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Abstract 

The increasing interest in computer science (CS) and CS-integrated STEM teaching and learning 

has created a need for assessment instruments that can be used to evaluate the efficacy of 

innovative instructional approaches to K-12 CS education. However, there is a lack of validated 

assessment tools aligned to core CS concepts for younger students. This paper reports on the 

development and validation of a CS concept assessment for middle grades (ages 11-13) students. 

A total of 27 multiple-choice items were developed, guided by focal knowledge, skills and abilities 

associated with the concepts of variables, loops, conditionals, and algorithms. These items were 

administered to 457 middle grades students. The items were presented in form of block-based 

programming code and administered in a week-long computational modeling intervention. A 

combination of classical test theory and item response theory approaches were used to validate 

the assessment. Based on results, it was found that only 24 items are considered valid and reliable 

items to measure CS conceptual understanding. The results also suggested that the assessment 

can be used as a pre and post-test to investigate students’ learning gains. This work fills an 

important gap by providing a key resource for researchers and practitioners interested in 

assessing middle grades student CS conceptual understanding. 
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INTRODUCTION 

The past decade has seen an increased international 
policy push for more emphasis on K-12 Computer 
Science (CS) education (Barr & Stephenson, 2011; Cuny, 
2011; Grover & Pea, 2018). In the US, a key area of focus 
has been on the middle grades (ages 11-13), where 
specific courses have been developed and research into 
integration strategies for core STEM curricula has been 
undertaken (code.org, 2018; Goode & Chapman, 2016; 
Manila et al., 2014; Settle et al., 2012). This policy push 
has resulted in bringing CS focused interventions into 
middle grades classrooms, but has done so without the 
development of effective assessment tools for use by 
practitioners and researchers (de Araujo, Andrade, & 
Guerrero, 2016; Decker & McGill, 2019). 

While there are assessments associated with 
standalone courses, these instruments are tuned to the 
specific content of the corresponding course and 
typically reflect localized contextual factors of the 
curricula, including the specific programming language 
used or technical elements that interface with the code 
(e.g., robotics, gameplay elements) (Bienkowski, Snow, 
Rutstein, & Grover, 2015; Buffum et al., 2014). There is a 
significant need for a more general middle grades CS 
concept inventory assessment, similar to those 
developed for other STEM curricular areas (e.g., 
Hestenes, Wells, & Swackhamer, 1992) and for other age 
ranges in CS (Parker, Guzdial, & Engleman, 2016). Such 
an instrument could be used in a wide variety of ad hoc 
and small-scale middle grades CS interventions, and for 
research-based activities. We argue that such an 
assessment should be (1) based on the emerging student 
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learning standards (Computer Science Teachers 
Association – CSTA, 2017; k12cs.org, 2016) and thus 
representative of the current well-accepted CS curricular 
concepts of primary interest for this grade range, (2) 
administrable with standard testing platforms, and (3) 
be completed by students within a standard class period, 
thus the teachers can use it in their classes. Finally, 
assessment items should utilize block-based 
programming, the most popular programming 
representation used in middle grades (Brown, Mönig, 
Bau, & Weintrop, 2016). This paper provides a 
foundational literature review, and development and 
validation of the MG-CSCI, a CS concept inventory 
assessment for middle grades. 

RELATED WORK 

CS education researchers interested in analyzing the 
impact of prior programming experience have often 
resorted to asking students to self-report the level and 
kind of prior experience (Korkmaz, Çakir, & Özden, 
2017). However, it is widely recognized that an 
assessment of core concepts (i.e., a concept inventory) 
provides more accurate, detailed information of 
students’ prior knowledge (Smith IV, Hao, Jugodzinski, 
Liu, & Gupta, 2019). Such a concept inventory can also 
be used pre and post to measure the impact of an 
intervention. Taylor et al.’s (2014) review of CS concept 
inventories noted that the CS education community has 
generally lagged behind other areas in STEM education 
(especially physics) in the development and utilization 
of assessments of students’ conceptual understanding. A 
recent large-scale effort to catalog current instruments 
has also concluded that research on assessment 
development needs to continue (Decker & McGill, 2019). 

One of the challenges with the current work has been 
the lack of a clear construct definition for computational 
thinking (CT), as opposed to computer science (CS) 
knowledge. For the purposes of this work, CT can be 
thought of as a general cognitive ability linked to fluid 
intelligence (i.e., problem-solving ability), spatial ability, 
and working memory (Román-González, Pérez-
González, & Jiménez-Fernández, 2017; Tukiainen & 
Mönkkönen, 2002; Wiebe et al., 2019). In contrast, CS 
conceptual understanding is linked to core concepts 
identified by curricular frameworks as necessary for 
engaging in CS practices. While there is likely high 
correlation between instruments that measure these two 

constructs, they would be used differently depending on 
the measurement goal. 

Historically, much of the work on CS concept 
inventory development has focused on the 
undergraduate CS1 course (Gross & Powers, 2005). 
Caceffo, Wolfman, Booth, and Azevedo (2016) notes that 
typically the goal for a concept inventory for a course 
such as this is to develop items that are diagnostic at the 
single concept level, though this goal is often challenging 
to achieve (Luxton-Reilly et al., 2018). Because of the 
concept-guided nature of such an inventory, many of 
these types of assessments focus on a few, or even just 
one core concept, such as recursion (Hamouda, 
Edwards, Elmongui, Ernst, & Shaffer, 2017). FCS1 was 
developed as a concept inventory for an introductory 
undergraduate programming course with the goal of 
assessing all of the core concepts covered in the course 
(Tew & Guzdial, 2017). The SCS1 assessment (Parker, 
Guzdial & Engelman, 2016) was a revision and 
revalidation of the FCS1, though even through this 
refinement process other researchers continue to 
question the high difficulty level of some of the items 
(Xie, Davidson, Li, & Ko, 2019). 

At the K-12 level, there has been work on developing 
assessments of student CS conceptual understanding. A 
prominent example is the Fairy Performance 
Assessment (Werner, Denner, Campe, & Kawamoto, 
2012), which used coding in Alice to assess students’ 
ability to think algorithmically and make effective use of 
abstraction and modeling. However, the assessment was 
a practicum exercise and required students to code 
constructions, thus limiting its scalability. Other 
assessments have been reported in the literature 
specifically associated with research-based 
interventions, especially at the middle grades level. This 
includes an assessment of a game-based learning 
environment (Boulden et al., 2018; Buffum et al., 2015), 
pair programming with Scratch (Lewis, 2011), and a 
teacher PD intervention with Scratch (Meerbaum-Salant, 
Armoni, & Ben-Ari, 2013). Due to the focused, research 
nature of this prior work, none of these instruments 
underwent further validation as a general use 
instrument. As formal curricula have been developed, 
assessments have been created matched to the curricular 
content and practices. These include the Exploring CS 
middle grades curriculum (Bienkowski et al., 2015) and 
the FACT curriculum (Grover, Pea, & Cooper, 2015). 

Contribution to the literature 

• The paper summarizes the previous literature on the CS assessments and indicates the need for a core 
concept-aligned assessment for use at the middle grades level (ages 11-13). 

• The paper demonstrates a robust development and validation process of an instrument to measure 
middle grades students’ understanding of computer science (CS) concepts. 

• The use of a recent and well-accepted inventory of CS concepts is the focus of the assessment 
development. 
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Another direction has been the inclusion of nine 
assessment items on the Israeli nationwide exam aligned 
with a required middle grades CS course (Zur-Bargury, 
Pârv, & Lanzberg, 2013). 

CURRENT WORK 

The goal for the research reported here is to develop 
a validated concept inventory at the middle grades level 
that is independent of any specific curricula but is well 
aligned with an emerging set of student CS outcome 
standards for middle grades (ages 11-13). We focused on 
the K-12 Computer Science Framework (k12cs.org, 2016) 
as our main CS outcome standard. Furthermore, we 
utilized two sets of student outcome standards designed 
based on the K-12 Computer Science Framework: the 
CTSA framework that is designed to guide both 
curriculum and assessment development at the state 
level (CSTA, 2017) and a set of 16 FKSAs (focal 
knowledge, skills, and abilities) that were developed by 
Grover and Basu (2017) with the goal of developing CS 
concept assessment items. The instrument developed by 
Grover et al. (2017) contained items that covered 
multiple FKSAs and open-ended items. In contrast, we 
created finer-grained items focused on single concepts, 
which were all multiple-choice, to facilitate automated 
grading. In addition, this concept inventory underwent 
validation with a large population of students of varying 
prior programming experience and representative of a 
broad U.S. demographic. 

In addition to using an evidence-centered design 
approach for item development, the representation of 
the example code in the items (e.g., text-based, 
pseudocode, or block-based), as both foundational 
cognitive affordances and prior programming 
experience will interact with the representational form 
(Werner, Denner, Campe, & Kawamoto, 2012). Research 
by Weintrop and colleagues (Weintrop, Killen, & Franke, 
2018; Weintrop, Killen, Munzar, & Franke, 2019) has 
indicated that independent of individual differences, 
block-based representations that are independent of 
specialized syntax are the most accessible form for 
students of varying abilities.  

Once items are developed, classical test theory (CTT) 
and item response theory (IRT) approaches, combined, 
have proven to be a robust approach to assessment 
validation. Specifically, IRT is sample-independent by 
virtue of a latent attribute underlying the model so that 
psychometric results computed through IRT are stable 
across different samples. CTT contributes to the 
dimensionality verification process and strengthens the 
testing performed through IRT. Moreover, IRT produces 
ratio-scaled scores that facilitate a more accurate score 
inference and comparison between item and person. 
Lastly, it reports a variety of fit statistics that allows for 
more thorough item evaluation (Bond & Fox, 2001; 
Boone, Staver, & Yale, 2013). A number of researchers 

have advocated specifically for IRT approaches to be 
utilized in the development of CS assessments (Werner, 
Denner, Campe, & Kawamoto, 2012; Winters & Payne, 
2005; Zendler, 2019). In addition, utilization of both 
evidence-centered design for item development and 
Rasch modeling (a form of IRT) for validation has 
effectively been used for a focused CS concept inventory 
(only for control structures understanding) development 
for grades 7-10 (Mühling, Ruf, & Hubwieser, 2015), and 
provides an example for this research to utilize. 

DATA AND METHODS 

Item Development 

Following an evidence-centered assessment design 
(ECD) approach (Bienkowski et al., 2015; Mislevy, 
Steinberg, & Almond, 2003), we designed a CS inventory 
for assessing middle grades student knowledge of 
essential CS constructs. ECD provides a process for 
identifying conceptual learning targets for students, and 
assessing the degree to which tasks (i.e., assessment 
items) provide warrantable evidence that students have 
mastered that concept. This methodology has been 
widely used in assessment development, including an 
assessment for the Exploring Computer Science 
curriculum (Goode, Chapman, & Margolis, 2012). For 
the MG-CSCI, we focused on the CS concepts that are 
commonly taught at the middle grades level and are 
shown to be challenging for novice programmers. 
Focusing on common and challenging CS concepts 
enables us to use the MG-CSCI assessment to evaluate 
students’ proficiency related to the most important CS 
concepts and the effectiveness of an instructional 
intervention or curriculum in teaching them. Prior work, 
as noted in the previous section, was used to frame and 
identify the target concepts. Using an ECD process, 
Grover and Basu (2017) had operationalized important 
CS concepts for middle grades into 16 focal knowledge, 
skills, and abilities (FKSAs). Grover and Basu’s work, in 
turn, was guided by the K-12 CS framework (k12cs.org, 
2016). The 11 out of 16 FKSAs were used to develop the 
assessment and covered four primary conceptual 
categories: variables (3 FKSAs), loops (4 FKSAs), 
conditionals (1 FKSA) and algorithms (3 FKSAs). The 
other five FKSAs did not align with current U.S. middle 
grade computer science curriculum standards (CSTA, 
2017) and thus were not included in this assessment 
development. However, in order to have comprehensive 
coverage of the middle grades curriculum, during early 
stage development, it was decided to also use definitions 
and examples of algorithms contained in the CSTA K-12 
CS Standards (CSTA, 2017), also derived from the K-12 
CS framework (k12cs.org, 2016). The list of the FKSAs 
and CSTA Standards used in this study is available in 
Appendix 1. 

For item development around block-based 
programming code, prior work on high-school and 
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middle-school assessments were used to guide our work 
(Du Boulay, 1986; Shneiderman, & Mayer, 1979, 
Weintrop & Wilensky, 2015; Xie et al., 2019). For each 
concept, we designed items with varying levels of 
difficulty and question types: comprehension of a code 
snippet, debugging a partially wrong code snippet, and 
developing/completing a partially built code snippet. 
We piloted our inventory to identify the difficulty span 
of the questions and refined them to maintain the 
appropriate balance for middle grades students. 
Example assessments items are a development question 
on variables (Figure 1) and a comprehension question on 
algorithms (Figure 2). After devising the first draft of the 
items, they were piloted with two CS graduate students 
and three non-CS graduate students to check for 
appropriate language, level of difficulty, and balance of 
the question types. We then revised the items based on 
feedback collected from this pilot study. 

Sample and Administration 

A total of 457 students consented to participate in the 
current study. The consenting students were middle 
grades students in sixth grade to eighth grade (ages 11-
13). Sixth-grade students were 52% of the total 
participants and seventh and eighth grade students 
represented 2% and 36% of the sample, respectively. The 
male students were 49% of the sample. Regarding 
ethnicity, Caucasian, Latinx, and African-American 
were the most common ethnic groups in the current data 
set with 30%, 18%, and 17%, respectively, while the 
remaining 35% identified as Asian, Middle Eastern and 
Other. Of the total sample, 68% of students indicated that 
they had never experienced or were only occasionally 
exposed to programming activities. 

Administration of the study was done in conjunction 
with a week-long classroom computational modeling 

intervention that involved block-based programming 
centered on science topics. Students were involved in 
either food web or epidemic disease modeling activities. 
Both activities consisted of unplugged (without 
computer) and plugged (with computer) sessions. The 
activities were developed based on the Use-Modify-
Create (UMC) model of learning suggested by Lee et al. 
(2011). In the food web activity students were engaged 
in building a simulation of energy transfer in food web 
through coding, and in the epidemic disease activity, 
students were engaged in creating a simulation that 
shows the spread of disease and its treatment. The study 
collected data before and after the intervention, though 
not all students took the instrument both pre- and post-
test. After data cleaning, the study used a total of 608 
data samples from 457 students, in which 410 of them 
were post-test data, and 198 were pre-test data. The 
combination of pre- and post-test data was intended to 
capture a broader range of students’ performance and 
enable additional analyses. Among the students who 
took both the pre- and post-test, only 148 eighth grade 
students had data usable for further analyses. 

Data Analysis 

Missing Data. Before we analyzed the collected data, 
we checked for missing values within the 608 data 
samples. While the main statistical analysis used in the 
current study, IRT-Rasch, uses Maximum Likelihood 
Estimation (MLE) which can accommodate a small 
percentage of missing data, both the percentage of 
missing data and the pattern of missingness needed to 
be confirmed. Thus, we explored whether the data are 
missing completely at random (MCAR), missing at 
random (MAR), or missing not at random (MNAR) 
(Schlomer, Bauman, & Card, 2010). We used Little’s 
MCAR test to determine the amount and category of 
missingness for our data set. The null hypothesis for this 

 
Figure 1. Item 12 Variable development type question 

 
Figure 2. Item 16 Algorithm comprehension type question 
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test is the data is MNAR. Based on the analysis, 2.42% 
data were missing, and the missingness was categorized 
as MCAR (missing completely at random), X2 = 961.12, 
df = 985, p = .70. Based on the results of this test, we 
concluded the data set was ready for analysis (Allison, 
2001). 

Validity and Reliability. The current study used the 
Classical Test Theory (CTT) and Item Response Theory 
(IRT) method concurrently to collect evidence of 
construct validity and reliability. IRT in the form of 
Rasch analysis was our primary guide to analysis, with 
CTT methods used to supplement analysis of the 
statistical model of the assessment instrument. In this 
study, using the literature reviewed, we worked on the 
assumption that the assessment is unidimensional 
meaning that it measures the FKSAs as a unitary whole. 
Therefore, no dimensionality test was run.  

Compared to CTT methods, Rasch analysis provides 
more robust results of validation that tend to be more 
stable across different samples and administrations 
(Boone et al., 2013). We followed the procedure 
suggested by Boone et al. (2013) and Bond and Fox (2001) 
to identify items to remove and to retain. Boone et al. and 
Bond and Fox suggest looking at the values of infit and 
outfit mean-square (MNSQ) to evaluate the quality of 
the item. Items were removed when the MNSQ values 
were outside the acceptable cutoff range of 0.70 to 1.30 
(Wright & Linacre, 1994). In addition to MNSQ values, 
the current study also used the Item Characteristic Curve 
(ICC) to evaluate the quality of the item. ICC visualizes 
the association between students’ ability and the 
probability of correct and incorrect answers. Items were 
removed when the probability of high-ability students to 
answer those items correctly is lower than the low-ability 
students. This outcome indicates a poorly functioning 
item, especially for differentiating between low and 
high-ability students. Moreover, we sought a stable 
assessment instrument where item difficulty levels 
would be stable across different time points in an 
intervention and demographic factors. To do so, we used 
DIF contrast values to investigate stability (item-bias), 
where contrast values more than 0.64 indicated likely 
bias (Boone et al., 2013). 

After all the items were evaluated with regards to 
retention or removal, we then performed a Rasch 
Dimensionality test to compare whether the model of the 
assessment after item removal was better than the model 
of the original assessment. Bond and Fox (2001) and 
Adams and Wu (2010) suggest using three statistics: Chi-
square, Final Deviance (FD), and Akaike Information 
Criterion (AIC), to determine the best model. The model 
with lower values on these criteria would be considered 
superior. Additionally, we also ran a Confirmatory 
Factor Analysis (CFA) as a supplement to the Rasch 
Dimensionality test. Hu and Bentler (1999) suggest that 
the value of the Comparative Fit Index (CFI) >.90 and 
RMSEA < .06 are needed for an acceptable model. We 

also used a target acceptable value of X2/df less than 2 to 
evaluate the models (Tabachnick, Fidell, & Ullman, 
2007). 

Regarding the internal consistency of the assessment, 
we calculated several reliability values using both CTT 
and Rasch methods. We report separation and person 
(plausible value–PV) reliabilities computed through 
Rasch analysis, Cronbach’s alpha, composite reliability–
CR (Raykov, 1997), and test-retest reliability. These 
calculations were evaluated using a cutoff value of 
greater than .70 (DeVellis, 2016). A paired-sample t-test 
was also performed for those students who took the 
assessment pre- and post-intervention (n = 148) to 
examine the change in student scores. The IRT-Rasch 
analysis was performed in ConQuest 4.14.2 (Adams, 
Wu, & Wilson, 2015), while other statistical analyses 
(CFA, paired-sample t-test, Cronbach’s alpha, CR, and 
test-retest reliability) were run in Stata 15.1. 

RESULTS 

Rasch Modeling Analysis 

Based on the Rasch modeling analysis, we found that 
only one out of 27 items had infit and outfit MNSQ 
outside the acceptable range. The item, Item_7_Con2, 
had values of infit and outfit MNSQ 1.39 and 1.66, 
respectively. We also investigated the response pattern 
using each item’s Item Characteristic Curve (ICC) and 
confirmed that item Item_7_Con2 had the pattern 
showing low-ability students were more likely to answer 
the item correctly than high-ability students. Also, we 
identified two other items with the same pattern. Those 
items were Item_11_Loo4 and Item_15_Loo5 (ICCs and 
questions are in the Appendix 2 and Appendix 3). 
Item_11_Loo4 and Item_15_Loo5 did not initially have 
MNSQ values beyond the range; however, when we 
removed Item_7_Con2 from the assessment, and re-ran 
the analysis, the items became misfitting (MNSQ values 
outside the cutoff). This indicates that the three items are 
likely in the same dimension, but not in the same 
direction with the other 24 items. Thus, we removed 
these three items from the assessment. The remaining 24 
items are in one dimension, and thus are measuring the 
same single latent construct. We believe this construct is 
represented by our FKSAs. The list of the final 24 
questions and their corresponding FKSAs and CSTA 
standards are provided in Appendix 4. 

We then compared the model of assessment with 27 
items and 24 items using Rasch dimensionality test. 
Table 1 shows the results of this comparison. Based on 
the comparison, the model of 24 items had lower X2, FD, 
and AIC values than the 27-items model, indicating that 
the 24-item assessment is superior. In line with the lower 
values, the chi-squared difference also showed that the 
difference between the two models was significant, ΔX2 
= 488.14, Δdf = 3, p < .001. Removing the three items also 
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increased the reliability values, except for the separation 
reliability. The models also had reliability values that 
were categorized as high internal consistency (> .80) as 
shown in Table 2. 

Table 3 shows the alpha if item deleted, item fit 
statistics, and the DIF contrast of the items in the 24-item 
model. It can be seen that there is no item that has alpha 
if item deleted higher than the full model value of .834 
and there is no item with MNSQ values beyond the 
cutoff. Moreover, the assessment had a good distribution 
of item difficulty, as shown by a Wright Map in Figure 3. 
These results further support the 24-item model. The DIF 
analysis of the 24-item assessment resulted in most of the 
values of the DIF contrasts being less than 0.64, 
indicating low bias. Item_2_Con1 had DIF pre/post 
contrast value of 0.74; however, we still believe that the 

value is acceptable given its proximity to the cutoff (cf., 
Cameron, Scott, Adler & Reid, 2014). 

Confirmatory Factor Analysis (CFA) 

Table 4 shows the comparison results between the 27 
and 24-item models based on CFA. Both models can be 
categorized as a good model. However, the 24-item 
model had higher CFI and lower X2 than the 27-item 
model, indicating a better fit. Based on the chi-squared 
difference test, this difference was significant at a .05 
alpha level, ΔX2 = 97.47, Δdf = 72, p = .025. It is worth 
noting the level of improvement in X2 even as the df 
decreases, as indicated by a near stable X2/df ratio lower 
than the target cut-off of 2.0 (Cole, 1987). The 
visualization of the CFA for the model with 24 items is 
shown in Figure 4. 

Table 1. Comparing the Models 

Model X2 df FD AIC 

27 items 1221.07 26 19189.28 19245.28 
24 items 732.93 23 17328.92 17378.92 

 

 

Table 2. Comparing the Reliability Values of the Two Models 

Model Separation Reliability PV Reliability α CR 

27 items .983 .809 .826 .859 
24 items .972 .819 .834 .862 

 

Table 3. Alpha if Item Deleted and Rasch Item Fit Statistics for the 24-item Model 

Item α if Item Deleted Measure Infit MNSQ Outfit MNSQ DIF Contrast Pre/post 

Item_1_Var1 .827 -0.003 0.98 0.97 0.15 
Item_2_Con1 .829 0.836 1.03 1.10 0.74 

Item_3_Loo1 .827 0.486 0.99 1.02 0.33 
Item_4_Loo2 .825 -1.065 0.91 0.81 0.17 
Item_5_Alg1 .834 0.074 1.15 1.21 0.30 
Item_6_Var2 .832 -0.136 1.10 1.12 0.04 
Item_8_Con3 .831 0.541 1.09 1.16 0.03 
Item_9_Con4 .823 -0.493 0.92 0.86 0.12 
Item_10_Loo3 .827 -0.911 0.95 0.90 0.13 
Item_12_Var3 .828 -0.453 1.02 1.00 0.25 
Item_13_Alg2 .829 0.268 1.00 1.03 0.00 
Item_14_Var4 .826 0.152 0.98 0.99 0.29 
Item_16_Alg3 .831 0.203 1.06 1.06 0.03 
Item_17_Var5 .820 -0.056 0.84 0.81 0.15 
Item_18_Var6 .829 0.168 1.03 1.04 0.00 
Item_19_Alg4 .832 1.173 1.07 1.20 0.41 
Item_20_Alg5 .833 0.211 1.11 1.17 0.46 
Item_21_Var7 .826 0.139 0.96 0.95 0.14 
Item_22_Var8 .827 0.507 0.97 0.99 0.23 
Item_23_Con5 .830 -0.873 1.03 0.99 0.00 
Item_24_Loo6 .825 0.290 0.93 0.96 0.22 
Item_25_Loo7 .824 -0.214 0.92 0.89 0.00 
Item_26_Alg6 .824 0.284 0.93 0.92 0.21 
Item_27_Alg7 .829 -1.131 0.99 0.93 0.50 

 

 

Table 4. Comparison of the results of the goodness of fit computed through CFA 

Model X2 df X2/df CFI SRMR RMSEA 

27 items 470.44 324 1.45 0.920 0.040 0.029 
24 items 372.97 252 1.48 0.931 0.040 0.030 
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Figure 3. Wright Map of the 24-item Model. Note: the difficulty level shown here is identical to Measure in 
Table 3 

 

 
Figure 4. The CFA Model for the 24-item MG-CSCI. Note: the values are the standardized β values 
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Pre and Post-test Comparison and Test-retest 
Reliability 

As noted above, 148 students took the instrument 
both pre- and post-test as part of a weeklong curricular 
intervention. This data was used to obtain the test-retest 
reliability statistics. The current study found that test-
retest reliability value for the model of the 24-item 
instrument was acceptable (> .70), r = .779). Because the 
24-item model had a minimal level of item bias based on 
time-point, this allows us to conduct further statistical 
analysis, such as comparing the pre- and post-test scores. 
Based on a paired-sample t-test, it was found that the 
average logit score of student post-test scores (M = 0.20, 
SD = 1.09) was higher than the average of the pre-test 
logit scores (M = -0.05, SD = 0.98). The difference was 
statistically significant with a small effect size, t(147) = 
-4.30, p < .001, d = 0.24 (Figure 5). These results 
demonstrate a functional level of sensitivity to a typical 
CS curricular intervention. 

DISCUSSION AND CONCLUSION 

We designed and developed the MG-CSCI 
assessment to measure middle grades (ages 11-13) 
students’ understanding of core computer science 
concepts. Our objective was to create a multiple-choice 
assessment that could be completed by students within 
a standard class period. After developing the 
assessment, we validated it with more than 400 middle 
grades students. The results of the study demonstrate 
that the 24-item MG-CSCI can accurately measure 
middle grades students’ understanding of core CS 
concepts, including variables, loops, conditionals, and 
algorithms. In contrast to previous efforts that have 
developed more focused assessments, and often in a 

form that uses more time-intensive scoring systems 
(Grover & Basu, 2017), the current study has developed 
a more general assessment in a scalable, multiple choice 
form. This type of assessment facilitates remote 
administration and automated grading for broader use. 
Moreover, this concept inventory was designed to 
support the new and increasingly adopted CS 
frameworks (CSTA, 2017; Grover & Basu, 2017; 
K12cs.org, 2016) and is not constrained to specific 
classroom curricula and activities. By focusing on the 
middle grades level, this work expands prior work done 
on concept inventories targeting undergraduate 
students (e.g., FCS1, SCS1). Finally, the results from the 
DIF testing shows that the concept inventory has low 
bias with regards to the timing of administration, 
whether as a pre- or post-test. Thus, the MG-CSCI can be 
used as either a pre-test (i.e., prior to a CS learning 
activity) or post-test (i.e., following a CS learning 
activity). In addition, it has the sensitivity for revealing 
the learning impact of a CS curricular intervention which 
has a relatively low effect size with a modest sample size. 

Our validation study did not involve cognitive 
interviews and did not further investigate the dropped 
items qualitatively. However, the development of 
FKSAs underlying our instrument was based on 
cognitive interviews conducted with middle-grade 
students that also included students’ difficulties in 
understanding certain CS concepts (Grover & Basu, 
2017). As we developed our instrument based on the 
FKSAs, we sought statistical evidence showing the items 
were in alignment with the FKSAs. The items that were 
dropped, in turn, were a poor measurement fit with the 
FKSAs. While we believe that cognitive interviews on all 
or select items in the instrument were not a necessary 
part of this validation process, we also acknowledge the 
robustness of the cognitive interview methodology for 
harvesting rich data behind students’ responses on the 
dropped items. New studies should pursue this line of 
inquiry. Another item of note is that our study included 
primarily sixth and eighth grade students due to the 
available sample. While these two grades bracket the 
middle grades and provide an appropriate sample to 
assess item difficulty, further studies should confirm 
item performance more generally with seventh grade 
students. 

In future work, it will be important to explore 
instruments that expand the conceptual coverage to a 
greater number of finer-grained constructs underlying 
core CS concepts. This further work would also allow us 
to create more focused versions of the instrument based 
on subsets of the assessment centered on specific CS 
concepts. Part of this work would also be to create more 
items that are at either end of the difficulty scale to better 
capture a full range of abilities. To further improve the 
validation of the MG-CSCI, we are planning to collect a 
more demographically diverse data sample so that we 
can use DIF to further test generalizability across 

 
Figure 5. The mean comparison between pre- and 
post-test scores (Note: error bars are +/- 1 standard 
error of the mean) 
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characteristics such as grade levels, previous block-
based programming experience, underrepresented 
minority (URM) vs. non-URM, or English Language 
Learners (ELLs). Related, we would hope to develop and 
validate a Spanish language version of this instrument. 
Thus, the ultimate goal for our further work is to validate 
a broader set of items to better address a full range of 
demographics, ability levels, and developmental/age 
ranges. Furthermore, exploring different problem types 
and representational forms not limited to block-based 
programming are also important directions for future 
work. 
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APPENDIX 1 

Focal Knowledge, Skills and Abilities (Grover & Basu, 2017) and CSTA Standards (CSTA, 2017) used in this 
study 

Focal Knowledge, Skills and Abilities – FKSAs (Grover & Basu, 2017) 

1. Ability to describe what a given loop is doing 

2. Ability to describe the sequence that is executed in a given program when the program contains things inside 
a loop as well as outside of the loop.  

3. Knowledge that a loop involves a repeating pattern that will terminate under a specified condition or after a 
certain number of repetitions  

4. Ability to identify the repeating pattern within a loop 

5. Ability to describe the structural components of a pattern (not in a programming context) 

6. Ability to identify a pattern from a real-world phenomenon 

7. Ability to describe how a conditional pathway would operate 

8. Ability to create variables, assign values and update variables 

9. Ability to describe how a variable changes values in a loop 

10. Ability to determine what variables are required in a program to achieve the goals of the computational 
solution.  

11. Ability to evaluate a Boolean expression 

12. Ability to use Boolean operators in a programming context 

13. Ability to create a Boolean expression for a given condition 

14. Ability to identify sub-parts of a computational solution 

15. Ability to create a Boolean test to control a loop given specifications  

16. Ability to describe how the Boolean tests interacts with the loop execution 

 

From CSTA (https://www.csteachers.org/)  

2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms. (P4.4, P4.1) 

2-AP-11 Create clearly named variables that represent different data types and perform operations on their 
values. (P5.1, P5.2) 
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APPENDIX 2 

ICCs for Item_11_Loo4 and Item_15_Loo5 

Item_11_Loo4 

 

Item_15_Loo5 
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APPENDIX 3 

The list of problematic questions and their corresponding FKSAs 

No Item Code Question Category FKSA 

11 Item_11_Loo4 

 

How many times will the word “here” be said when 
this code is run? 

A. 0 

B. 1 

C. 5 

B. 10 

C. “here” will be said over and over until the code is 
stopped manually 

D. It will be different each time you run it 

Loop/ 
Iteration 

1, 2, 3, 4, 8, 9 

15 Item_15_Loo5 

 

What will be said when this code is run? 

A. 5 

4 

3 

2 

1 

B. 5 

3 

1 

C. 5 

3 

-1 

D. 3 

1 

-1 

E. 3 

1 

F. It will be different each time you run it 

Loop/ 
Iteration 

1, 3, 4, 8, 9 
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APPENDIX 4 

The list of the final CSCI questions and their corresponding FKSAs and CSTA Standards 

No Item Code Question Category FKSA 

1 Item_1_Var1 

 

What are the values of x and y after the above code runs? 

A. x is equal to 10; y is equal to 5 

B. x is equal to 5; y is equal to 5 

C. x is equal to 10; y is equal to 10 

D. x is equal to 5; y is equal to x 

Variable 8 

2 Item_2_Con1 

 
 What will be said after running this code? 

A. All done 

B. Inside the if 

C. Inside the if 

All done 

D. Inside the else 

All done 

E. Inside the if 

Inside the else 

All done 

Conditional 7, 8 

3 Item_3_Loo1  
To ensure “here” is said 10 times, which number should be 

filled in the repeat block to replace the  ? 

A. 2 

B. 3 

C. 6 

D. 10 

Loop/ Iteration 1, 3, 4 

  



Rachmatullah et al. / MG-CSCI Validation 

 

6 / 24 

4 Item_4_Loo2 

Which lines of code will result in the output saying 
‘ABABABCD’? 

A.   

B.  

C.  

D.  

Loop/ Iteration 
1, 2, 3, 
4 

5 Item_5_Alg1 

 

,  and  are variables with values. Which of the 

following can be used to replace  so that the code

 will swap the values of  and  ? 

 

A.  

B.  

C.  

D.  

Algorithm 8 
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6 Item_6_Var2 

 

Which of the following should replace  so that the 
code will say “Hello Girls and Boys”? 

A.   

B.  

C.  

D.  

 

Variable 8 

7 Item_8_Con3 
 

What will be said after running this code? 

A. Under 40 

B. And under 21 

C. And contains a 1 

D. Under 40 

And under 21 

E. Under 40 

And under 21 

And contains a 1 

F. Nothing will be said 

Conditional 7, 8 

8 Item_9_Con4 

 
What will be said after this code has run? 

A. The word is too short! 

B. The word is too long! 

C. The word is just right! 

D. Nothing will be said. 

Conditional 7, 8 
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9 Item_10_Loo3 

 
What will be said when this code is run? 

A. apple 

apple 

apple 

orange 

orange 

orange 

B. apple 

orange 

C. apple 

orange 

apple 

orange 

apple 

orange 

D. Nothing will be said 

E. It will be different each time you run it 

Loop/ Iteration 1,3,4 

10 Item_12_Var3 

  

Which of the following can be used to replace , so 
that the code will have z is equal to 12? 

A.     

B.  

C.  

D.  

Variable 8 
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11 Item_13_Alg2  

For the following problem, assume that  
is a variable that contains a list of numbers from 1 to 300. 
What does this code do? 

A. says ‘true’ if the number 100 is in the list 

B. says ‘true’ if the first number in the list is 100 

C. says ‘true’ if the last number of the list is 100 

D. says ‘true’ if there are 100 in the list 

E. says ‘true’ or ‘false’ 100 times 

Algorithm 
1, 2, 4, 
7, 8, 9 

12 Item_14_Var4 
 

Which of the following can be used to replace , so 
that the code will have z equal to no? 

A.  

B.  

C.  

D. does not need an additional block 

Variable 8 

13 Item_16_Alg3  

 What does this code do? 

A. Makes sure the value of x is not equal to 10 

B. Makes sure the value of x is less than 5 

C. Makes sure the value of x is between 10 and 5 

D. It always sets x equal to 5 

E. This code will cause an error 

Algorithm 7 
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14 Item_17_Var5 
 

 
What is said when this code is run? 

A. ‘11’ then ‘13’ then ‘18’ 

B. ‘11’ then ‘11’ then ‘11’ 

C. ‘x’ then ‘x’ then ‘x+5’ 

D. ‘18’ then ‘18’ then ‘18’ 

E. [Nothing will be said] 

F. This code will cause an error 

Variable 8 

15 Item_18_Var6 

 
To ensure the value of x is 15 and y is 10 after running this 

code, which block can replace  ? 

A.   

B.  

C.  

D.  

Variable 8 
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16 Item_19_Alg4 

Which code snapshot will cause the arrow to draw the 
shape shown below? The side length of each triangle is 30 
steps. 

Note: The arrow starts drawing where it is located. 
 

 

A.    
 

B.  
 

C.  
 

D.  
 

E.  
 

Algorithm 
1, 2, 3, 
4 
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17 Item_20_Alg5 

If you want to write a code that asks a user to type in a 
sentence, then reports back to the user the number of times 
the letter ‘e’ appears in that sentence, which of these things 
would your programming language NOT need to be able 
to do: 

A. Compare two letters to each other to determine if they 
are the same 

B. Display text on the screen 

C. Convert letters into numbers and numbers into letters 

D. Store user entered information 

Algorithm 14 

18 Item_21_Var7 

The following code is supposed to say “15.” 

 

What needs to be changed in this code for this to happen? 

A. Change the block number 3 to  

B. Change the block number 2 to  

C. Change the block number 2 to  

D. Nothing needs to be changed 

Variable 10 

19 Item_22_Var8 

Look at the code below! 

 

What is wrong with this code? 

A. Nothing is wrong with the code 

B. x is a numeric value 

C. The order of the blocks is wrong 

D. Dividing a numeric value with an alphabetic value 

Variable 
2-AP-
11 
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20 Item_23_Con5 

Look at the picture below! 

 
The arrow is heading to the blue tile. If you are going to 
move the arrow to the red tile using the following code, 
which part of the code needs to be changed? 

 

A. Nothing needs to be changed 

B. Change the block number 3 to  

C. Change the block number 2 to  

D. Move the block 1 to after the block 4 

Conditional 7 

21 Item_24_Loo6 

The following code is supposed to say “1+1+1=3”.  

 

What needs to be changed in the code for this to happen? 

A. The block numbers 5 and 6 should come below the 
repeat block 

B. The block number 1 should go inside the repeat block 

C. Number of iteration should be 3 

D. Nothing needs to be changed 

Loop/ Iteration 2, 9 

22 Item_25_Loo7 

The following code needs to say ‘strawberry’ six times. 
What changes need to be made, if any, for this to happen? 

 

A. Nothing, the code will say ‘strawberry’ six times 

B. Block number 2 should come out of the repeat block 

C. Another  should be added to the 
repeat block 

D. The block number 3 should go inside the repeat block 

Loop/ Iteration 2, 9 
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23 Item_26_Alg6 

 

What will be said if the above code is run? 

A. Nothing will be said 

B. say too small 

C. say too big 

D. say in the range 

E. It is going to be different every time 

Algorithm 
2-AP-
10 

24 Item_27_Alg7 

A robot is going to deliver a package to an owner. Below 
are the steps the robot needs to take to deliver the package.  

1. Locate the owner of the package 

2. Follow the fastest path from the robot location to the 
owner’s location 

3. Calculate the fastest path from the robot location to the 
owner’s location 

4. Drop the package 

However, there might be small mistake in the order of the 
steps. Can you find the mistake? 

E. The order of the steps is just right 

F. Step number 2 should be after step number 3 

G. Step number 2 should be after step number 4 

H. Step number one should be after step numbers 2 and 3 

Algorithm 14 

 

 

http://www.ejmste.com 


	INTRODUCTION
	RELATED WORK
	CURRENT WORK
	DATA AND METHODS
	Item Development
	Sample and Administration
	Data Analysis

	RESULTS
	Rasch Modeling Analysis
	Confirmatory Factor Analysis (CFA)
	Pre and Post-test Comparison and Test-retest Reliability

	DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX 1
	Focal Knowledge, Skills and Abilities (Grover & Basu, 2017) and CSTA Standards (CSTA, 2017) used in this study

	APPENDIX 2
	ICCs for Item_11_Loo4 and Item_15_Loo5

	APPENDIX 3
	The list of problematic questions and their corresponding FKSAs

	APPENDIX 4
	The list of the final CSCI questions and their corresponding FKSAs and CSTA Standards


