 1.21 0.30
Item_6_Var2 .832 -0.136 1.10 1.12 0.04
Item_8_Con3 .831 0.541 1.09 1.16 0.03
Item_9_Con4 .823 -0.493 0.92 0.86 0.12
Item_10_Loo3 .827 -0.911 0.95 0.90 0.13
Item_12_Var3 .828 -0.453 1.02 1.00 0.25
Item_13_Alg2 .829 0.268 1.00 1.03 0.00
Item_14_Var4 .826 0.152 0.98 0.99 0.29
Item_16_Alg3 .831 0.203 1.06 1.06 0.03
Item_17_Var5 .820 -0.056 0.84 0.81 0.15
Item_18_Var6 .829 0.168 1.03 1.04 0.00
Item_19_Alg4 .832 1.173 1.07 1.20 0.41
Item_20_Alg5 .833 0.211 1.11 1.17 0.46
Item_21_Var7 .826 0.139 0.96 0.95 0.14
Item_22_Var8 .827 0.507 0.97 0.99 0.23
Item_23_Con5 .830 -0.873 1.03 0.99 0.00
Item_24_Loo6 .825 0.290 0.93 0.96 0.22
Item_25_Loo7 .824 -0.214 0.92 0.89 0.00
Item_26_Alg6 .824 0.284 0.93 0.92 0.21
Item_27_Alg7 .829 -1.131 0.99 0.93 0.50

Table 4. Comparison of the results of the goodness of fit computed through CFA

Model X2 df X2/df CFI SRMR RMSEA

27 items 470.44 324 1.45 0.920 0.040 0.029
24 items 372.97 252 1.48 0.931 0.040 0.030

EURASIA J Math Sci and Tech Ed

7 / 24

Figure 3. Wright Map of the 24-item Model. Note: the difficulty level shown here is identical to Measure in
Table 3

Figure 4. The CFA Model for the 24-item MG-CSCI. Note: the values are the standardized β values

Rachmatullah et al. / MG-CSCI Validation

8 / 24

Pre and Post-test Comparison and Test-retest
Reliability

As noted above, 148 students took the instrument
both pre- and post-test as part of a weeklong curricular
intervention. This data was used to obtain the test-retest
reliability statistics. The current study found that test-
retest reliability value for the model of the 24-item
instrument was acceptable (> .70), r = .779). Because the
24-item model had a minimal level of item bias based on
time-point, this allows us to conduct further statistical
analysis, such as comparing the pre- and post-test scores.
Based on a paired-sample t-test, it was found that the
average logit score of student post-test scores (M = 0.20,
SD = 1.09) was higher than the average of the pre-test
logit scores (M = -0.05, SD = 0.98). The difference was
statistically significant with a small effect size, t(147) =
-4.30, p < .001, d = 0.24 (Figure 5). These results
demonstrate a functional level of sensitivity to a typical
CS curricular intervention.

DISCUSSION AND CONCLUSION

We designed and developed the MG-CSCI
assessment to measure middle grades (ages 11-13)
students’ understanding of core computer science
concepts. Our objective was to create a multiple-choice
assessment that could be completed by students within
a standard class period. After developing the
assessment, we validated it with more than 400 middle
grades students. The results of the study demonstrate
that the 24-item MG-CSCI can accurately measure
middle grades students’ understanding of core CS
concepts, including variables, loops, conditionals, and
algorithms. In contrast to previous efforts that have
developed more focused assessments, and often in a

form that uses more time-intensive scoring systems
(Grover & Basu, 2017), the current study has developed
a more general assessment in a scalable, multiple choice
form. This type of assessment facilitates remote
administration and automated grading for broader use.
Moreover, this concept inventory was designed to
support the new and increasingly adopted CS
frameworks (CSTA, 2017; Grover & Basu, 2017;
K12cs.org, 2016) and is not constrained to specific
classroom curricula and activities. By focusing on the
middle grades level, this work expands prior work done
on concept inventories targeting undergraduate
students (e.g., FCS1, SCS1). Finally, the results from the
DIF testing shows that the concept inventory has low
bias with regards to the timing of administration,
whether as a pre- or post-test. Thus, the MG-CSCI can be
used as either a pre-test (i.e., prior to a CS learning
activity) or post-test (i.e., following a CS learning
activity). In addition, it has the sensitivity for revealing
the learning impact of a CS curricular intervention which
has a relatively low effect size with a modest sample size.

Our validation study did not involve cognitive
interviews and did not further investigate the dropped
items qualitatively. However, the development of
FKSAs underlying our instrument was based on
cognitive interviews conducted with middle-grade
students that also included students’ difficulties in
understanding certain CS concepts (Grover & Basu,
2017). As we developed our instrument based on the
FKSAs, we sought statistical evidence showing the items
were in alignment with the FKSAs. The items that were
dropped, in turn, were a poor measurement fit with the
FKSAs. While we believe that cognitive interviews on all
or select items in the instrument were not a necessary
part of this validation process, we also acknowledge the
robustness of the cognitive interview methodology for
harvesting rich data behind students’ responses on the
dropped items. New studies should pursue this line of
inquiry. Another item of note is that our study included
primarily sixth and eighth grade students due to the
available sample. While these two grades bracket the
middle grades and provide an appropriate sample to
assess item difficulty, further studies should confirm
item performance more generally with seventh grade
students.

In future work, it will be important to explore
instruments that expand the conceptual coverage to a
greater number of finer-grained constructs underlying
core CS concepts. This further work would also allow us
to create more focused versions of the instrument based
on subsets of the assessment centered on specific CS
concepts. Part of this work would also be to create more
items that are at either end of the difficulty scale to better
capture a full range of abilities. To further improve the
validation of the MG-CSCI, we are planning to collect a
more demographically diverse data sample so that we
can use DIF to further test generalizability across

Figure 5. The mean comparison between pre- and
post-test scores (Note: error bars are +/- 1 standard
error of the mean)

EURASIA J Math Sci and Tech Ed

9 / 24

characteristics such as grade levels, previous block-
based programming experience, underrepresented
minority (URM) vs. non-URM, or English Language
Learners (ELLs). Related, we would hope to develop and
validate a Spanish language version of this instrument.
Thus, the ultimate goal for our further work is to validate
a broader set of items to better address a full range of
demographics, ability levels, and developmental/age
ranges. Furthermore, exploring different problem types
and representational forms not limited to block-based
programming are also important directions for future
work.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant Nos. DRL-
1640141 and CNS-1138497. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

Adams R. J., & Wu, M. (2010). Multidimensional model.
(August 2010). Retrieved on March 10, 2019 from
https://www.acer.org/files/Conquest-Tutorial-7-
MultidimensionalModels.pdf

Adams, R. J., Wu, M., & Wilson, M. R. (2015). ACER
ConQuest: Generalised item response modelling
software [Computer software]. Version 4.
Camberwell, Victoria: Australian Council for
Educational Research.

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: What is Involved
and what is the role of the computer science
education community? Inroads, 2(1), 48-54.
https://doi.org/1529-3785/20x/0700-0111

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S.
(2015). Assessment design patterns for computational
thinking practices in secondary computer science: A first
look. SRI technical report, 2015.

Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model:
Fundamental measurement in the human sciences.
Mahwah NJ: Lawrence Erlbaum Assoc.

Boone, W. J., Staver, J. R., & Yale, M. S. (2013). Rasch
analysis in the human sciences. Springer, Dordrecht.

Boulden, D. C., Wiebe, E., Akram, B., Aksit, O., Buffum,
P. S., Mott, B., ... Lester, J. (2018). Computational
thinking integration into middle grades science
classrooms: Strategies for meeting the challenges.
Middle Grades Review, 4(3), 1-16.

Brown, N. C., Mönig, J., Bau, A., & Weintrop, D. (2016,
February). Panel: Future directions of block-based
programming. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education

(pp. 315-316). ACM.
https://doi.org/10.1145/2839509.2844661

Buffum, P. S., Lobene, E. V., Frankosky, M. H., Boyer, K.
E., Wiebe, E. N., & Lester, J. C. (2015, February). A
practical guide to developing and validating
computer science knowledge assessments with
application to middle school. In Proceedings of the
46th ACM Technical Symposium on Computer Science
Education (pp. 622-627). ACM.
https://doi.org/10.1145/2676723.2677295

Caceffo, R., Wolfman, S., Booth, K. S., & Azevedo, R.
(2016, February). Developing a computer science
concept inventory for introductory programming.
In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (pp. 364-369). ACM.
https://doi.org/10.1145/2839509.2844559

Cameron, I. M., Scott, N. W., Adler, M., & Reid, I. C.
(2014). A comparison of three methods of assessing
differential item functioning (DIF) in the Hospital
Anxiety Depression Scale: ordinal logistic
regression, Rasch analysis and the Mantel chi-
square procedure. Quality of Life Research, 23(10),
2883-2888.

code.org. (2018). Computer science discoveries. Retrieved
on January 6, 2019 from
https://code.org/educate/csd

Cole, D. A. (1987). Utility of confirmatory factor analysis
in test validation research. Journal of Consulting and
Clinical Psychology, 55(4), 584-594.
https://doi.org/10.1037/0022-006X.55.4.584

Computer Science Teachers Association-CSTA. (2017).
CSTA K-12 Computer Science Standards 2017.

Cuny, J. (2011). Transforming computer science
education in high schools. Computer, 44(6), 107-109.
https://doi.org/10.1109/mc.2011.191

de Araujo, A. L. S. O., Andrade, W. L., & Guerrero, D. D.
S. (2016, October). A systematic mapping study on
assessing computational thinking abilities. In 2016
IEEE Frontiers in Education Conference (FIE) (pp. 1-
9). IEEE. https://doi.org/10.1109/FIE.2016.
7757678

Decker, A., & McGill, M. M. (2019, February). A topical
review of evaluation instruments for computing
education. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (pp. 558-
564). ACM. https://doi.org/10.1145/3287324.
3287393

DeVellis, R. F. (2016). Scale development: Theory and
applications (Vol. 26). Sage publications. Thousand
Oaks, CA.

Du Boulay, B. (1986). Some difficulties of learning to
program. Journal of Educational Computing Research,
2(1), 57-73. https://doi.org/10.2190/3LFX-9RRF-
67T8-UVK9

https://www.acer.org/files/Conquest-Tutorial-7-MultidimensionalModels.pdf
https://www.acer.org/files/Conquest-Tutorial-7-MultidimensionalModels.pdf
https://doi.org/1529-3785/20x/0700-0111
https://doi.org/10.1145/2839509.2844661
https://doi.org/10.1145/2676723.2677295
https://doi.org/10.1145/2839509.2844559
https://code.org/educate/csd
https://doi.org/10.1037/0022-006X.55.4.584
https://doi.org/10.1109/mc.2011.191
https://doi.org/10.1109/FIE.2016.7757678
https://doi.org/10.1109/FIE.2016.7757678
https://doi.org/10.1145/3287324.3287393
https://doi.org/10.1145/3287324.3287393
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Rachmatullah et al. / MG-CSCI Validation

10 / 24

Goode, J., & Chapman, G. (2016). Exploring computer
science. University of Oregon, Eugene, OR.
Retrieved on April 18, 2018 from
http://www.teach21.us/uploads/1/3/0/5/13053
428/samplecscurriculum.pdf

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond
curriculum: The exploring computer science
program. ACM Inroads, 3(2), 47-53.
https://doi.org/10.1145/2189835.2189851

Gross, P., & Powers, K. (2005, October). Evaluating
assessments of novice programming environments.
In Proceedings of the First International Workshop on
Computing Education Research (pp. 99-110). ACM.
https://doi.org/10.1145/1089786.1089796

Grover, S., & Basu, S. (2017, March). Measuring student
learning in introductory block-based
programming: Examining misconceptions of loops,
variables, and Boolean logic. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 267-272). ACM.
https://doi.org/10.1145/3017680.3017723

Grover, S., & Pea, R. (2018). Computational Thinking: A
competency whose time has come. In S. Sentance,
E. Barendsen, & C. Schulte (Eds.), Computer Science
Education: Perspectives on teaching and learning in
school (pp. 19-38). London: Bloomsbury Academic,
19-37.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for
deeper learning in a blended computer science
course for middle school students. Computer Science
Education, 25(2), 199-237. https://doi.org/10.1080/
08993408.2015.1033142

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J.
V., & Shaffer, C. A. (2017). A basic recursion
concept inventory. Computer Science Education,
27(2), 121-148. https://doi.org/10.1080/08993408.
2017.1414728

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force
concept inventory. The Physics Teacher, 30(3), 141-
158. https://doi.org/10.1119/1.2343497

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit
indexes in covariance structure analysis:
Conventional criteria versus new alternatives.
Structural Equation Modeling: A Multidisciplinary
Journal, 6(1), 1-55. https://doi.org/10.1080/107055
19909540118

k12cs.org. (2016). K-12 computer science framework.
Retrieved on April 18, 2019 from
https://k12cs.org/

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity
and reliability study of the Computational
Thinking Scales (CTS). Computers in Human
Behavior, 72, 558-569. https://doi.org/10.1016/
j.chb.2017.01.005

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM
Inroads, 2(1), 32-37.

Lewis, C. M. (2011). Is pair programming more effective
than other forms of collaboration for young
students? Computer Science Education, 21(2), 105-
134. https://doi.org/10.1080/08993408.2011.
579805

Luxton-Reilly, A., Becker, B. A., Cao, Y., McDermott, R.,
Mirolo, C., Mühling, A., ... & Whalley, J. (2018,
January). Developing assessments to determine
mastery of programming fundamentals. In
Proceedings of the 2017 ITiCSE Conference on Working
Group Reports (pp. 47-69). ACM.
https://doi.org/10.1145/3174781.3174784

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo,
C., Rolandsson, L., & Settle, A. (2014, June).
Computational thinking in K-9 education. In
Proceedings of the Working Group Reports of the 2014
on Innovation & Technology in Computer Science
Education Conference (pp. 1-29). ACM.
https://doi.org/10.1145/2713609.2713610

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013).
Learning computer science concepts with scratch.
Computer Science Education, 23(3), 239-264.
https://doi.org/10.1080/08993408.2013.832022

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003).
Focus article: On the structure of educational
assessments. Measurement: Interdisciplinary Research
and Perspectives, 1(1), 3-62. https://doi.org/10.1207
/S15366359MEA0101_02

Mühling, A., Ruf, A., & Hubwieser, P. (2015, November).
Design and first results of a psychometric test for
measuring basic programming abilities. In
Proceedings of the Workshop in Primary and Secondary
Computing Education (pp. 2-10). ACM.
https://doi.org/10.1145/2818314.2818320

Parker, M. C., Guzdial, M., & Engleman, S. (2016,
August). Replication, validation, and use of a
language independent CS1 knowledge assessment.
In Proceedings of the 2016 ACM Conference on
International Computing Education Research (pp. 93-
101). ACM. https://doi.org/10.1145/2960310.
2960316

Raykov, T. (1997). Estimation of composite reliability for
congeneric measures. Applied Psychological
Measurement, 21(2), 173-184. https://doi.org/
10.1177/01466216970212006

Román-González, M., Pérez-González, J. C., & Jiménez-
Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion
validity of the Computational Thinking Test.
Computers in Human Behavior, 72, 678-691.
https://doi.org/10.1016/j.chb.2016.08.047

http://www.teach21.us/uploads/1/3/0/5/13053428/samplecscurriculum.pdf
http://www.teach21.us/uploads/1/3/0/5/13053428/samplecscurriculum.pdf
https://doi.org/10.1145/2189835.2189851
https://doi.org/10.1145/1089786.1089796
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1119/1.2343497
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1080/10705519909540118
https://k12cs.org/
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1080/08993408.2011.579805
https://doi.org/10.1080/08993408.2011.579805
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1207/S15366359MEA0101_02
https://doi.org/10.1207/S15366359MEA0101_02
https://doi.org/10.1145/2818314.2818320
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1177/01466216970212006
https://doi.org/10.1177/01466216970212006
https://doi.org/10.1016/j.chb.2016.08.047

EURASIA J Math Sci and Tech Ed

11 / 24

Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best
practices for missing data management in
counseling psychology. Journal of Counseling
Psychology, 57(1), 1-10. https://doi.org/10.1037/
a0018082

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C.,
Rennert-May, C., & Wildeman, B. (2012, July).
Infusing computational thinking into the middle-
and high-school curriculum. In Proceedings of the
17th ACM Annual Conference on Innovation and
Technology in Computer Science Education (pp. 22-27).
ACM. https://doi.org/10.1145/2325296.2325306

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic
interactions in programmer behavior: A model and
experimental results. International Journal of
Computer & Information Sciences, 8(3), 219-238.
https://doi.org/10.1007/BF00977789

Smith IV, D. H., Hao, Q., Jagodzinski, F., Liu, Y., &
Gupta, V. (2019, May). Quantifying the Effects of
Prior Knowledge in Entry-Level Programming
Courses. In Proceedings of the ACM Conference on
Global Computing Education (pp. 30-36). ACM.
https://doi.org/10.1145/3300115.3309503

Sudol, L. A., & Studer, C. (2010, March). Analyzing test
items: using item response theory to validate
assessments. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education
(pp. 436-440). ACM. https://doi.org/10.1145/
1734263.1734411

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007).
Using multivariate statistics (Vol. 5). Boston, MA:
Pearson.

Taylor, C., Zingaro, D., Porter, L., Webb, K. C., Lee, C. B.,
& Clancy, M. (2014). Computer science concept
inventories: past and future. Computer Science
Education, 24(4), 253-276. https://doi.org/10.1080/
08993408.2014.970779

Tew, A. E., & Guzdial, M. (2011, March). The FCS1: a
language independent assessment of CS1
knowledge. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (pp. 111-
116). ACM. https://doi.org/10.1145/1953163.
1953200

Tukiainen, M., & Mönkkönen, E. (2002, June).
Programming aptitude testing as a prediction of
learning to program. In Proceedings of 14th Workshop
of the Psychology of Programming Interest Group
(PPIG). 45-57.

Weintrop, D., & Wilensky, U. (2015, July). Using
commutative assessments to compare conceptual
understanding in blocks-based and text-based
programs. In ICER (Vol. 15, pp. 101-110).

Weintrop, D., Killen, H., & Franke, B. E. (2018). Blocks or
text? How programming language modality makes
a difference in assessing underrepresented
populations. In International Society of the Learning
Sciences, Inc. [ISLS]. https://doi.org/10.22318/
cscl2018.328

Weintrop, D., Killen, H., Munzar, T., & Franke, B. (2019,
February). Block-based Comprehension: Exploring
and Explaining Student Outcomes from a Read-
only Block-based Exam. In Proceedings of the 50th
ACM Technical Symposium on Computer Science
Education (pp. 1218-1224). ACM.
https://doi.org/10.1145/3287324.3287348

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C.
(2012, February). The fairy performance
assessment: measuring computational thinking in
middle school. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education
(pp. 215-220). ACM. https://doi.org/10.1145/
2157136.2157200

Wiebe, E., London, J., Aksit, O., Mott, B. W., Boyer, K. E.,
& Lester, J. C. (2019, February). Development of a
lean computational thinking abilities assessment
for middle grades students. In Proceedings of the 50th
ACM Technical Symposium on Computer Science
Education (pp. 456-461). ACM. https://doi.org/
10.1145/3287324.3287390

Winters, T., & Payne, T. (2005, October). What do
students know?: an outcomes-based assessment
system. In Proceedings of the First International
Workshop on Computing Education Research (pp. 165-
172). ACM. https://doi.org/10.1145/1089786.
1089802

Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-
square fit values. Rasch Measurement Transactions,
8(3), 370.

Xie, B., Davidson, M. J., Li, M., & Ko, A. J. (2019,
February). An item response theory evaluation of a
language-independent cs1 knowledge assessment.
In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (pp. 699-705). ACM.
https://doi.org/10.1145/3287324.3287370

Zendler, A. (2019). cpm.4.CSE/IRT: Compact process
model for measuring competences in computer
science education based on IRT models. Education
and Information Technologies, 24(1), 843-884.
https://doi.org/10.1007/s10639-018-9794-3

Zur-Bargury, I., Pârv, B., & Lanzberg, D. (2013, July). A
nationwide exam as a tool for improving a new
curriculum. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer
Science Education (pp. 267-272). ACM.
https://doi.org/10.1145/2462476.2462479

https://doi.org/10.1037/a0018082
https://doi.org/10.1037/a0018082
https://doi.org/10.1145/2325296.2325306
https://doi.org/10.1007/BF00977789
https://doi.org/10.1145/3300115.3309503
https://doi.org/10.1145/1734263.1734411
https://doi.org/10.1145/1734263.1734411
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.22318/cscl2018.328
https://doi.org/10.22318/cscl2018.328
https://doi.org/10.1145/3287324.3287348
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/2157136.2157200
https://doi.org/10.1145/3287324.3287390
https://doi.org/10.1145/3287324.3287390
https://doi.org/10.1145/1089786.1089802
https://doi.org/10.1145/1089786.1089802
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1007/s10639-018-9794-3
https://doi.org/10.1145/2462476.2462479

Rachmatullah et al. / MG-CSCI Validation

2 / 24

APPENDIX 1

Focal Knowledge, Skills and Abilities (Grover & Basu, 2017) and CSTA Standards (CSTA, 2017) used in this
study

Focal Knowledge, Skills and Abilities – FKSAs (Grover & Basu, 2017)

1. Ability to describe what a given loop is doing

2. Ability to describe the sequence that is executed in a given program when the program contains things inside
a loop as well as outside of the loop.

3. Knowledge that a loop involves a repeating pattern that will terminate under a specified condition or after a
certain number of repetitions

4. Ability to identify the repeating pattern within a loop

5. Ability to describe the structural components of a pattern (not in a programming context)

6. Ability to identify a pattern from a real-world phenomenon

7. Ability to describe how a conditional pathway would operate

8. Ability to create variables, assign values and update variables

9. Ability to describe how a variable changes values in a loop

10. Ability to determine what variables are required in a program to achieve the goals of the computational
solution.

11. Ability to evaluate a Boolean expression

12. Ability to use Boolean operators in a programming context

13. Ability to create a Boolean expression for a given condition

14. Ability to identify sub-parts of a computational solution

15. Ability to create a Boolean test to control a loop given specifications

16. Ability to describe how the Boolean tests interacts with the loop execution

From CSTA (https://www.csteachers.org/)

2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1)

2-AP-11 Create clearly named variables that represent different data types and perform operations on their
values. (P5.1, P5.2)

EURASIA J Math Sci and Tech Ed

3 / 24

APPENDIX 2

ICCs for Item_11_Loo4 and Item_15_Loo5

Item_11_Loo4

Item_15_Loo5

Rachmatullah et al. / MG-CSCI Validation

4 / 24

APPENDIX 3

The list of problematic questions and their corresponding FKSAs

No Item Code Question Category FKSA

11 Item_11_Loo4

How many times will the word “here” be said when
this code is run?

A. 0

B. 1

C. 5

B. 10

C. “here” will be said over and over until the code is
stopped manually

D. It will be different each time you run it

Loop/
Iteration

1, 2, 3, 4, 8, 9

15 Item_15_Loo5

What will be said when this code is run?

A. 5

4

3

2

1

B. 5

3

1

C. 5

3

-1

D. 3

1

-1

E. 3

1

F. It will be different each time you run it

Loop/
Iteration

1, 3, 4, 8, 9

EURASIA J Math Sci and Tech Ed

5 / 24

APPENDIX 4

The list of the final CSCI questions and their corresponding FKSAs and CSTA Standards

No Item Code Question Category FKSA

1 Item_1_Var1

What are the values of x and y after the above code runs?

A. x is equal to 10; y is equal to 5

B. x is equal to 5; y is equal to 5

C. x is equal to 10; y is equal to 10

D. x is equal to 5; y is equal to x

Variable 8

2 Item_2_Con1

 What will be said after running this code?

A. All done

B. Inside the if

C. Inside the if

All done

D. Inside the else

All done

E. Inside the if

Inside the else

All done

Conditional 7, 8

3 Item_3_Loo1
To ensure “here” is said 10 times, which number should be

filled in the repeat block to replace the ?

A. 2

B. 3

C. 6

D. 10

Loop/ Iteration 1, 3, 4

Rachmatullah et al. / MG-CSCI Validation

6 / 24

4 Item_4_Loo2

Which lines of code will result in the output saying
‘ABABABCD’?

A.

B.

C.

D.

Loop/ Iteration
1, 2, 3,
4

5 Item_5_Alg1

, and are variables with values. Which of the

following can be used to replace so that the code

 will swap the values of and ?

A.

B.

C.

D.

Algorithm 8

EURASIA J Math Sci and Tech Ed

7 / 24

6 Item_6_Var2

Which of the following should replace so that the
code will say “Hello Girls and Boys”?

A.

B.

C.

D.

Variable 8

7 Item_8_Con3

What will be said after running this code?

A. Under 40

B. And under 21

C. And contains a 1

D. Under 40

And under 21

E. Under 40

And under 21

And contains a 1

F. Nothing will be said

Conditional 7, 8

8 Item_9_Con4

What will be said after this code has run?

A. The word is too short!

B. The word is too long!

C. The word is just right!

D. Nothing will be said.

Conditional 7, 8

Rachmatullah et al. / MG-CSCI Validation

8 / 24

9 Item_10_Loo3

What will be said when this code is run?

A. apple

apple

apple

orange

orange

orange

B. apple

orange

C. apple

orange

apple

orange

apple

orange

D. Nothing will be said

E. It will be different each time you run it

Loop/ Iteration 1,3,4

10 Item_12_Var3

Which of the following can be used to replace , so
that the code will have z is equal to 12?

A.

B.

C.

D.

Variable 8

EURASIA J Math Sci and Tech Ed

9 / 24

11 Item_13_Alg2

For the following problem, assume that
is a variable that contains a list of numbers from 1 to 300.
What does this code do?

A. says ‘true’ if the number 100 is in the list

B. says ‘true’ if the first number in the list is 100

C. says ‘true’ if the last number of the list is 100

D. says ‘true’ if there are 100 in the list

E. says ‘true’ or ‘false’ 100 times

Algorithm
1, 2, 4,
7, 8, 9

12 Item_14_Var4

Which of the following can be used to replace , so
that the code will have z equal to no?

A.

B.

C.

D. does not need an additional block

Variable 8

13 Item_16_Alg3

 What does this code do?

A. Makes sure the value of x is not equal to 10

B. Makes sure the value of x is less than 5

C. Makes sure the value of x is between 10 and 5

D. It always sets x equal to 5

E. This code will cause an error

Algorithm 7

Rachmatullah et al. / MG-CSCI Validation

10 / 24

14 Item_17_Var5

What is said when this code is run?

A. ‘11’ then ‘13’ then ‘18’

B. ‘11’ then ‘11’ then ‘11’

C. ‘x’ then ‘x’ then ‘x+5’

D. ‘18’ then ‘18’ then ‘18’

E. [Nothing will be said]

F. This code will cause an error

Variable 8

15 Item_18_Var6

To ensure the value of x is 15 and y is 10 after running this

code, which block can replace ?

A.

B.

C.

D.

Variable 8

EURASIA J Math Sci and Tech Ed

11 / 24

16 Item_19_Alg4

Which code snapshot will cause the arrow to draw the
shape shown below? The side length of each triangle is 30
steps.

Note: The arrow starts drawing where it is located.

A.

B.

C.

D.

E.

Algorithm
1, 2, 3,
4

Rachmatullah et al. / MG-CSCI Validation

12 / 24

17 Item_20_Alg5

If you want to write a code that asks a user to type in a
sentence, then reports back to the user the number of times
the letter ‘e’ appears in that sentence, which of these things
would your programming language NOT need to be able
to do:

A. Compare two letters to each other to determine if they
are the same

B. Display text on the screen

C. Convert letters into numbers and numbers into letters

D. Store user entered information

Algorithm 14

18 Item_21_Var7

The following code is supposed to say “15.”

What needs to be changed in this code for this to happen?

A. Change the block number 3 to

B. Change the block number 2 to

C. Change the block number 2 to

D. Nothing needs to be changed

Variable 10

19 Item_22_Var8

Look at the code below!

What is wrong with this code?

A. Nothing is wrong with the code

B. x is a numeric value

C. The order of the blocks is wrong

D. Dividing a numeric value with an alphabetic value

Variable
2-AP-
11

EURASIA J Math Sci and Tech Ed

13 / 24

20 Item_23_Con5

Look at the picture below!

The arrow is heading to the blue tile. If you are going to
move the arrow to the red tile using the following code,
which part of the code needs to be changed?

A. Nothing needs to be changed

B. Change the block number 3 to

C. Change the block number 2 to

D. Move the block 1 to after the block 4

Conditional 7

21 Item_24_Loo6

The following code is supposed to say “1+1+1=3”.

What needs to be changed in the code for this to happen?

A. The block numbers 5 and 6 should come below the
repeat block

B. The block number 1 should go inside the repeat block

C. Number of iteration should be 3

D. Nothing needs to be changed

Loop/ Iteration 2, 9

22 Item_25_Loo7

The following code needs to say ‘strawberry’ six times.
What changes need to be made, if any, for this to happen?

A. Nothing, the code will say ‘strawberry’ six times

B. Block number 2 should come out of the repeat block

C. Another should be added to the
repeat block

D. The block number 3 should go inside the repeat block

Loop/ Iteration 2, 9

Rachmatullah et al. / MG-CSCI Validation

14 / 24

23 Item_26_Alg6

What will be said if the above code is run?

A. Nothing will be said

B. say too small

C. say too big

D. say in the range

E. It is going to be different every time

Algorithm
2-AP-
10

24 Item_27_Alg7

A robot is going to deliver a package to an owner. Below
are the steps the robot needs to take to deliver the package.

1. Locate the owner of the package

2. Follow the fastest path from the robot location to the
owner’s location

3. Calculate the fastest path from the robot location to the
owner’s location

4. Drop the package

However, there might be small mistake in the order of the
steps. Can you find the mistake?

E. The order of the steps is just right

F. Step number 2 should be after step number 3

G. Step number 2 should be after step number 4

H. Step number one should be after step numbers 2 and 3

Algorithm 14

http://www.ejmste.com

	INTRODUCTION
	RELATED WORK
	CURRENT WORK
	DATA AND METHODS
	Item Development
	Sample and Administration
	Data Analysis

	RESULTS
	Rasch Modeling Analysis
	Confirmatory Factor Analysis (CFA)
	Pre and Post-test Comparison and Test-retest Reliability

	DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX 1
	Focal Knowledge, Skills and Abilities (Grover & Basu, 2017) and CSTA Standards (CSTA, 2017) used in this study

	APPENDIX 2
	ICCs for Item_11_Loo4 and Item_15_Loo5

	APPENDIX 3
	The list of problematic questions and their corresponding FKSAs

	APPENDIX 4
	The list of the final CSCI questions and their corresponding FKSAs and CSTA Standards

