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Introduction

There has been a strong push for research on interven-
tions aimed at improving student science outcomes in the 
United States in the past decade. However, the number of 
studies conducted to examine the efficacy of math and liter-
acy interventions on student outcomes still greatly exceeds 
those that evaluated science interventions. For instance, 
What Works Clearinghouse (WWC) reviewed 1,437 studies 
under the mathematics topic and 4,587 studies under the lit-
eracy topic since 2002. In contrast, WWC reviewed only 73 
studies under the science topic in the same time frame. This 
strongly indicates that more studies of science interventions 
are needed.

Not only are more studies evaluating science interven-
tions needed but they should be of high quality. In a meta-
analysis of science intervention effect sizes, Taylor et al. 
(2018) found fewer than 2% of the reviewed studies, which 
included randomized controlled trials (RCTs) and quasi-
experimental designs (QEDs), had adequate sample sizes 
and used well-designed and well-implemented rigorous 
research methods to detect causal effects. This indicates 
that research grounded in strong methodology is also much 
needed in science education.

Impact Studies to Improve Student Outcomes

In the past decade, important federal policies were estab-
lished to support the growing demand to improve science 
education in K–12 settings and the increasing need for rigor-
ous research on science education. The National Research 
Council, the National Science Teacher Association, and the 
American Association for the Advancement of Science intro-
duced the Next Generation Science Standards (NGSS) in 
2011, which is a multistate effort to standardize science cur-
riculum and science teaching in the United States (National 
Research Council, 2012). NGSS has gained a great amount 
of traction since its debut. As of 2019, 20 states adopted 
NGSS into their Common Core State Standards, further pro-
viding clear guidelines for the knowledge students need to be 
prepared for success in college. More states are expected to 
implement NGSS in the upcoming years.

Around the same time as NGSS launch, the Institute of 
Educational Sciences (IES), the research branch of the 
U.S. Department of Education, and the National Science 
Foundation, joined forces to create the Common Guidelines 
for Educational Research and Development. This initiative 
aimed to launch “cross-agency guidelines for improving 
the quality, coherence, and pace of knowledge development 
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in science, technology, engineering, and mathematics 
(STEM) education” (IES & National Science Foundation, 
2013). The guidelines outline six main types of research for 
knowledge generation: (1) Foundation Research, (2) Early-
State or Exploratory Research, (3) Design and Development 
Research, (4) Efficacy Study, (5) Effectiveness Study, and 
(6) Scale-up study. The purpose of the first two types of 
research is to generate core knowledge in education, with the 
aim of examining, testing, and building theories and rela-
tional constructs in education. The third type of research is 
often used to pilot, test, and refine interventions. The other 
three types of research aim to measure the impact of inter-
ventions but vary in terms of the scale of generalization and 
context of implementation. For the three types of impact 
research, the guidelines emphasize that studies should heed 
WWC standards, such that they employ designs that reduce 
bias due to nonrandomization, establish adequate power to 
detect meaningful effects, clearly define outcome measures, 
and collect data on the fidelity of implementation. With the 
increased focus on improving K–12 science curriculum and 
emphasis on conducting studies to assess the effectiveness 
of science interventions, it is expected that more such impact 
studies will emerge.

Impact Studies to Improve Teacher Outcomes

There is growing evidence on the critical link between 
teacher quality and student achievement (Desimone, 2009; 
Scher & O’Reilly, 2009). In addition, several recent educa-
tion reforms recognized the importance of teacher effective-
ness in improving student performance in schools. The No 
Child Left Behind Act in 2002 and its successor the Every 
Student Succeeds Act in 2015 notably became driving forces 
for evidence-based reform of teacher effectiveness (Slavin, 
2017). Under the guidelines of Every Student Succeeds Act, 
states have more flexibility in monitoring teacher effective-
ness and establishing state-specific teacher evaluation sys-
tems. As a result, states are becoming less reliant on student 
achievement as the main measure of teacher accountability 
and focusing on using balanced systems of multiple mea-
sures to evaluate teachers (Close et al., 2018). The evolving 
teacher evaluation systems subsequently incited discussions 
on strategies for providing ongoing support, such as expand-
ing professional development (PD) opportunities for teach-
ers at the district and state levels.

The growing recognition of the importance of providing 
effective PD interventions to teachers led to the emergence of 
grant programs to support the development and evaluation of 
PD interventions. For example, IES created the “Effective 
Teachers and Effective Teaching” program, which sup-
ports research on interventions that target improving class-
room teaching and subsequently student learning. Between 
2003 and 2018, this program funded 39 Development and 
Innovation Goal-2 projects and 28 Efficacy and Replication 

Goal-3 projects. However, research on PD interventions still 
has much room for growth, especially for research on inter-
ventions for science teachers. Yoon et al. (2007) found only 
nine of more than 1,300 reviewed studies on teacher PD met 
the WWC standards with or without reservations. Of those 
that met the standards, only one study focused on science 
outcomes.

Impact Studies to Improve Student and Teacher Outcomes

Per the common guidelines, a key feature of impact 
research, which includes Efficacy, Effectiveness, and 
Scale-up studies, is the study design that supports causal 
inference. Specifically, the study design should contain ele-
ments that would produce strong causal conclusions, such 
that it would meet the WWC standards with or without res-
ervations. This implies the use of RCTs or rigorous QEDs. In 
this article, we focus on the design of RCTs, though the 
results are also applicable to QEDs.

One critical aspect of designing impact studies of PD 
interventions is that often the intervention is expected to 
improve teacher outcomes and student outcomes. For 
instance, a study may seek to determine the effect of a PD 
program for science teachers on teacher content knowledge 
(CK) and teacher practice, as well as on student achieve-
ment. In this example, the program’s effects on teacher and 
student outcomes are both essential indicators of the pro-
gram impact. Indeed, Desimone (2009) states that teacher 
knowledge, teacher quality, and student learning are three 
key outcomes of programs with a PD component. Teacher 
outcomes can mediate the intervention effect on student 
outcomes. The change in teacher outcomes can also be 
considered as a measure of the proximal program effect. 
Therefore, it is important for the study to be designed to 
detect both proximal teacher effects and distal student 
effects.

This article illustrates strategies for approaching power 
analyses when key outcomes are at both the student and the 
teacher level in a single study. We focus specifically on stu-
dent and teacher outcomes for studies of interventions that 
aim to improve outcomes of science teachers and the achieve-
ment of their students in science. This is motivated by the 
aforementioned substantial need for conducting such rigor-
ous impact studies in the area of science. Our analyses are 
facilitated by recent empirical work that has generated a 
compendium of design parameters (i.e., intraclass correla-
tions [ICCs], outcome–covariate correlations, and bench-
mark effect sizes) for CK and teaching practices of science 
teachers (Kowalski et al., 2020; Westine et al., 2020). While 
the existing research on design parameters for similar out-
comes of mathematics and reading teachers are limited, our 
analytic framework and some of our results can also provide 
useful lessons for the designs of studies of mathematics and 
reading interventions, which is discussed later.
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This article is organized as follows. We begin by review-
ing key components of power analyses for studies that exam-
ine student and teacher outcomes and the importance of 
conducting separate power analyses for each outcome. Next, 
we outline our approach to conducting the power calcula-
tions. We then present results from power analyses corre-
sponding to an array of sample size and design parameter 
estimates. We conclude with a discussion of the implications 
of these results for designs of future studies.

A Priori Power Analysis for Studies Examining Student and 
Teacher Outcomes

A key step in designing a rigorous RCT is conducting an 
a priori power analysis to determine the sample size that will 
be adequate to determine a reasonable effect size. We are 
specifically interested in power analyses for cluster random-
ized trials (CRTs), which are commonly conducted to assess 
the efficacy of educational interventions (Spybrook et al., 
2016). In a CRT, entire clusters, such as schools, are ran-
domly assigned to study conditions. Consider different 
design options for evaluating a new PD intervention. One 
option entails randomly assigning schools to either imple-
ment the new intervention or carry on business as usual PD, 
where all participating teachers within a school receive the 
treatment or serve as a control. There are several benefits to 
assigning schools to study conditions, as opposed to assign-
ing individual teachers. Having all teachers receive the treat-
ment as an intact group minimizes potential contamination 
as interactions between treatment and control teachers are 
less likely. The theory also suggests that PD programs are 
more effective when implemented to teachers within intact 
groups, such as schools, to promote collaborative learning 
communities (Desimone 2009).

An a priori power analysis for a CRT is more complex 
than a power analysis for a nonclustered (i.e., single-level) 
RCT in which individuals are assigned to study conditions. 
This complexity comes from the additional design parame-
ters that are needed for the power analysis. Consider a 
teacher-level outcome such as teacher CK. One design 
parameter is the extent to which outcome varies between 
clusters relative to the total outcome variance, or the ICC. In 
a two-level CRT with schools as the unit of randomization 
and teachers nested within schools, the ICC captures the 
variance of teacher CK between schools as a proportion of 
the total outcome variance. For example, an ICC of .20 indi-
cates that 20% variation of the teacher CK outcome occurs 
between schools. The lower the ICC (i.e., the more homog-
enous the schools), the higher the statistical power, all other 
parameters held constant.

Another design parameter pertinent to CRTs is the percent-
age of variance explained by covariates (outcome-covariate 
correlation or the R2 coefficient). Outcome measures 
collected at baseline (aka pretest) are commonly used as 

covariates because pretests are often highly correlated with 
the outcomes of interest. In this case of teacher CK as the 
outcome, an R2 coefficient of .8 suggests that a measure of 
teacher CK collected as baseline would explain 80% of the 
variance in the teacher CK measure collected at the posttest. 
In CRTs, both individual-level and cluster-level covariates 
can be included to increase statistical power. For instance, a 
teacher pretest covariate can be used to explain the within-
school variation and between-school variation in the teacher 
CK outcome.

The Need to Consider Two Power Analyses Together

In the remainder of this article, we consider statistical 
power for planning a study that seeks to detect the effect 
of a PD intervention on both teacher and student outcomes. 
We assume treatment, the new PD program, is randomly 
assigned at the school level and students are nested within 
teachers and teachers are nested within schools. For illustra-
tive purposes, we consider teacher CK in science and student 
achievement in science as the teacher and student-level out-
come of interest, respectively.

The design of the study to detect teacher effects is quite 
straightforward, it is a two-level CRT with teachers nested 
within schools. The ideal design of the study to detect stu-
dent effects is also quite straightforward, it is a three-level 
CRT with students nested within teachers nested within 
schools. However, in practice, a two-level CRT, with stu-
dents nested within schools, is often used for planning pur-
poses. There are several reasons for this. First, a three-level 
CRT requires two ICC estimates, one that captures the per-
centage of the variance in student outcomes at the school 
level and one that captures the percentage of variance in stu-
dent outcomes at the teacher level. Furthermore, it includes 
potentially three R2 estimates, one at the student, teacher, 
and school level, respectively. To date, there is very little 
empirical information regarding these two ICCs and three 
R2s for planning three-level CRT with students nested within 
teachers nested within schools. As such, this makes it diffi-
cult to use accurate estimates of these parameters in the 
power analysis at the design stage of a study and inaccurate 
estimates of design parameters can yield misleading results. 
Second, recent work shows that ignoring the teacher-level in 
a three-level CRT, and instead of conducting a power analy-
sis using a two-level CRT with students nested within 
schools, does not markedly change the results of the power 
calculations (Zhu et al., 2012). This is because the variance 
at the teacher level shifts to the school and student levels but 
is still captured in the power analysis. For instance, Zu 
(2012) demonstrated that approximately 30% and 70% of 
the variances at the teacher level in a three-level CRT shift to 
the school and student level in the corresponding two-level 
CRT with the teacher level not explicitly accounted for. 
Furthermore, empirical estimates of design parameters (one 
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ICC and two R2s) relevant for planning two-level CRTs with 
students nested within schools are more readily available. 
This allows a more accurate estimation of these important 
design parameters that leads to better a priori power analy-
ses. For these reasons, we use a two-level CRT to conduct 
power calculations for student outcomes. This means that 
our power analysis for studies examining both the student 
and the teacher effects will be based on two two-level 
designs. For clarity, hereafter we refer to the two-level CRT 
with teachers nested within schools as the two-level CRT(T) 
and the two-level CRT with students nested within schools 
as the two-level CRT(S).

Although for both teacher and student outcomes we con-
sider two-level models, it is important to recognize that the 
nesting structures are different. From the design perspective, 
this difference must be accounted for when planning the 
study. Consider the following example. Suppose a researcher 
is designing a study to test the effects of a teacher PD inter-
vention on teacher CK and student achievement. The study 
plans to sample five teachers per school and 20 students per 
teacher or 100 students per school. The researcher seeks to 
determine the number of schools necessary for the study to 
detect the targeted student and teacher effects and assumes a 
two-level CRT for both. Naïvely, the researcher assumes a 
target effect size of 0.20 standard deviation units, an ICC of 
.25, an R2 value of .40 at the student level, and an R2 value of 
.80 at the cluster level for the power analysis for both student 
and teacher outcomes. The power analyses for student 
effects, assuming 100 students per school, reveals the study 
needs 45 schools to achieve the power of .80. The power 
analysis for teacher effects, assuming five teachers per 
school reveals the study needs 112 schools. Clearly, these 
analyses yield quite different results that may leave research-
ers questioning how many schools to recruit for a study.

The naïve approach illustrated above is misleading 
because design parameters and target effect sizes are differ-
ent for different outcomes, and particularly for outcomes 
measured at different levels. For example, Westine et al. 
(2020) found a wider range of ICCs (.05–.29) for science 
teacher outcomes than the ICCs (.17–.31) for student science 
achievement outcomes (Spybrook et al., 2016). Similarly, 
the existing research on teacher PD interventions suggests 
that effect size magnitudes for teacher outcomes tend to be 
in the 0.41 to 0.63 range (Kowalski et al., 2020; Scher & 
O’Reilly, 2009), much larger than the range for student out-
comes 0.20 to 0.30 (Hill et al., 2008). These highlight the 
importance of incorporating specific design parameters and 
effect sizes for different outcomes of interest in the power 
analyses. Then the corresponding results can be compared 
and reconciled to determine the number of schools to recruit 
for a study.

It is important to note that the correction for multiple 
hypothesis testing may be necessary when conducting 
power analyses for a study that examines the treatment 
effects across different outcomes. However, the correction 

for multiple comparisons is not necessary for a study that 
examines the treatment effects with the student and teacher 
outcomes because the two types of outcomes measure differ-
ent constructs. In this article, we consider the tests of treat-
ment effects with the student and teacher outcomes to answer 
two separate confirmatory questions; thus, the adjustment 
for multiple comparisons is not necessary (Schochet, 2009).

Analysis

As mentioned above, we examine statistical power for 
CRTs for interventions that seek to improve student science 
achievement as well CK and instructional practices of science 
teachers. These teacher outcomes are commonly used to assess 
the effectiveness of teacher interventions (Gallagher et al., 
2011; O’Donnel, 2008) and recent research provided values of 
design parameters for these outcomes. To enable better com-
parisons between power calculations for student and teacher 
outcomes, we report minimum detectable effect size (MDES). 
The MDES is the smallest effect a study is designed to detect 
for a given level of power and alpha (Bloom, 2005). Equation 
1 below shows the formula for calculating MDES for a two-
level hierarchical linear model (HLM) (which applies to our 
two-level HLM(T) and a two-level HLM(S)).
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where n is the number of individuals (teachers or students) 
per cluster (school); J is the number of clusters; M is the 
group effect multiplier for a two-tailed test with J − 3 degrees 
of freedom with one level-two covariate; ρ is the ICC; RL1

2  
and RL2

2  are the proportion of the outcome variance 
explained by Level-1 and Level-2 covariates, respectively; 
and P is the proportion of Level-2 units randomized to treat-
ment. We calculated the MDES using the program PowerUp! 
(Dong & Maynard, 2013).

Equation 1 shows that the ICC, RL1
2  and RL2

2 . values are 
significant determinants of MDES. This article considers 
MDES with either the pretest or the demographic variables 
as the covariate(s). This is motivated by our observation that 
pretest measures of teacher outcomes and teacher demo-
graphics are often not collected in impact studies. In other 
words, we calculated power with either pretest or demo-
graphic covariates to reflect real-world study designs. 
Equation 1 also shows that the proportion of Level-2 units 
randomized to treatment conditions impacts power. We 
assumed the equal allocation of Level-2 units to conditions 
in our calculations. However, this could easily be extended 
to cases of unequal allocation.

Sample Sizes

We selected the numbers of schools, teacher, and students 
based on the sample sizes of federally funded efficacy 
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studies, as well as common knowledge regarding school 
staffing and student-to-teacher ratios in K–12 settings. We 
assumed school as the unit of random assignment and 
allowed the total number of schools to vary from 25 to 65 
schools. This range is consistent with the median range for 
the number of clusters randomized for IES Goal-3 Efficacy 
and Replication studies: 20–52 clusters (Spybrook et al., 
2016). We limited the number of schools to 65 as CRTs with 
fewer than 100 schools are common in education (Hedges 
et al., 2012).

For the MDES calculations of teacher outcomes, we con-
sidered two scenarios. The first set the average number of 
teachers per school to five, which is common in elementary 
schools. The second assumed three teachers per school, 
which is more common in middle and high schools. These 
assumptions are consistent with the sample sizes used by 
RCTs that evaluated science interventions in the elementary 
and secondary school settings (Lee et al., 2016; Newman 
et al. 2012; Taylor et al., 2017).

For MDES calculations for student outcomes, we 
assumed 25 students nested within each teacher based on the 
average student-to-teacher ratio in elementary and second-
ary public schools (Synder et al., 2018), which is a good 
proxy for the average class size. Therefore, we set the num-
ber of students per school to 75 or 125 depending on the 
number of teachers per school, three or five. This is a conser-
vative estimate because science teachers are likely to teach 
multiple classrooms, thus they may teach more than 25 stu-
dents at a given point in time.

Design Parameters

For student outcomes, the values we chose for the ICC 
and R2 parameters came from Spybrook et al. (2016), who 
reported them for Grades 4 to 11 science achievement out-
comes in Michigan, Wisconsin, and Texas (see Table 1). For 
teacher outcomes, the design parameters were based on plau-
sible values from the empirical analyses for science teacher 
instructional practice and CK outcomes (Westine et al. 2020). 
See online Supplemental Appendix A for additional discus-
sions regarding our choices of design parameters.

Results

This section presents results. First, we show MDES cal-
culations for two-level HLM(S) and two-level HLM(T) 
without any covariates under the two sample size assump-
tions. Then, we present MDES results for the two sample 
size scenarios with the inclusion of a pretest or demographic 
covariates.

MDES Without Covariates

Figure 1 presents MDES estimates in the absence of the 
pretest and demographic covariates. The range of the MDES 

estimates for student science achievement outcomes (black 
line, black circle) overlaps with that for teacher outcomes 
(blue and red lines, blue square, red triangle) despite the 
higher ICC range for student outcomes than teacher out-
comes. This result is primarily driven by that the assumed 
number of students per school (125 students) is much larger 
than the assumed number of teachers per school (five teach-
ers). This result suggests that a study may be able to detect 
similar effect sizes for students and teachers if the impacts 
are estimated with no covariates.

Figure 2 shows the results for the second sample size 
scenario with lower number of teachers and students per 
school: 75 students and three teachers per school. The 
MDES range for student achievement (black line, black 
circle) with 75 students per school is similar to the range 
with 125 students per school, which indicates that reducing 
the student sample size from 125 to 75 students per school 
does not have much effect on the student MDES. In this 
case, however, the MDES range for teacher outcomes no 
longer overlaps with that for student achievement. In fact, 
the MDES range for teacher CK (blue line, blue square) 
and teacher instructional practices (red line, red triangle) 
widened as the number of teachers per school decreased 
from five to three. This indicates the trade-off between the 
number of schools and number of teachers per school (i.e., 
the smaller the number of teachers per school, the larger 
the number of schools) needed to detect a given effect size 
for teachers when impact estimation is carried out with no 
covariates.

Figures 1 and 2 show that the MDES estimates for stu-
dent and teacher outcomes are generally large without 
covariates. For student achievement, we rely on the range of 
effect size benchmarks determined by Hill et al. (2008): 
between 0.2 and 0.3. When a study has 65 schools, regard-
less of whether it includes 125 students or 75 students per 
school, the MDES range for student outcomes is similar to 
the effect size ranges determined by Hill et al. (2008).

A smaller number of schools (J = 55, n
teacher

 = 5) are 
necessary to detect the teacher effect consistent with the 
overall mean effect size of 0.51 observed for science teacher 
interventions in a meta-analysis on the effect of educational 
interventions on science teacher outcomes (Kowalski et al. 
2020). We rely the effect size of 0.51 determined by Kowalski 
et al. (2020) as the benchmark to interpret our results associ-
ated with the teacher outcomes. More schools (J = 65) are 
necessary for a study to detect a treatment effect for teachers 
in the case of three teachers per school. However, it is impor-
tant to note that these results are based on MDESs estimated 
without covariates. It is common practice to include covari-
ates in the design of a study. We present the MDES results 
without covariates here to contrast the results with covari-
ates considered. Next, we demonstrate the effects of pretest 
and demographic covariates on MDES under the two sample 
size assumptions.
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MDES With Covariates: Five Teachers and 125 Students 
per School

Figure 3 shows the MDES estimates for student achieve-
ment (solid black line, black circle), teacher CK (solid blue 
line, blue square), and teacher practice (solid red line, red 
triangle) with five teachers and 125 students per school. The 
solid lines represent the MDES estimates with the pretest 
covariate and the dashed lines show calculations conducted 
with the demographic covariates. For each type of covariate, 
we discuss MDES estimates for the student outcome first 
followed by MDES estimates for teacher outcomes.

Pretest Covariate. We highlight two key findings related to 
MDES estimates for student achievement. First, as expected, 

the MDES estimates with the pretest covariate (Figure 3) are 
much smaller than those with no covariates (Figure 1). 
Second, with 40 schools the MDES range with pretest 
(0.16–0.40) overlaps with the benchmark effect size range of 
0.2 to 0.3 (Hill et al., 2008). This suggests that studies with 
less than 40 schools may not have sufficient power to detect 
a plausible effect size for student achievement even with the 
pretest covariate.

Switching to teacher outcomes, the MDES estimates are 
smaller for teacher CK with a pretest covariate than with no 
covariates. With 40 schools, the upper MDES bound coin-
cides with the benchmark effect size of 0.51 for science 
teachers (Kowalski et al., 2020). This result suggests that a 
study with 40 schools can detect plausible effects on both 
student achievement and teacher CK.

TABLE 1
Empirical Estimate of Design Parameters for Science Based on the Literature for Two-Level CRTsa

Outcome measure ICC

Pretest Demographics

RL12 RL22 RL12 RL22

Student science achievementb .17, .31 .43 .64, .91 .11 .53, .86
Teacher content knowledge (science)c .05, .24 .39 .13, .86 0 0, .03
Teacher practice (science)c .08, .29 .06 0, .69 .06 0, .37

Note. ICC of .31 associated with the student science achievement outcome suggests 31% of the outcome variance is between schools; RL1
2  = percentage vari-

ance explained by Level-1 covariates, for example, RL1
2  of .43 suggests that the pretest covariate explains 43% of the student science achievement outcome 

variance at Level-1. RL2
2 = percentage variance explained by Level-2 covariates, for example, RL2

2 of .91 suggests that the pretest covariate explains 91% of 
the student science achievement outcome variance at Level-2. CRT = cluster randomized trial; ICC = intraclass correlation.
aCalculations were based on these additional assumptions: two-tailed test, α = .05, equal allocation at all levels.
bDesign parameters based on Spybrook et al. (2016).
cDesign parameters based on Westine et al. (2020).
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Considering teacher practice, the MDES with the pretest 
covariate are again smaller than with no covariates (Figure 3). 
It is interesting to note that the MDES estimates for teacher 
practice (solid red line) are larger than that for teacher CK, 
which is a result of slightly larger ICC range and smaller R2 

values. Figure 3 shows that we would need at least 50 
schools to detect the 0.51 benchmark for teacher practice.

Demographic Covariates. Figure 3 shows the MDES ranges 
for student academic achievement (dashed black line, black 
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FIGURE 2. Calculated minimum detectable effect size (MDES) without covariates, based on student science achievement outcome 
(black line, black circle), teacher content knowledge outcome (blue line, blue square), teacher practice outcome (red line, red triangle), 
with varying number of schools, three teachers and 75 students per school.
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circle), teacher CK (dashed blue line, blue square), and 
teacher practice outcome (dashed red line, red triangle) 
with demographic covariates when the number of teachers 
and students per school were set to five teachers and 125 
students.

Two key findings are worth highlighting for student sci-
ence achievement. First, while the MDES range with demo-
graphic covariates is smaller than that with no covariates, it 
is slightly larger than that with a pretest covariate. The latter 
result is driven by smaller Level-1 and Level-2 R2 values for 
student demographic covariates than the pretest covariate. 
Second, a study would need at least 55 schools to meet the 
upper bound benchmark effect size (0.3) found by Hill et al. 
(2008). This suggests that the number of schools should be 
increased from 40 to 55 if a pretest covariate was replaced 
with demographic covariates when the average number of 
students per schools is 125.

Switching to key findings for teacher outcomes, we note 
the MDES range for teacher CK with teacher demographic 
covariates is not very different than the range with no 
covariates, which is not surprising given the small R2 values 
corresponding the demographic covariates in Table 1. Figure 3 
shows that a study would need at least 50 schools (each with 
five teachers on average) to be able to detect the benchmark 
effect size of 0.51. This suggests that 10 additional schools 
would be needed if a study swapped the pretest covariate 
with demographic covariates.

We see similar results for teacher practice: Inclusion of 
demographic covariates hardly changes the MDES estimates. 

The sample size requirement for the benchmark effect size of 
0.51 is 55 schools compared to the 50 schools needed for the 
benchmark with the pretest covariate.

MDES With Covariates: Three Teachers and 75 Students 
per School

Figure 4 shows results from parallel analyses conducted 
for the scenario with three teachers and 75 students per 
school. Below, we summarize key findings for student sci-
ence achievement (solid black line, black circle), followed 
by teacher CK (solid blue line, blue square) and teacher 
practice (solid red line, red triangle) when pretest and demo-
graphic measures are used as covariates.

Pretest Covariate. A comparison of Figures 3 and 4 indi-
cates minimal changes to the MDES for student achieve-
ment as the number of students per school decreases from 
125 to 75. Indeed, the range of MDES coincides with the 
benchmark effect size of 0.2 to 0.3 (Hill et al., 2008) as the 
number schools approaches 40, which is the same number of 
schools needed for this benchmark when the number of stu-
dents is 125.

For a given number of schools, the MDES range with 
three teachers per schools is higher than that with five teach-
ers per school. For instance, the MDES range for teacher CK 
with pretest is 0.47 to 0.64 with 30 schools and three teach-
ers per school compared to the range of 0.37 to 0.58 with 30 
schools and five teachers per school. Figure 4 suggests that 
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FIGURE 4. Calculated minimum detectable effect size (MDES)–based student achievement outcome (black line, black circle), teacher 
content knowledge outcome (blue line, blue square), teacher practice outcome (red line, red triangle), with varying number of schools, 
three teachers and 75 students per school. The solid line and the dashed line represent estimates with pretest and demographic covariates 
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for teacher CK, 45 schools are needed to detect the bench-
mark teacher effect size of 0.52. This result indicates that 
reducing the number of teachers per school from five to 
three raises the number of schools needed to detect the 
benchmark from 40 to 45.

We see similar results for teacher practice. We would 
need at least 55 schools to detect the effect size benchmark 
with three teachers per school and a pretest covariate.

Demographic Covariates. Similar to the pretest covariate, 
reducing the number of students per school from 125 to 75 
does not change the MDES range for student achievement 
with demographic covariates. The upper bound of the MDES 
range for student achievement includes the upper bound of 
the benchmark effect size (0.3) at 55 schools, suggesting that 
the same numbers of schools (J = 55) would be necessary 
when using only demographic covariates.

With teacher demographic covariates, we find that 55 
schools would be needed to detect the benchmark effect size 
for teacher CK when there are three teachers per school. 
This result suggests that a study would need five more 
schools if the number of teachers per school decreased from 
five to three. For teacher practice, with three teachers per 
school, the required number of schools to detect the bench-
mark is 60 schools, which is five schools higher than the 
requirement with five teachers per school.

Discussion

This article discusses design considerations for research-
ers when planning a study that estimates causal effects of an 
intervention on both teachers and students. The foremost 
important design element, in regard to statistical power, is 
having sufficient sample sizes to optimally align the power 
to detect meaningful and plausible effects for both teacher 
and student outcomes. We show that studies that include at 
least 40 schools, five teachers per school, and 25 students 
per teacher may be able to detect empirical effect size bench-
marks suggested by the literature when the outcomes of 
interest are student science achievement and science teacher 
CK and that pretest covariates are used to explain the varia-
tion in these outcomes. A study that uses instructional prac-
tice as the teacher outcome would need at least 55 schools, 
five teachers per school, and 25 students per teacher.

Using Covariates to Increase Statistical Power

One of the important contributions of this article is high-
lighting the important role the pretest covariate plays in 
making sure that the number of schools necessary to power 
a study is similar for detecting the student and the teacher 
effects. Without any covariates, the MDES estimates were 
similar for student achievement, teacher CK, and teacher 
practice. We showed that a study would need at least 55 

schools to detect the effect size benchmarks for student and 
teacher outcomes with five teachers and 125 students per 
school and no covariates. However, the MDES estimates for 
student achievement were smaller than those for teacher out-
comes when the pretest covariate was considered, because 
the pretest covariate explained more of the variation in stu-
dent achievement than either the teacher CK or practice out-
comes. With five teachers and 125 students per school, we 
also showed that 40 schools would be sufficient to meet the 
benchmarks for student achievement and teacher CK when 
pretest covariates are used, 15 schools fewer than the case 
with no covariate. Furthermore, our result showed that 50 
schools were needed for a study to detect the benchmark for 
teacher practice with five teachers per school, which is five 
schools fewer if the study does not include any covariate. 
These results clearly indicate that pretest covariates are 
important in reducing sample sizes requirements of CRTs.

We acknowledge that pretest covariates are not always 
available. For example, teacher pretest is often not accessi-
ble during the design phase of an impact study. The cost 
associated with collecting teacher pretreatment data, includ-
ing the cost of developing parallel forms of pre- and postas-
sessments, also limits the availability of teacher pretests 
(Kelcey & Phelps, 2013). Thus, we also considered the use 
of teacher demographic covariates, which tend to be more 
accessible from administrative databases. When we only 
considered demographic covariates, the number of schools 
needed to detect the benchmarks for teacher CK and practice 
is higher than the sample size requirements with pretest 
covariates. This difference is driven by the smaller Level-1 
and Level-2 R2 values for teacher demographic covariates 
than pretest. Our results showed that student and teacher 
demographic covariates suggested that at 55 schools, five 
teachers and 125 students per school are necessary to suffi-
ciently detect effects associated with teacher CK, teacher 
practice, and student achievement. Studies with less than 55 
schools may be powered to detect student effects, but they 
may not be equipped to detect the teacher effects. This would 
also be true if we conducted the power analysis with a pre-
test covariate for student achievement and teacher demo-
graphic covariates for teacher outcomes, which is a highly 
plausible scenario that one can encounter in real life.

Adjusting Power by Changing Number of Teachers and 
Students per School

Another important result of this article pertains to the 
impact that the number of teachers and students has on 
power. As the number of teachers per school shifted from 
five to three, the MDES estimates for both the teacher CK 
and practice outcomes increased, which in turn increased the 
number of schools needed to detect the benchmark effect 
sizes. We found at least five more schools would be needed 
to detect a meaningful teacher effect with either the teacher 
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pretest covariate or the demographic covariates as the num-
ber of teachers changed from five to three. However, the 
shift from 125 students to 75 students per school resulted in 
a relatively small change in the power estimates or sample 
size requirements for student achievement. These results 
demonstrate that a change in the number of individual-level 
units does (not) affect the power much when there is a small 
(large) number of individuals per cluster to begin with.

The MDES estimates corresponding to the scenario with 
three teachers and 75 students per school highlight the 
importance of considering the idea of over- and underpower 
when planning a study. Suppose a group of researchers is 
designing a PD intervention that provides instructional prac-
tice support for elementary science teachers. They plan to 
assign schools to either implement the intervention or con-
tinue with the business as usual program. The researchers 
are interested in determining the impact of the intervention 
on both students and teachers via outcome measures includ-
ing student science achievement and teacher classroom 
practice. Due to time and budget constraints, the researchers 
are limited to include only three science teachers per school 
and 25 students per teacher. The researchers are only able to 
collect pretest data for these teachers and students. Based on 
our results, at least 55 schools are necessary to power the 
study to detect benchmarks for teacher outcomes but a 
smaller number of schools (40) would be sufficient to detect 
the benchmarks for student achievement. With 55 schools, 
this study may be overpowered or may have more schools 
than necessary to detect the causal effect for students. 
However, if the study only considers student achievement 
and sets the target sample size to 40 schools, then the study 
may be underpowered, or may not have enough schools to 
detect the effect for teachers’ practice. In the case of an 
underpowered study, it may be safe to oversample schools or 
individuals to ensure that plausible effects for both teachers 
and students are detectable with the caveat that oversam-
pling would increase the cost of collecting data on the addi-
tional sample units.

Aligning Power Analysis to Study Context

Studies may minimize overpowering and underpowering 
by determining the most appropriate ICCs and R2 values 
given the study context. In this article, we consider a wide 
range of ICCs for teacher outcomes from .05 to .29. This 
wide range of teacher ICCs suggests that a teacher outcome 
may vary slightly between schools within a certain study 
context but it may have much larger between-school varia-
tion in another context. Thus, selecting an ICC that best 
describes the expected outcome variation in a study is 
imperative to increase the precision of the power calcula-
tions and avoid over- or undersampling.

The results of our study provide some potential guidance 
for researchers to determine the sample sizes necessary to 

power a study that seeks to determine both teacher and stu-
dent effects. However, when designing a study, it is critical 
to find design parameters that are most relevant for a particu-
lar context. For example, a researcher who is interested in 
designing an impact study for a PD intervention focused on 
elementary English learners may refer to the study con-
ducted by Lee and colleagues for the P-SELL (Promoting 
Science Among English Language Learners) intervention 
that examines the effect of the intervention on elementary 
science teachers’ instructional practices (Lee et al., 2016). A 
researcher may refer to ICCs (.09–.13) and effect sizes 
(0.41–0.52) associated with the instructional practice out-
come found in the P-SELL study when carrying out the 
power analysis.

Application for Planning Other Types of CRTs

As noted above, we worked with outcomes of science 
teachers and student achievement in science, which is facili-
tated by the availability of design parameter values needed 
for our analyses for these outcomes. It is important to note 
that although we focus on science outcomes, lessons from 
this study can provide useful guidance for the planning of 
CRTs that aim to improve student and teacher outcomes in 
mathematics and reading. This is possible because the design 
parameters for student and teacher outcomes in science are 
similar to those for math and reading. For instance, Hedges 
and Hedberg (2007) found similar ranges of ICCs and R2 
values for student math and reading achievement using 
national longitudinal data (see Table 2). The benchmark 
effect sizes of 0.20 to 0.30 also apply to math and reading 
interventions (Hill et al., 2008). This suggests the number of 
schools needed to sufficiently power CRTs that aims to 
detect meaningful effects for student science achievement 
also applies to the planning of CRTs with math and reading 
achievement outcomes. Table 2 outlines the range of ICCs 
and R2 values determined Hedges and Hedberg (2007).

Table 2 also outlines the ranges of ICC and R2 values for 
teacher demographic covariates for teacher CK outcome in 
math and reading, retrieved from Kelcey and Phelps (2013). 
The ICCs for math and reading teacher CK outcomes are 
similar to those for science teacher CK, suggesting that the 
number of schools required to sufficiently power CRTs to 
detect meaningful effects of math or reading teacher CK is 
the same as those for science teacher CK, without the con-
sideration of covariates. However, the RL2

2 RL2
2 values asso-

ciated with teacher demographic covariates (.40–.64 for 
teacher CK in math and .51–.76 for teacher CK in reading) 
are higher than those from our study (0–.03 for teacher CK 
in science), while RL1

2 RL1
2  values are similar across teacher 

CK outcomes in reading, math, and science. The higher RL2
2

RL2
2  values suggest that fewer schools may be required to 

effectively power a study to detect the treatment effect for 
teacher CK in math and reading.



11

It is important to note that the application of our results 
for planning CRTs with student and teacher outcomes in 
math and reading is limited by the empirical work available 
on teacher outcomes. Currently, we are not aware of any 
studies that present design parameters for teacher instruc-
tional practice outcomes in math and reading. R2 values for 
the pretest covariate for teacher CK outcomes in math and 
reading are also unavailable. Furthermore, systematic syn-
thesis of effect sizes for interventions that aim to improve 
teacher outcomes in math and reading, which is important 
for contextualizing power estimates, are rare in the litera-
ture. This speaks to the need for more empirical analysis of 
design parameters not only to improve the precision of 
design for CRTs with teacher outcomes but also to better 
inform the planning of CRTs with both student and teacher 
outcomes.
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