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Error Variance in Common Population Linking Bridge Studies

Paul A. Jewsbury

Educational Testing Service, Princeton, NJ

When an assessment undergoes changes to the administration or instrument, bridge studies are typically used to try to ensure
comparability of scores before and after the change. Among the most common and powerful is the common population linking
design, with the use of a linear transformation to link scores to the metric of the original assessment. In the common population
linking design, randomly equivalent samples receive the new and previous administration or instrument. However, conventional
procedures to estimate error variances are not appropriate for scores linked in a bridge study, because the procedures neglect variance
due to linking. A convenient approach is to estimate a variance component associated with the linking to add to the conventionally
estimated error variance. Equations for the variance components in this approach are derived, and the approximations inherently
made in this approach are shown and discussed. Exact error variances of linked scores, accounting for both conventional sources of
variance (e.g., sampling) and linking variance together, are derived and discussed. The consequences of how linking changes how
certain errors are related is considered mathematically. Specifically, the impacts of linking on the error variance for the comparison
of two linked estimates (e.g., comparing the mean score of boys to the mean score of girls, after linking), for the comparison of scores
across the two samples (e.g., comparing the mean score of boys in the new administration or instrument to the mean score of boys
in the old administration or instrument), and for aggregating scores across the two samples (e.g., the mean score of boys across both
administrations or instruments) are derived and discussed. Finally, general methods to account for error variance in bridge studies by
simultaneously accounting for both conventional and linking sources of error are recommended.

Keywords Bridge study; linking; error variance; standard error; variance; common population
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Bridge studies are used to link scores from a new administration or measurement instrument to scores from a previous
administration or measurement instrument, with the aim of ensuring the comparability of scores between the new and
previous administrations or instruments (Dorans, Pommerich, & Holland, 2007). Common uses of bridge studies include
addressing changes to test content (J. Liu & Walker, 2007) and addressing changes to the mode of administration, such as
paper based to digitally based administration (Eignor, 2007). If standard error variance estimation procedures are applied
to scores in a bridge study, variance due to linking will be neglected, and the estimated error variances will not be accurate.
The issue of error variance estimation in bridge studies is considered in this research report.

The common population or randomly equivalent group design involves a target sample of test takers receiving the old
administration or instrument and a source sample of test testers receiving the new administration or instrument (Kolen
& Brennan, 2014). Both samples are assumed to be drawn from a common population.

A transformation is applied to the scores from the source sample to provide scores from the new administration or
instrument in the same metric as the previous administration or instrument. The original metric of the source sample
scores is defined here as the original metric, and the metric of the target sample scores is defined as the target metric.
Provided that criteria such as construct similarity are satisfied (Dorans et al., 2007), the transformation links the two
administrations or instruments and allows scores between the two to be compared in a common metric (the target metric).

The transformation may take different forms, but among the most common is the linear transformation (Kolen &
Brennan, 2014). When a linear transformation is used, the score for any given test taker i in the original metric, θi, is
assumed to be linearly related to the score for the same test taker in the target metric, Yi. Specifically,

σ−1
Y
(

Yi − μY
)
= σ−1

θ
(
θi − μθ

)
, (1)

where μY is the population mean of the source sample scores in the original metric, σY is the population stan-
dard deviation of the source sample scores in the original metric, μθ is the population mean of the source sample
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scores in the target metric, and σθ is the population standard deviation of the source sample scores in the target
metric.

In a common population design, both target and source samples are assumed to be drawn from the same population
and therefore to have the same population mean and standard deviation. Specifically,

μY = μX (2)

σY = σX , (3)

where μX is the population mean of the target sample scores and σX is the population standard deviation of the target sam-
ple scores. X denotes scores from the target sample, which are already in the target metric. This equivalence is important,
because it means that we have estimates of two population values for the source sample scores in the target metric.

Rearranging Equation 1 and substituting Equations 2 and 3 gives

Yi = aθi + b, (4)

where the linking coefficients, a and b, are
a = σXσ−1

θ (5)

b = μX − aμθ. (6)

In practice, the following estimators are used:
Ŷi = â θ̂i + b̂, (7)

â = σ̂Xσ̂−1
θ , (8)

b̂ = μ̂X − â μ̂θ, (9)

where θ̂i, μ̂θ, σ̂θ, μ̂X , and σ̂X are estimators of θi, μθ, σθ, μX , and σX , respectively.
For example, linear transformations with the common population design have been used routinely in the National

Assessment of Educational Progress (NAEP; Yamamoto & Mazzeo, 1992). Such bridge study designs were used when
the item sampling procedure was revised in the 1988 NAEP assessments (Johnson & Zwick, 1990), when the designs of
the 2004 long-term trend assessments were updated (Perie, Moran, & Lutkus, 2005), when the assessment framework
was updated for the 2009 reading assessment (National Center for Education Statistics, 2009), and when the reading and
mathematics assessments were transitioned from paper-based to digitally based (or computer-based) assessment in 2017
(Jewsbury, Finnegan, Xi, Jia, & Rust, 2019).

For the 2017 NAEP reading and mathematics assessments, the new assessment was digitally based, whereas the pre-
vious assessment was paper based. The source sample received the digitally based assessment, and the official reported
scores were the digitally based results after the scores were transformed to the target metric: the previous, paper-based
metric of prior NAEP assessments.

In the 2017 NAEP assessments, the variances of estimators were obtained by decomposing the variance into two vari-
ance components (Mazzeo, Donoghue, Liu, & Xu, 2018). First, conventional sources of variance, such as sampling, were
estimated with standard procedures applied to the scores posttransformation (Ŷ). In this report, this variance component
is denoted as the prelinking variance component, because it is the variance of the scores due to all sources of variance in
the scores pretransformation. Second, the additional source of variance due to linking, or more specifically, the variance
of the scores due to variance of â and b̂ were estimated with a Monte Carlo-based estimator. Assuming that the covariance
between the two components is zero, they were summed to obtain the total variance of the estimator.

In this report, I first describe the assumptions of the variance component decomposition approach, derive exact and
approximate equations for the variance components, and discuss the importance of accounting for the covariance between
the two components. Second, I derive the exact variance of estimators without decomposing the variance into components.
Third, I explore how the transformation results have subtle but important consequences for comparing estimates post-
transformation to other estimates from the same assessment or other assessments. Finally, I describe a method to estimate
uncertainty of estimates that accounts for both sources of variance simultaneously, avoiding approximations inherent in
the variance component decomposition approach, and which can be used to properly compare posttransformed estimates
to other estimates with valid error variance estimates.
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General Notes

The target and source samples may or may not be sampled independently. For greatest generalizability, independence
of the target and source samples is not assumed throughout the present document. For independent target and source
samples, the equations may be simplified by setting covariances between target sample estimators and pretransformation
source sample estimators to zero. Relatedly, the distribution of the scores may or may not be normal. With normally
distributed scores, estimators of the mean and the standard deviation are independent (e.g., Hogg, McKean, & Craig,
2013). Again, for greatest generalizability, normally distributed scores are not assumed throughout the present document.
For normally distributed scores, the equations may be simplified by setting covariances of mean and standard deviation
estimators from the same sample to zero.

Except for the Combining the Target and Source Samples section, all proofs in the present report begin with an equation
for the posttransformation estimator as a function of the pretransformation estimator. All posttransformation estimators
that have the same form as a function of their pretransformation estimator may have their posttransformation variance
characterized with the same equations in these proofs, because no further properties are assumed.

Many estimators of interest have one of two forms as a function of the pretransformed estimator, which defines type
AB and type A estimators as follows.

Definition 1. A type AB estimator is a posttransformation estimator, denoted as ŶAB, that depends on the pretransfor-
mation estimator, denoted as θ̂AB, by

ŶAB = âθ̂AB + b̂. (10)

Type AB estimators include individual scores, sample means, and sample percentiles, as proven in the appendix. As
the name implies, the variances of both â and b̂ contribute to the variance of type AB estimators.

Definition 2. A type A estimator is a posttransformation estimator, denoted as ŶA, that depends on the pretransformation
estimator, denoted as θ̂A, by

ŶA = âθ̂A. (11)

Type A estimators include sample standard deviations, differences between type A estimates, and differences between
type AB estimates, as proven in the appendix. As the name implies, the variance of â but not the variance of b̂ contributes
to the variance of type A estimators.

Variance Component Decomposition Approximation

Previous authors (e.g., Mazzeo et al., 2018) considered an approximation of Ŷ as a sum of (co)variance components.
This approximation is convenient and intuitive and, although effective for the case considered by the authors, may not
be appropriate for all estimators and all bridge study designs. The assumptions of this approach are made explicit and
explored herein. Consider any estimator that is a function of the data (i.e., the individual score estimators),

Ŷ
(

Ŷ1, … , ŶI

)
, (12)

where I is the number of students. Following Equation 7, we may also write Ŷ as a function of the pretransformed indi-
vidual score estimators and the linking coefficient estimators:

Ŷ
(

â, b̂, θ̂1, … , θ̂I

)
. (13)

The variance decomposition approach assumes first that

Ŷ
(

â, b̂, θ̂1, … , θ̂I

)
= Ŷ

(
â, b̂, θ̂

)
(14)

and second that
Ŷ
(

â, b̂, θ̂
)
= Ŷlink

(
â, b̂

)
+ Ŷprelink

(
θ̂
)
, (15)

where the linking component, Ŷlink, denotes terms of Ŷ involving the estimators of the linking coefficients, â and b̂, and
the prelinking component, Ŷprelink, denotes terms of Ŷ involving the pretransformation estimator, θ̂.
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These assumptions lead to the decomposition of the variance of Ŷ :

var
(

Ŷ
)
= var

(
Ŷlink

)
+ var

(
Ŷprelink

)
+ 2covar

(
Ŷlink, Ŷprelink

)
, (16)

where the linking variance component, var
(

Ŷlink

)
, is the variance due to variance of â and b̂ and the prelinking variance

component, var
(

Ŷprelink

)
, is the variance due to variance of θ̂.

The first assumption is true for both type AB and type A estimators (see Equations 10 and 11). However, the first
assumption may not be true for other estimators, such as achievement level estimators.

The second assumption may be evaluated by using Taylor series expansion to linearize Ŷ . The Taylor series of Ŷ at[
â, b̂, θ̂

]
=
[
a, b, θ

]
is

Ŷ
(

â, b̂, θ̂
)
=

∞∑
n=0

1
n!

⎛⎜⎜⎜⎜⎝
[

â − a, b̂ − b, θ̂ − θ
]
·

⎡⎢⎢⎢⎢⎣
δ
δâ
δ
δb̂
δ
δθ̂

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

n

Ŷ (a, b, θ) , (17)

which in general does not reduce to the form of Equation 15 unless

δ2

δâδθ̂
Ŷ (a, b, θ) = δ2

δb̂δθ̂
Ŷ (a, b, θ) = 0. (18)

Equation 18 is not true for types AB and A estimators, for which the second-order partial derivatives of Ŷ with respect
to â and θ̂ are not zero (see Equations 10 and 11). Nevertheless, Mazzeo et al. (2018) found that the variance decomposition
approach was an extremely good approximation for estimators of means, which are a type AB estimator, at least for large
and independent target and source samples.

When the assumptions of the variance decomposition approach are satisfied, Equation 17 simplifies to

Ŷ
(

â, b̂, θ̂
)
= Ŷ (a, b, θ) +

∞∑
n=1

1
n!

⎛⎜⎜⎝
[

â − a, b̂ − b
]
·
⎡⎢⎢⎣

δ
δâ
δ
δb̂

⎤⎥⎥⎦
⎞⎟⎟⎠

n

Ŷ (a, b, θ) +
∞∑

n=1

1
n!

([
θ̂ − θ

] δ
δθ̂

)n

Ŷ (a, b, θ) , (19)

which is of the form of Equation 15, where

Ŷlink

(
â, b̂

)
=

∞∑
n=1

1
n!

⎛⎜⎜⎝
[

â − a, b̂ − b
]
·
⎡⎢⎢⎣

δ
δâ
δ
δb̂

⎤⎥⎥⎦
⎞⎟⎟⎠

n

Ŷ (a, b, θ) (20)

Ŷprelink

(
θ̂
)
=

∞∑
n=1

1
n!

([
θ̂ − θ

] δ
δθ̂

)n

Ŷ (a, b, θ) + Ŷ (a, b, θ) . (21)

Equation 21 helps explain the appeal of the linking and prelinking decomposition. If the variance of Ŷ is estimated via
typical procedures used to estimate variance of scores, the variances of â and b̂ will be neglected, as the transformation
has already been applied, and an estimate of the prelinking variance component is obtained. Defining a second variance
component associated with the neglected variance of â and b̂ follows naturally and sensibly may be defined as the linking
variance component. For example, the linking variance component may be estimated with a Monte Carlo estimator (Carlin
& Louis, 1996; Mazzeo et al., 2018), and the prelinking variance component may be estimated with standard procedures
on the scores posttransformation.

The linking and prelinking components for types AB and A estimators can be obtained by inserting their defining
equations (Equations 10 and 11, respectively) into Equations 20 and 21:

ŶAB,link = âθAB + b̂ − aθAB − b, (22)

ŶAB,prelink = aθ̂AB + b, (23)

ŶA,link = âθA − aθA, (24)

ŶA,prelink = aθ̂A. (25)
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Inserting Equations 22 to 25 into Equation 16 produces intuitive expressions for the variance component decomposition
approximation:

var
(

âθ̂AB + b̂
)
≈ var

(
âθAB + b̂

)
+ var

(
aθ̂AB + b

)
+ 2covar

(
âθAB + b̂, aθ̂AB + b

)
(26)

var
(

âθ̂A

)
≈ var

(
âθA

)
+ var

(
aθ̂A

)
+ 2covar

(
âθA, aθ̂A

)
. (27)

Obtaining expressions for the linking and prelinking variances and covariances for type AB and type A estimators
follows from Equations 22 to 25 and the definition of variance:

var
(

ŶAB,link

)
= θ2var

(
â
)
+ var

(
b̂
)
+ 2θcovar

(
â, b̂

)
, (28)

var
(

ŶAB,prelink

)
= a2var

(
θ̂
)
, (29)

covar
(

ŶAB,link, ŶAB,prelink

)
= aθcovar

(
â, θ̂

)
+ acovar

(
b̂, θ̂

)
, (30)

var
(

ŶA,link

)
= θ2var

(
â
)
, (31)

var
(

ŶA,prelink

)
= a2var

(
θ̂
)
, (32)

covar
(

ŶA,link, ŶA,prelink

)
= aθcovar

(
â, θ̂

)
. (33)

The preceding expressions for the variance and covariance components are exact. However, the interpretation of these
expressions may not be straightforward. Instead of the variance of the estimators of the linking coefficients (â and b̂),
expressing the variance of the linking component in terms of the variances of the population mean and standard deviation
estimators (μ̂θ, σ̂θ, μ̂X , and σ̂X) is more familiar. Furthermore, as both the pretransformation estimator (θ̂) and the
linking coefficient estimators share a common dependency on the source sample estimators of the population mean and
standard deviation (μ̂θ and σ̂θ), expressing the variance of the prelinking component also in terms of the variance of the
population mean and standard deviation estimators helps to interpret the covariance between the two components.

To express the prelinking variance component in terms of the variance of the population mean and standard deviation
estimators, we can define the standardized score for estimands corresponding to a type AB estimator as

Z = σ−1
θ
(
θAB − μθ

)
(34)

and for estimands corresponding to a type A estimator as

R = σ−1
θ θA, (35)

with corresponding estimators

Ẑ = σ̂−1
θ

(
θ̂AB − μ̂θ

)
(36)

R̂ = σ̂−1
θ θ̂A. (37)

Inserting Equations 34 to 37 into Equations 22 to 25, and suppressing zero-variance terms to simplify, gives

ŶAB,link = σ̂Xσ̂−1
θ
(
σθZ + μθ − μ̂θ

)
+ μ̂X , (38)

ŶAB,prelink = σXσ−1
θ

(
σ̂θẐ + μ̂θ

)
, (39)

ŶA,link = σ̂Xσ̂−1
θ σθR, (40)

ŶA,prelink = σXσ−1
θ σ̂θR̂. (41)

The following approximations based on first-order Taylor series are derived for the variance and covariance compo-
nents in terms of the variances of μ̂θ, σ̂θ, μ̂X , and σ̂X . A derivation of the general Taylor series-based approximation
method that is applied in the following proofs is provided in the appendix.
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Linking Component

Theorem 1. For a type AB estimator, the linking variance component can be approximated as

varTS
(

ŶAB,link

)
= Z2 [var

(
σ̂X
)
+ (−1)2 a2var

(
σ̂θ
)
− 2acovar

(
σ̂X , σ̂θ

)]
+ Z

[
2a2covar

(
μ̂θ, σ̂θ

)
+ 2covar

(
μ̂X , σ̂X

)
− 2acovar

(
μ̂X , σ̂θ

)
− 2acovar

(
σ̂X , μ̂θ

)]
+ var

(
μ̂X
)
+ (−1)2 a2var

(
μ̂θ
)
− 2acovar

(
μ̂X , μ̂θ

)
. (42)

Proof. The variance of ŶAB,link is approximated by the variance of the first-order Taylor series of Equation 38 at[
μ̂θ, σ̂θ, μ̂X , σ̂Y

]
=
[
μθ, σθ, μX , σY

]
:

var
(

ŶAB,link

)
≈ varTS

(
ŶAB,link

)
(43)

= ∇TŶAB,link
(
μθ, σθ, μX , σX

)
· 𝚺 · ∇ŶAB,link

(
μθ, σθ, μX , σX

)
, (44)

where

∇ŶAB,link
(
μθ, σθ, μX , σX

)
=

⎡⎢⎢⎢⎢⎢⎢⎣

δ
δμ̂θ
δ

δσ̂θ
δ

δμ̂X
δ

δσ̂X

⎤⎥⎥⎥⎥⎥⎥⎦
ŶAB,link

(
μθ, σθ, μX , σX

)
(45)

= [−a −Za 1 Z]T (46)

and

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

var
(
μ̂θ
)

covar
(
μ̂θ, σ̂θ

)
covar

(
μ̂θ, μ̂X

)
covar

(
μ̂θ, σ̂X

)
covar

(
σ̂θ, μ̂θ

)
var

(
σ̂θ
)

covar
(
σ̂θ, μ̂X

)
covar

(
σ̂θ, σ̂X

)
covar

(
μ̂X , μ̂θ

)
covar

(
μ̂X , σ̂θ

)
var

(
μ̂X
)

covar
(
μ̂X , σ̂X

)
covar

(
σ̂X , μ̂θ

)
covar

(
σ̂X , σ̂θ

)
covar

(
σ̂X , μ̂X

)
var

(
σ̂X
)

⎤⎥⎥⎥⎥⎥⎦
. (47)

▪

Theorem 2. For a type A estimator, the linking variance component can be approximated as

varTS
link

(
ŶA

)
= R2 [var

(
σ̂X
)
+ (−1)2 a2var

(
σ̂θ
)
− 2acovar

(
σ̂X , σ̂θ

)]
. (48)

Proof. The variance of ŶA,link is approximated by the variance of the first-order Taylor series of Equation 40
at
[
σ̂θ, σ̂Y

]
=
[
σθ, σY

]
:

var
(

ŶA,link

)
≈ varTS

(
ŶA,link

)
(49)

= ∇TŶA,link
(
σθ, σX

)
· 𝚺 · ∇ŶA,link

(
σθ, σX

)
, (50)

where

∇ŶAB,link
(
σθ, σX

)
=
⎡⎢⎢⎣

δ
δσ̂θ
δ

δσ̂X

⎤⎥⎥⎦ ŶA,link
(
σθ, σX

)
(51)

=
[
−Za Z

]T (52)

and
𝚺 =

[
var

(
σ̂θ
)

covar
(
σ̂θ, σ̂X

)
covar

(
σ̂X , σ̂θ

)
var

(
σ̂X
) ]

. (53)
▪
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The coefficients (−1)2 are not simplified to represent that the source mean and standard deviation estimators negatively
relate to the linking component, which is important later.

For means, Ẑ can be interpreted as an estimator of the standardized score with respect to the population mean and
standard deviation estimators, or a Z-score. For standard deviations, R̂ can be interpreted analogously to Ẑ as the ratio
of the standard deviation estimator over the population standard deviation estimator. For other parameter types, such as
percentiles, the equations still apply, although the standardized score estimators, Ẑ and R̂, may not conform to the usual
interpretation associated with standardized scores. Both Ẑ and R̂ are unitless and invariant to the transformation and may
be calculated from either the pretransformed or posttransformed scores equivalently.

The a coefficients in the linking variance components (Equations 42 and 48) may be understood to ensure that all
terms are in the target metric. For example, a variance of an estimator in the original metric, such as var

(
μ̂θ
)

, has the a2

coefficient, and a covariance involving one estimator in the original metric and one estimator in the target metric, such
as covar

(
σ̂X , σ̂θ

)
, has the a coefficient.

When the a coefficients are understood to ensure that all terms are in the target metric, the Taylor series-based approxi-
mation of the linking variance components is symmetrical, where the population mean and standard deviation estimators
from both the target and source samples contribute equivalently. Note that the exact symmetry is due to the Taylor series-
based approximation of the variance of σ̂−1

θ . However, this approximation is expected to be very precise in large samples
(see Remark 1), suggesting that the exact linking variance component would be highly symmetrical.

The variances of the two mean estimators from the two samples contribute to the linking variance component of type
AB estimators equivalently and independently of the standardized score. The linking variance component of type A esti-
mators does not depend on the mean estimators and their variances. For both types AB and A estimators, the contribution
of the variance of the standard deviation estimators is proportional to Z2 (for type AB estimators) or R2 (for type A esti-
mators). The remaining terms are covariances between pairings of the mean and standard deviation estimators.

Overall, the linking variance components are quadratic functions of the standardized scores. For type A estimators, the
linking variance component is minimum, at zero, when R is zero. For type AB estimators, if the covariance terms are zero,
the linking variance component is minimum when Z is zero; however, if the covariance terms are nonzero, the linking
variance component for type AB estimators may be minimum for a nonzero standardized score.

Remark 1. First-order Taylor series expansion is not exact when higher order partial derivatives are nonzero. Notably, the
higher order derivatives of σ̂−1

θ with respect to σ̂θ are nonzero. The approximate variance of σ̂−1
θ based on the first-order

Taylor series at σ̂θ = σθ is
varTS (σ̂−1

θ
)
= σ−4

θ var
(
σ̂θ
)
. (54)

Assuming that the third and fourth moments of σ̂θ are zero, the approximate variance of σ̂−1
θ based on the second-order

Taylor series at σ̂θ = σθ is

varTS2 (σ̂−1
θ
)
= σ−4

θ var
(
σ̂θ
)
− σ−6

θ var2 (σ̂θ) (55)

= varTS (σ̂−1
θ
) [

1 − σ−2
θ var

(
σ̂θ
)]

. (56)

For large sample sizes, σ2
θ ≫ var

(
σ̂θ
)

, and the additional second-order term is very small. For example, for all subscales
for the 2017 NAEP reading and mathematics assessments, σ−2

θ var
(
σ̂θ
)
< .001 and varTS (σ−1

θ
)
≈ varTS2 (σ−1

θ
)

. Because
higher order terms are expected to be even smaller, the first-order approximation should be effective.

Prelinking Variance Component

Theorem 3. For a type AB estimator, the prelinking variance component can be approximated as

varTS
(

ŶAB,prelink

)
= Z2a2var

(
σ̂θ
)
+ Z

[
2σXacovar

(
σ̂θ, Ẑ

)
+ 2a2covar

(
σ̂θ, μ̂θ

)]
+ σ2

Xvar
(

Ẑ
)
+ a2var

(
μ̂θ
)
+ 2σXacovar

(
Ẑ, μ̂θ

)
. (57)

ETS Research Report No. RR-19-42. © 2019 Educational Testing Service 7



P. A. Jewsbury Error Variance in Common Population Linking Bridge Studies

Proof. The variance of ŶAB,prelink is approximated by the variance of the first-order Taylor series of Equation 39 at[
μ̂θ, σ̂θ, Ẑ

]
=
[
μθ, σθ,Z

]
:

var
(

ŶAB,prelink

)
≈ varTS

(
ŶAB,prelink

)
(58)

= ∇TŶAB,prelink
(
μθ, σθ,Z

)
· 𝚺 · ∇ŶAB,prelink

(
μθ, σθ,Z

)
, (59)

where

∇ŶAB,prelink
(
μθ, σθ,Z

)
=

⎡⎢⎢⎢⎢⎣
δ

δμ̂θ
δ

δσ̂θ
δ
δẐ

⎤⎥⎥⎥⎥⎦
ŶAB,prelink

(
μθ, σθ,Z

)
(60)

=
[
a Za σX

]T (61)

and

𝚺 =

⎡⎢⎢⎢⎢⎢⎣
var

(
μ̂θ
)

covar
(
μ̂θ, σ̂θ

)
covar

(
μ̂θ, Ẑ

)
covar

(
σ̂θ, μ̂θ

)
var

(
σ̂θ
)

covar
(
σ̂θ, Ẑ

)
covar

(
Ẑ, μ̂θ

)
covar

(
Ẑ, σ̂θ

)
var

(
Ẑ
)

⎤⎥⎥⎥⎥⎥⎦
. (62)

▪

Theorem 4. For a type A estimator, the prelinking variance component can be approximated as

varTS
prelink

(
ŶA

)
= σ2

Xvar
(

R̂
)
+ R2a2var

(
σ̂θ
)
+ 2RaσXcovar

(
σ̂θ, R̂

)
. (63)

Proof. The variance of ŶA,prelink is approximated by the variance of the first-order Taylor series of Equation 41 at
[
σ̂θ, R̂

]
=[

σθ,R
]
:

var
(

ŶA,prelink

)
≈ varTS

(
ŶA,prelink

)
(64)

= ∇TŶA,prelink
(
σθ,R

)
· 𝚺 · ∇ŶA,prelink

(
σθ,R

)
, (65)

where

∇ŶA,prelink
(
σθ,R

)
=
⎡⎢⎢⎣

δ
δσ̂θ
δ
δR̂

⎤⎥⎥⎦ ŶA,prelink
(
σθ,R

)
(66)

=
[
Ra σX

]T (67)

and

𝚺 =
⎡⎢⎢⎣

var
(
σ̂θ
)

covar
(
σ̂θ, R̂

)
covar

(
R̂, σ̂θ

)
var

(
R̂
) ⎤⎥⎥⎦ . (68)

▪

The preceding equations show that the prelinking variance component for type AB estimators depends on the variance
of μ̂θ and the variance of σ̂θ and that the prelinking variance component for type A estimators depends on the variance of
σ̂θ. Because both the prelinking and linking components depend on these variances, covariance between the prelinking
and linking components is expected. Notably, the prelinking component is positively dependent on μ̂θ and σ̂θ, while the
linking component is negatively dependent on the same estimators.
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Prelinking and Linking Covariance

Theorem 5. For a type AB estimator, the covariance of the linking and prelinking components can be approximated as

covarTS
link,prelink

(
ŶAB

)
= Z2 [acovar

(
σ̂X , σ̂θ

)
− a2var

(
σ̂θ
)]

+ Z
[

acovar
(
μ̂X , σ̂θ

)
+ acovar

(
σ̂X , μ̂θ

)
− 2a2covar

(
μ̂θ, σ̂θ

)
+σXcovar

(
Ẑ, σ̂X

)
− σXacovar

(
σ̂θ, Ẑ

)]
− a2var

(
μ̂θ
)
+ acovar

(
μ̂X , μ̂θ

)
− σXacovar

(
Ẑ, μ̂θ

)
+ σXcovar

(
Ẑ, μ̂X

)
. (69)

Proof. The covariance of ŶAB,link and ŶAB,prelink is approximated by the covariance of the first-order Taylor series

of Equation 38 at
[
μ̂θ, σ̂θ, μ̂X , σ̂Y

]
=
[
μθ, σθ, μX , σY

]
and the first-order Taylor series of Equation 39 at

[
μ̂θ, σ̂θ, Ẑ

]
=[

μθ, σθ,Z
]
:

covar
(

ŶAB,link, ŶAB,prelink

)
≈ covarTS

(
ŶAB,link, ŶAB,prelink

)
(70)

= ∇TŶAB,link
(
μθ, σθ, μX , σX

)
· 𝚺 · ∇ŶAB,prelink

(
μθ, σθ,Z

)
, (71)

where ∇ŶAB,link
(
μθ, σθ, μX , σX

)
is given by Equation 46 and ∇ŶAB,prelink

(
μθ, σθ,Z

)
is given by Equation 61, and where

𝚺 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

var
(
μ̂θ
)

covar
(
μ̂θ, σ̂θ

)
covar

(
μ̂θ, Ẑ

)
covar

(
σ̂θ, μ̂θ

)
var

(
σ̂θ
)

covar
(
σ̂θ, Ẑ

)
covar

(
μ̂X , μ̂θ

)
covar

(
μ̂X , σ̂θ

)
covar

(
μ̂X , Ẑ

)
covar

(
σ̂X , μ̂θ

)
covar

(
σ̂X , σ̂θ

)
covar

(
σ̂X , Ẑ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (72)

▪

Theorem 6. For a type A estimator, the covariance of the linking and prelinking components can be approximated as

covarTS
link,prelink

(
ŶA

)
= R2 [acovar

(
σ̂X , σ̂θ

)
− a2var

(
σ̂θ
)]

(73)

+ R
[
σXcovar

(
σ̂X , R̂

)
− aσXcovar

(
σ̂θ, R̂

)]
. (74)

Proof. The covariance of ŶA,link and ŶA,prelink is approximated by the covariance of the first-order Taylor series of

Equation 40 at
[
σ̂θ, σ̂Y

]
=
[
σθ, σY

]
and the first-order Taylor series of Equation 41 at

[
σ̂θ, R̂

]
=
[
σθ,R

]
:

covar
(

ŶA,link, ŶA,prelink

)
≈ covarTS

(
ŶA,link, ŶA,prelink

)
(75)

= ∇TŶA,link
(
σθ, σX

)
· 𝚺 · ∇ŶA,prelink

(
σθ,R

)
, (76)

where ∇ŶA,link
(
σθ, σX

)
is given by Equation 52 and ∇ŶA,prelink

(
σθ,R

)
is given by Equation 67, and where

𝚺 =
⎡⎢⎢⎣

var
(
σ̂θ
)

covar
(
σ̂θ, R̂

)
covar

(
σ̂X , σ̂θ

)
covar

(
σ̂X , R̂

)⎤⎥⎥⎦ . (77)
▪

Notably, the negative dependency of the linking component and the positive dependency of the prelinking component
on μ̂θ and σ̂θ result in the presence of the variance of these estimators in the covariance component with a negative sign.

Total Variance

Theorem 7. For a type AB estimator, the variance can be approximated as

var
(

ŶAB

)
≈ Z2var

(
σ̂X
)
+ σ2

Xvar
(

Ẑ
)
+ var

(
μ̂X
)

+ 2ZσXcovar
(
σ̂X , Ẑ

)
+ 2Zcovar

(
σ̂X , μ̂X

)
+ 2σXcovar

(
Ẑ, μ̂X

)
. (78)
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Proof. From Equation 16, the variance component decomposition approach takes the approximation that the variance of
a type AB estimator can be written as

var
(

ŶAB

)
≈ varlink

(
ŶAB

)
+ varprelink

(
ŶAB

)
+ covarlink,prelink

(
ŶAB

)
. (79)

Each variance component may be approximated based on first-order Taylor series,

var
(

ŶAB

)
≈ varTS

link

(
ŶAB

)
+ varTS

prelink

(
ŶAB

)
+ covarTS

link,prelink

(
ŶAB

)
. (80)

Insert Equations 42, 57, and 69 into Equation 80. ▪

Theorem 8. For a type A estimator, the total variance can be approximated as

var
(

ŶA

)
≈ σ2

Xvar
(

R̂
)
+ R2var

(
σ̂X
)
+ 2σXRcovar

(
σ̂X , R̂

)
. (81)

Proof. From Equation 16, the variance component approach takes the approximation that the variance of a type A esti-
mator can be written as

var
(

ŶA

)
≈ varlink

(
ŶA

)
+ varprelink

(
ŶA

)
+ covarlink,prelink

(
ŶA

)
. (82)

Each variance component may be approximated based on first-order Taylor series,

var
(

ŶA

)
≈ varTS

link

(
ŶA

)
+ varTS

prelink

(
ŶA

)
+ covarTS

link,prelink

(
ŶA

)
. (83)

Insert Equations 48, 63, and 74 into Equation 83. ▪

Remark 2. The mutual dependency of the linking and prelinking components on μ̂θ and σ̂θ, symmetrically but in different
directions, results in the dependency on the variances of μ̂θ and σ̂θ falling out when all variance components are combined
to obtain the total variance.

Equation 78 shows that the variance of a type AB estimator is a function of the variance of σ̂X proportional to Z2, the
variance of Ẑ with the coefficient of σ2

X to place the term in the target metric, the variance of μ̂X , and the corresponding
covariances for these terms. Equation 81 shows that the variance of a type A estimator is a function of the variance of
σ̂X proportional to R2 and the variance of R̂ with the coefficient of σ2

X to place the term in the target metric, and the
corresponding covariances for these terms.

Assuming that the linking and prelinking components are independent is very convenient in practice, because the
linking variance component can be estimated independently of the conventional variance (i.e., the prelinking component)
and simply added to the conventional variance to approximate the variance of Ŷ (Mazzeo et al., 2018). However, the
equations show the importance of estimating the covariance of the linking and prelinking components when using the
variance component decomposition approximation in practice. Assuming that the linking and prelinking covariance term
is zero has the impact of accounting for the variance of the source sample estimators of the population mean and standard
deviation twice, once in the prelinking component and once in the linking component, when in fact the dependency on
the source sample estimators should fall out (see Remark 2). The smaller the sample size of the source sample, the more
important the linking and prelinking covariance term is.

Exact Total Variance

In the previous section, I showed that the intuitive and convenient approach of decomposing the variance of an estimator
into variance components makes certain assumptions that are highly approximated by some estimator types (e.g., sample
means) but may not be approximated well by other estimator types (e.g., achievement levels). Furthermore, accounting
for the covariance between the components is important for accurate variance estimation.

Given the inherent approximation in decomposing the variance of estimators posttransformation into linking and
prelinking components, considering both sources of variance (i.e., due to variance of θ̂ and due to variances of â and b̂)
together can be beneficial. In the Variance Component Decomposition Approximation section, I derived exact expres-
sions for the components in terms of θ̂, â, and b̂ but Taylor series-based approximations for the components in terms
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of μ̂X , σ̂X , μ̂θ, σ̂θ, and Ẑ or R̂. Obtaining exact equations for the total variances of type AB and type A estimators in
terms of these variables is actually more tractable than obtaining exact equations for the variances and covariances of the
components. For this reason, the exact variances of type AB and type A estimators are shown in the following pages.

Type AB Estimators

Theorem 9. In general, the exact variance of a type AB estimator is

var
(

ŶAB

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ var

(
μ̂X
)

+ var
(

Ẑ
)

var
(
σ̂X
)
+ 2covar

(
σ̂XẐ, μ̂X

)
+ covar

(
σ̂2

X , Ẑ2
)
− covar2

(
σ̂X , Ẑ

)
− 2σXZcovar

(
σ̂X , Ẑ

)
. (84)

Proof. Starting with Equation 10 and inserting Equations 8, 9, and 36,

ŶAB = âθ̂AB + b̂ (85)

= σ̂X

(
σ̂−1
θ θ̂AB − μ̂θ

)
+ μ̂X (86)

= σ̂XẐ + μ̂X . (87)

It follows that
var

(
ŶAB

)
= var

(
σ̂XẐ + μ̂X

)
. (88)

Denote 𝔼 as the expectation of a random variable. By the definition of a variance, and simplifying,

var
(
σ̂XẐ + μ̂X

)
= 𝔼

[(
σ̂XẐ + μ̂X − 𝔼

[
σ̂XẐ + μ̂X

])2
]

(89)

= 𝔼
[(

σ̂XẐ + μ̂X

)2
]
− 𝔼2

[
σ̂XẐ + μ̂X

]
(90)

= 𝔼
[
σ̂2

XẐ2
]
− 𝔼2

[
σ̂XẐ

]
− 𝔼2 [μ̂X

]
+ 2𝔼

[
σ̂XẐμ̂X

]
+ 𝔼

[
μ̂2

X
]
− 2𝔼

[
σ̂XẐ

]
𝔼
[
μ̂X
]

(91)

= var
(
σ̂XẐ

)
+ var

(
μ̂X
)
+ 2covar

(
σ̂XẐ, μ̂X

)
. (92)

For var
(
σ̂XẐ

)
, the variance of a product of random variables may be obtained following Goodman (1960). Again, by

the definition of a variance,

var
(
σ̂XẐ

)
= 𝔼

[(
σ̂XẐ − 𝔼

[
σ̂XẐ

])2
]

(93)

= 𝔼
[
σ̂2

XẐ2
]
− 𝔼2

[
σ̂XẐ

]
. (94)

With the analogous expressions for covariance,

𝔼
[
σ̂2

XẐ2
]
= covar

(
σ̂2

X , Ẑ2
)
+ 𝔼

[
σ̂2

X
]
𝔼
[

Ẑ2
]

(95)

𝔼
[
σ̂XẐ

]
= covar

(
σ̂X , Ẑ

)
+ 𝔼

[
σ̂X
]
𝔼
[

Ẑ
]
. (96)

Similarly,

𝔼
[
σ̂2

X
]
= var

(
σ̂X
)
+ 𝔼2 [σ̂X

]
(97)

𝔼
[

Ẑ2
]
= var

(
Ẑ
)
+ 𝔼2

[
Ẑ
]
. (98)
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Inserting Equations 97 and 98 into Equation 95, and the resulting equation together with Equation 96 into Equation 94,
gives the exact variance of σ̂XẐ:

var
(
σ̂XẐ

)
= E2 [σ̂X

]
var

(
Ẑ
)
+ E2

[
Ẑ
]

var
(
σ̂X
)
+ var

(
Ẑ
)

var
(
σ̂X
)

+ covar
(
σ̂2

X , Ẑ2
)
− covar2

(
σ̂X , Ẑ

)
− 2E

[
σ̂X
]

E
[

Ẑ
]

covar
(
σ̂X , Ẑ

)
. (99)

Substituting the estimands σX and Z for the expected values of the estimators σ̂X and Ẑ,

var
(
σ̂XẐ

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ var

(
Ẑ
)

var
(
σ̂X
)

+ covar
(
σ̂2

X , Ẑ2
)
− covar2

(
σ̂X , Ẑ

)
− 2σXZcovar

(
σ̂X , Ẑ

)
, (100)

and inserting into Equation 92 gives Equation 84. ▪

Remark 3. The exact variance of a type AB estimator (Equation 84) can be compared to the first-order Taylor series-based
approximation previously obtained (Equation 78), to understand the approximations made by the Taylor series-based
approach. The exact variance has a very small term, var

(
Ẑ
)

var
(
σ̂X
)

, that is not in the Taylor series-based version, but

the term is negligible in practice (see Remark 4). Apart from that term, the covariance of Ẑ with μ̂X and σ̂X is represented
differently in the exact and approximate versions. The exact variance of a type AB estimator may be approximated to
become the previously obtained Taylor series-based approximation by ignoring the small covariance term, covar2

(
σ̂X , Ẑ

)
,

and applying first-order Taylor series-based approximation to covar
(
σ̂2

X , Ẑ2
)

and covar
(
σ̂XẐ, μ̂X

)
.

Theorem 10. Under multivariate normality of σ̂X , Ẑ, and μ̂X , the exact variance of a type AB estimator is

varMVN
(

ŶAB

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ var

(
μ̂X
)
+ 2ZσXcovar

(
σ̂X , Ẑ

)
+2Zcovar

(
σ̂X , μ̂X

)
+ 2σXcovar

(
Ẑ, μ̂X

)
+ var

(
Ẑ
)

var
(
σ̂X
)
+ covar2

(
σ̂X , Ẑ

)
. (101)

Proof. Bohrnstedt and Goldberger (1969) found that the variance of products of random variables may be simplified if the
random variables are bivariate normally distributed. If σ̂X and Ẑ are bivariate normally distributed, var

(
σ̂XẐ

)
simplifies

to

var
(
σ̂XẐ

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ 2σXZcovar

(
σ̂X , Ẑ

)
+ var

(
Ẑ
)

var
(
σ̂X
)
+ covar2

(
σ̂X , Ẑ

)
. (102)

Bohrnstedt and Goldberger (1969) also noted that the covariance with a product of random variables may be simplified
if the random variables are multivariate normally distributed. Applying their result,

covar
(
σ̂XẐ, μ̂X

)
= 𝔼

(
σ̂X
)

covar
(

Ẑ, μ̂X

)
+ 𝔼

(
Ẑ
)

covar
(
σ̂X , μ̂X

)
+𝔼

[(
σ̂X − 𝔼

[
σ̂X
]) (

Ẑ − 𝔼
[

Ẑ
]) (

μ̂X − 𝔼
[
μ̂X
])]

. (103)

If σ̂X , Ẑ, and μ̂X are multivariate normally distributed, Equation 103 becomes

covar
(
σ̂XẐ, μ̂X

)
= 𝔼

(
σ̂X
)

covar
(

Ẑ, μ̂X

)
+ 𝔼

(
Ẑ
)

covar
(
σ̂X , μ̂X

)
. (104)

Substituting the estimands σX and Z for the expected values of the estimators σ̂X and Ẑ,

covar
(
σ̂XẐ, μ̂X

)
= σXcovar

(
Ẑ, μ̂X

)
+ Zcovar

(
σ̂X , μ̂X

)
, (105)

which is equivalent to the covariance obtained from first-order Taylor series approximation. Finally, insert Equations 102
and 105 into Equation 92. ▪
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Remark 4. Equation 101 is readily compared to the first-order Taylor series-based approximation previously obtained
(Equation 78) by noting that, apart from the final two terms in Equation 101, var

(
Ẑ
)

var
(
σ̂X
)

and covar2
(
σ̂X , Ẑ

)
, the

equation is the same as approximate variance based on first-order Taylor series. For large samples, σ2
X ≫ var

(
σ̂X
)

, so
var

(
Ẑ
)

var
(
σ̂X
)

is expected to be small relative to σ2
Xvar

(
Ẑ
)

. For example, for every scale in the 2017 NAEP reading
and mathematics assessments, σ2

X was estimated to be over 10,000 times larger than the estimate of var
(
σ̂X
)

. Similarly,
for large samples, 2σXZ ≫ covar

(
σ̂X , Ẑ

)
, so covar2

(
σ̂X , Ẑ

)
is expected to be small relative to 2σXZcovar

(
σ̂X , Ẑ

)
. This

observation confirms the accuracy of the Taylor series-based approximation.

Type A Estimators

Theorem 11. In general, the exact variance of a type A estimator is

var
(

ŶA

)
= σ2

Xvar
(

R̂
)
+ R2var

(
σ̂X
)
+ var

(
R̂
)

var
(
σ̂X
)

+ covar
(
σ̂2

X , R̂2
)
− covar2

(
σ̂X , R̂

)
− 2σXRcovar

(
σ̂X , R̂

)
. (106)

Proof. Starting with Equation 11 and inserting Equations 8 and 37,

ŶA = âθ̂A + b̂ (107)

= σ̂X

(
σ̂−1
θ θ̂AB

)
(108)

= σ̂XR̂. (109)

It follows that
var

(
ŶA

)
= var

(
σ̂XR̂

)
. (110)

The proof then follows the same logic used to obtain var
(
σ̂XẐ

)
in Theorem 9. ▪

Remark 5. When the very small terms covar2
(
σ̂X , R̂

)
and var

(
R̂
)

var
(
σ̂X
)

are ignored (similar to logic in Remark 4)

and first-order Taylor series-based approximation of covar
(
σ̂2

X , R̂2
)

at σ̂X =σX and R̂ = R is used, the variance of a type
A estimator (Equation 106) becomes the first-order Taylor series approximation previously obtained (Equation 81).

Theorem 12. Under bivariate normality of σ̂X and R̂, the exact variance of a type A estimator is

varMVN
(

ŶA

)
= σ2

Xvar
(

R̂
)
+ R2var

(
σ̂X
)
+ 2σXRcovar

(
σ̂X , R̂

)
+var

(
R̂
)

var
(
σ̂X
)
+ covar2

(
σ̂X , R̂

)
. (111)

Proof. The proof follows the same logic used to obtain var
(
σ̂XẐ

)
in Theorem 10. ▪

Remark 6. Equation 111 is readily compared to the first-order Taylor series-based approximation previously obtained
(Equation 81) by noting that the terms on the first line for Equation 111 give the first-order Taylor series-based approx-
imation, while the terms on the second line do not appear in the Taylor series linearization approximation. The terms
neglected in the Taylor series-based approximations of the variance of type A estimators are the same terms that are
neglected by the first-order Taylor series-based approximation for type AB estimators, so the discussion for type AB
estimators (Remark 4) is relevant here.

Remark 7. When the target and source samples are independent, assuming multivariate normality of the estimators is
not necessary. Note that Equation 103 shows that covar

(
σ̂XẐ, μ̂X

)
= 𝔼

(
Ẑ
)

covar
(
σ̂X , μ̂X

)
when the samples are inde-

pendent. Therefore, when the samples are independent,

varind
(

ŶAB

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ var

(
μ̂X
)
+ var

(
Ẑ
)

var
(
σ̂X
)
+ 2Zcovar

(
σ̂X , μ̂X

)
(112)
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varind
(

ŶA

)
= σ2

Xvar
(

R̂
)
+ R2var

(
σ̂X
)
+ var

(
R̂
)

var
(
σ̂X
)
. (113)

Effect of Linking on the Total Variance

Two corollaries may be especially salient to understanding the effect of linking on the total variance.

Corollary 1. The variance of the estimator of the population mean from the source sample, posttransformation, is equal to
the variance of the estimator of the population mean from the target sample,

var
(
μ̂Y
)
= var

(
μ̂X
)
. (114)

Proof. Insert Z = 0 and var
(

Ẑ
)
= 0 into Equation 84. ▪

Corollary 2. The variance of the source sample population standard deviation estimator in the target metric is equal to the
variance of the target sample population standard deviation estimator:

var
(
σ̂Y
)
= var

(
σ̂X
)
. (115)

Proof. Insert R = 1 and var
(

R̂
)
= 0 into Equation 106. ▪

The results for the population mean and standard deviation estimators reflect that the transformation has the effect of
fixing the source mean and standard deviation estimates to the target mean and standard deviation estimates, respectively.

More generally, the impact of linking on the variance may be understood by comparing the variance of Ŷ accounting
for variance of â and b̂ with the variance of Ŷ if â and b̂ were known. If â and b̂ were known exactly, the total variance would
be the prelinking variance component. Therefore the difference between the total variance and the prelinking variance
component describes how the linking affects the total variance of Ŷ .

Theorem 13. For a type AB estimator, the effect of linking on the variance is approximately

varTS
(

ŶAB

)
− varTS

(
ŶAB,prelink

)
= Z2 [var

(
σ̂X
)
− a2var

(
σ̂θ
)]

+ Z
[

2covar
(
μ̂X , σ̂X

)
− 2a2covar

(
μ̂θ, σ̂θ

)
+ 2σXcovar

(
Ẑ, σ̂X

)
− 2σXacovar

(
Ẑ, σ̂θ

)]
+ var

(
μ̂X
)
− a2var

(
μ̂θ
)
+ 2σXcovar

(
Ẑ, μ̂X

)
− 2σXacovar

(
Ẑ, μ̂θ

)
. (116)

Proof. Equation 116 is obtained as the difference between the Taylor series-based approximations of the variance of ŶAB
and the variance of ŶAB,prelink (Equations 78 and 57, respectively). The Taylor series-based approximations were used to
simplify the expression by neglecting small terms, but the exact variance (Equation 84) may be used to obtain the exact
difference. ▪

Theorem 14. For a type A estimator, the effect of linking on the variance is approximately

varTS
(

ŶA

)
− varTS

(
ŶA,prelink

)
= R2 [var

(
σ̂X
)
− a2var

(
σ̂θ
)]

+R
[

2σXcovar
(
σ̂X , R̂

)
− 2aσXcovar

(
σ̂θ, R̂

)]
. (117)

Proof. Equation 117 is obtained as the difference between the Taylor series-based approximations of the variance of ŶA
and the variance of ŶA,prelink (Equations 81 and 63, respectively). The Taylor series-based approximations were used to
simplify the expression by neglecting small terms, but the exact variance (Equation 106) may be used to obtain the exact
difference. ▪

Equations 116 and 117 show that the mechanism of the linking transformation can be thought of as decomposing the
variance of the source sample estimators into (co)variance associated with the source mean, standard deviation, and Z-
score estimators and replacing the (co)variance associated with the source mean and standard deviation estimators with
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(co)variance of the corresponding estimators from the target sample. This corresponds to the transformation of the scores
(Equation 7), by which the mean and standard deviation estimates from the source sample are fixed to the corresponding
estimates from the target sample, while the source sample Z-scores remain invariant to the transformation.

In practice, the largest terms in Equations 116 and 117 may often be the variance terms. Considering only the variance
terms and neglecting the covariance terms, when the effective sample size of the target sample is smaller than the effective
sample size of the source sample, the variances of the target sample mean and standard deviation estimators are expected
to be larger than the corresponding variances for the source sample estimators, and the estimated variance of type AB and
type A estimators are expected to be larger than their prelinking variance components alone. In contrast, if the effective
sample size of the target sample is larger, the estimated variances of type AB and type A estimators are expected to be
smaller than their prelinking variance components alone.

The result that accounting for variances of the linking coefficients (â and b̂) may reduce the variance of estimators may
be initially counterintuitive. However, this can be understood from the perspective that the linking transformation both
adds and removes sources of variance (Equations 116 and 117). Alternatively, this may be understood from the fact that
the linking and prelinking covariance is expected to be negative (Equations 69 and 74, respectively).

Variances in Practice

Up until this point, I have described the variance of estimators from the source sample posttransformation, Ŷ . However,
in practice, variances of many other types of estimators are required: Scores are usually not used alone but compared
to some other score. A subtle point is that linking affects not only the variance of an estimator but also the correlation
of the estimator with other random variables. For this reason, when Ŷ is used with other random variables to calculate
some estimator, the effects of linking on the correlations between the random variables must be taken into consideration
beyond simply the correct variance of Ŷ that accounts for the linking.

Linking does not affect the correlation of estimators from the target and source samples and estimators from previous
assessments, which remain independent, so the variance equations described earlier can be used to estimate differences
between assessments. For example, the variance of the difference between performance of a particular subgroup in 2017
NAEP and 2015 NAEP can be estimated simply by assuming that the corresponding samples are independent, after cal-
culating the correct variance of the subgroup in 2017 NAEP that accounts for linking.

Linking does affect the correlation of estimators within the source sample and between the source sample and target
samples. This leads to three distinct types of aggregated estimators that are seen in practice and are affected by linking:
differences between two estimators within the source sample, differences between two estimators between the source and
target samples, and estimators obtained from combining data from the source and target samples. Examples of each of
the three from NAEP are provided in the following pages.

Estimators of Differences Based on Two Estimators From the Source Sample

Estimators of differences of two source sample parameters include estimators of differences between demographic groups,
such as the difference between the subgroup mean of boys and the subgroup mean of girls. Notably, the point estimate of
a difference of two source sample parameters may be obtained with or without treating â and b̂ as known. Effectively, the
difference may be interpreted as being either in the original or target metrics. However, while the point estimate will be
the same in both approaches, the variance will not be the same.

Theorem 15. For estimators of differences between two type AB parameters, accounting for variance of â and b̂, the variance
can be approximated as

varTS
(

ŶAB,1−2

)
= σ2

X

[
var

(
Ẑ1

)
+ var

(
Ẑ2

)
− 2covar

(
Ẑ1, Ẑ2

)]
+
(

Z1 − Z2
)2 var

(
σ̂X
)
+ 2σX

(
Z1 − Z2

) [
covar

(
σ̂X , Ẑ1

)
− covar

(
σ̂X , Ẑ2

)]
. (118)

Proof. With Equations 8, 10, and 36,

ŶAB,1−2 = ŶAB1 − ŶAB2 (119)
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= â
(
θ̂AB1 − θ̂AB2

)
(120)

= σ̂X

(
Ẑ1 − Ẑ2

)
. (121)

First-order Taylor series was used to simplify the expression by neglecting small terms, but the exact variance of the
difference estimator could be obtained with similar logic as used in the Exact Total Variance section. The variance of
ŶAB,1−2 is approximated by the variance of the first-order Taylor series of Equation 121 at

[
σ̂X , Ẑ1, Ẑ2

]
=
[
σX ,Z1,Z2

]
:

var
(

ŶAB,1−2

)
≈ varTS

(
ŶAB,1−2

)
(122)

= ∇TŶAB,1−2
(
σX ,Z1,Z2

)
· 𝚺 · ∇ŶAB,1−2

(
σX ,Z1,Z2

)
, (123)

where

∇ŶAB,1−2
(
σX ,Z1,Z2

)
=

⎡⎢⎢⎢⎢⎣
δ

δσ̂X
δ

δẐ1
δ

δẐ2

⎤⎥⎥⎥⎥⎦
ŶAB,1−2

(
σX ,Z1,Z2

)
(124)

=
[
Z1 − Z2 σX σX

]T (125)

and

𝚺 =

⎡⎢⎢⎢⎢⎢⎣
var

(
σ̂X
)

covar
(
σ̂X , Ẑ1

)
covar

(
σ̂X , Ẑ2

)
covar

(
Ẑ1, σ̂X

)
var

(
Ẑ1

)
covar

(
Ẑ1, Ẑ2

)
covar

(
Ẑ2, σ̂X

)
covar

(
Ẑ2, Ẑ1

)
var

(
Ẑ2

)
⎤⎥⎥⎥⎥⎥⎦
. (126)

▪

Theorem 16. For estimators of differences of two type AB parameters, without accounting for variance of â and b̂, the vari-
ance can be approximated as

varTS
naive

(
ŶAB,1-2

)
= σ2

X

[
var

(
Ẑ1

)
+ var

(
Ẑ2

)
− 2covar

(
Ẑ1, Ẑ2

)]
+
(

Z1 − Z2
)2 a2var

(
σ̂θ
)
+ 2σXa

(
Z1 − Z2

) [
covar

(
σ̂θ, Ẑ1

)
− covar

(
σ̂θ, Ẑ2

)]
. (127)

Proof. The proof proceeds differently than the proof for the previous theorem because â is assumed to be known. With
Equations 10 and 36,

ŶAB,1−2 = ŶAB1 − ŶAB2 (128)

= a
(
θ̂1 − θ̂2

)
(129)

= aσ̂θ
(

Ẑ1 − Ẑ2

)
. (130)

First-order Taylor series was used to simplify the expression by neglecting small terms, but the exact variance of the
difference could be obtained with similar logic as used in the Exact Total Variance section. The variance of Ŷ1 − Ŷ2, without
accounting for the variance of â and b̂, is approximated by the variance of the first-order Taylor series of Equation 130 at[
σ̂θ, Ẑ1, Ẑ2

]
=
[
σθ,Z1,Z2

]
:

var
(

ŶAB,1−2

)
≈ varTS

(
ŶAB,1−2

)
(131)

= ∇TŶAB,1−2
(
σθ,Z1,Z2

)
· 𝚺 · ∇ŶAB,1−2

(
σθ,Z1,Z2

)
, (132)

16 ETS Research Report No. RR-19-42. © 2019 Educational Testing Service



P. A. Jewsbury Error Variance in Common Population Linking Bridge Studies

where

∇ŶAB,1−2
(
σθ,Z1,Z2

)
=

⎡⎢⎢⎢⎢⎣
δ

δσ̂θ
δ

δẐ1
δ

δẐ2

⎤⎥⎥⎥⎥⎦
ŶAB,1−2

(
σθ,Z1,Z2

)
(133)

=
[
a
(

Z1 − Z2
)

σX σX
]T (134)

and

𝚺 =

⎡⎢⎢⎢⎢⎢⎣
var

(
σ̂θ
)

covar
(
σ̂θ, Ẑ1

)
covar

(
σ̂θ, Ẑ2

)
covar

(
Ẑ1, σ̂θ

)
var

(
Ẑ1

)
covar

(
Ẑ1, Ẑ2

)
covar

(
Ẑ2, σ̂θ

)
covar

(
Ẑ2, Ẑ1

)
var

(
Ẑ2

)
⎤⎥⎥⎥⎥⎥⎦
. (135)

▪

Remark 8. The proof for type A estimators proceeds in the same way as for type AB estimators. For corresponding
equations for type A estimators, simply replace each instance of Ẑ with R̂ in Equation 118 or Equation 127. The equations
for type A and AB estimators have the same form because the difference between type AB estimators and the difference
between type A estimators have the same form.

Both equations have similar forms, in which the total variance of the difference can be construed as a sum of a com-
ponent involving the variance of the standardized score difference and a component associated with the metric and of
covariances between the two components.

Most commonly in educational assessment, the score θ̂ is linearly indeterminate. This is true for item response theory-
based scores (de Ayala, 2009). In this case, the transformation can be interpreted as an arbitrary rescaling of the scores,
where â and b̂ are treated as unitless and known. The prelinking variance component can be treated as the total variance
to give a valid estimate of the difference pretransformation, in the original metric, but arbitrarily rescaled with known and
unitless linear coefficients.

However, if the difference is to be interpreted in the target metric, the variance of the linking coefficients should be
accounted for. In this case, â and b̂ are not unitless and are not known. While the variance from the Z-scores is identical
in both cases, the variance associated with the metric is different.

Although ignoring the linking variance is valid when comparing two estimates from the source sample, ignoring the
linking variance is not valid when comparing an estimate from the source sample and an estimate in the target metric,
such as an estimate from the target sample or an estimate from the prior assessment that is also in the target metric.
A comparison such as a difference between two values with different metrics is invalid. Therefore the source sample
estimates must be interpreted in the target metric to compare to the target sample estimates, and the linking variance
must be considered.

Estimating Differences Between Target and Source Parameters

To ensure that the linking transformation is appropriate for all subgroups, the differences between the results from the
two samples may be evaluated for practical significance. For example, we may wish to evaluate whether student groups
based on demographics have the same performance on the previous and new assessments (e.g., the digitally based vs.
paper-based 2017 NAEP mode study; Jewsbury et al., 2019). Notably, the linking transformation induces a dependency
between the estimators from the source sample and estimators from the target sample, because estimators from both
samples depend on the population mean and standard deviation estimators from the target sample.

Denote X̂ and Ŷ as estimators from the target and source samples of the same parameter, respectively, with subscripts
AB or A as appropriate, depending on the type of estimator. Furthermore, denote

ẐX = σ̂−1
X

(
X̂AB − μ̂X

)
, (136)

Ẑθ = σ̂−1
θ

(
θ̂AB − μ̂θ

)
, (137)
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R̂X = σ̂−1
X X̂A, (138)

R̂θ = σ̂−1
θ θ̂A. (139)

Theorem 17. For a pair of type AB estimators from the two samples, the variance of a difference estimator can be approxi-
mated as

varTS
(

ŶAB − X̂AB

)
= σ2

X

[
var

(
Ẑθ

)
+ var

(
ẐX

)
− 2covar

(
ẐX , Ẑθ

)]
+
(

Zθ − ZX
)2 var

(
σ̂X
)
+ 2σX

(
Zθ − ZX

) [
covar

(
σ̂θ, Ẑ1

)
− covar

(
σ̂X , ẐX

)]
. (140)

Proof. Using the defining equation for type AB estimators (Equation 10) and inserting the definitions of â and b̂
(Equations 5 and 6),

ŶAB − X̂AB = âθ̂AB + b̂ − X̂AB (141)

= σ̂X

(
σ̂−1
θ θ̂AB − μ̂θ

)
+ μ̂X − X̂AB. (142)

Inserting Equations 136 and 137,

ŶAB − X̂AB =
(
σ̂XẐθ + μ̂X

)
−
(
σ̂XẐX + μ̂X

)
(143)

= σ̂X

(
Ẑθ − ẐX

)
. (144)

First-order Taylor series was used to simplify the expression by neglecting small terms, but the exact variance of the
difference could be obtained with similar logic as used in the Exact Total Variance section. The variance of Ŷ1 − Ŷ2 is
approximated by the variance of the first-order Taylor series of Equation 144 at

[
σ̂X , Ẑ1, Ẑ2

]
=
[
σX ,Z1,Z2

]
. The estimator

of a difference across the two samples (Equation 144) has the same form as the estimator of a difference within the source
sample (Equation 121), so the proof in Theorem 15 applies here. ▪

Remark 9. The proof for type A estimators proceeds in the same way as for type AB estimators. For corresponding
equations for type A estimators, simply replace each instance of Ẑ with R̂ in Equation 140. The equations for type
A and AB estimators have the same form because the difference between type AB estimators and the difference between
type A estimators have the same form.

Comparing Equation 140 to Equation 118 shows that the variance of the estimator of the difference of target and source
parameters has the same form as the estimator of the difference between two source parameters. Although the former
compares estimates between the target and source samples and the latter compares estimates within the source sample,
both the target and source samples have the same mean and standard deviation estimate because of the transformation,
resulting in similar equations between and within the two samples.

Because the transformation effectively fixes the source sample mean and standard deviation estimate to the target
sample mean and standard deviation estimate, the dependency of the scores from the two samples increases. Even if
the test takers from the two samples were sampled independently, the scores from the two samples will be correlated
after transformation. Consequently, comparisons between the two samples that properly account for the transformation-
induced dependency between the two samples may have relatively high power.

Combining the Target and Source Samples

Posttransformation, scores from the target and source samples are in the same metric. Consequently, the two samples may
be combined into one combined sample after the source sample scores have been transformed.

Estimators based on the combined sample are expected to be superior to estimators based on the source sample alone,
as the combined sample will always be larger than the source sample alone. However, the transformation-induced depen-
dency between the source and target samples means that the benefit from combining the two samples is less than what
may be expected based on the dependency of the samples pretransformation, as shown in the following discussion.
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The proofs in the present section begin with the combined sample estimator as a function of the source and target
sample estimators. As the form of this relationship may not be the same for all type AB or type A estimators, all estimators
of the same type cannot be considered together in this section. Instead, only estimators of means are considered. For
example, an estimator of a mean from the combined sample can be expressed as

μ̂C =

(∑
i

wi

)−1 ∑
i

wiĈi (145)

=

(∑
i

wi

)−1 (∑
i∈𝒴

wiŶi +
∑
i∈𝒳

wiX̂i

)
, (146)

where Ĉi is a score for test taker i; X̂i is a score for test taker i, who is in the target sample; wi is the weight for test taker i,
i ∈ 𝒴 denotes that test taker i is in the source sample, and i ∈ 𝒳 denotes that test taker i is in the target sample.

Theorem 18. If the target and source samples are combined into one sample, the variance of an estimator of a mean based
on the combined sample is

var
(
μ̂C
)
= σ2

Xvar
(

ẐC

)
+ Z2

Cvar
(
σ̂X
)
+ var

(
μ̂X
)

+ var
(

ẐC

)
var

(
σ̂X
)
+ 2covar

(
σ̂XẐC, μ̂X

)
+ covar

(
σ̂2

X , Ẑ2
C

)
− covar2

(
σ̂X , ẐC

)
− 2σXZCcovar

(
σ̂X , ẐC

)
, (147)

where

ẐC =

(∑
i

wi

)−1 ∑
i

wiẐCi (148)

ZC = 𝔼
[

ẐC

]
(149)

and where

ẐCi =
⎧⎪⎨⎪⎩
σ̂−1

X

(
X̂i − μ̂X

)
, if i ∈ 𝒳 ,

σ̂−1
θ

(
θ̂i − μ̂θ

)
, if i ∈ 𝒴 .

(150)

Proof. Defining Z-scores with respect to the source or target sample moment estimators,

Ẑθi = σ̂−1
θ

(
θ̂i − μ̂θ

)
, for i ∈ 𝒴 , (151)

ẐXi = σ̂−1
X

(
X̂i − μ̂X

)
, for i ∈ 𝒳 . (152)

Substituting the definitions of â and b̂ (Equations 5 and 6, respectively) and Equation 151 into Equation 7 and rear-
ranging Equation 152 gives

Ŷi = σ̂XẐθi + μ̂X , for i ∈ 𝒴 , (153)

X̂i = σ̂XẐXi + μ̂X , for i ∈ 𝒳 . (154)

Substituting Equations 153 and 154 into Equation 146 and reexpressing in terms of Equation 150 gives

μ̂C = σ̂XẐC + μ̂X . (155)

As Equation 155 has the same form as Equation 10 for type AB estimators for the target sample alone, the exact variance
of μ̂C can be obtained by the same logic as the proof for Theorem 9. ▪

In practice, this approach can be applied by exploiting the fact that the source sample Z-scores are invariant to
linear transformation. As such, the transformation does not cause any change in the dependency between the Z-scores
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of the two samples, unlike the nonstandardized scores. If there is no dependency between the samples, there will
be no dependency between the Z-scores. If there is sample dependency, such as due to common primary sampling
units, the procedures that the testing program normally use to account for this dependency will apply to the Z-scores.
In either case, the standard procedures the testing program normally uses to estimate the variance of scores can be
used for ẐC.

For example, some NAEP studies involved sampling the same schools in the target and source samples, including the
2017 reading and mathematics transition to digitally based assessments (Jewsbury et al., 2019). Jackknife replicate weights
were constructed that account for the school-level sampling dependency, which may be appropriately applied to estimate
var

(
ẐC

)
. However, the same jackknife replicate weights would not appropriately account for nonstandardized statistics

aggregated across the two samples, as the sample dependency induced by the transformation would not be accounted for
properly.

Corollary 3. If the target and source samples are combined into one sample, the variance of the population mean estimator
from the combined sample will equal the variance of the population mean estimator from the target sample. Specifically,

var
(
μ̂C
)
= var

(
μ̂X
)
. (156)

Proof. Insert ZC = 0 and var
(

ẐC

)
= 0 into Equation 147. ▪

This result, and Equation 147 more generally, shows that there is no advantage to combining the two samples in improv-
ing the estimator of the population mean. However, the variance of the estimator of the standardized score in the combined
sample, ẐC, will have smaller variance than the estimator of the standardized score in the source sample alone, Ẑ. For
smaller subgroups, the standardized score estimator may contribute the majority of the variance of the subgroup mean
estimator. Therefore combining the two samples is expected to have the most benefit to the estimators of means based on
smaller subgroups and less benefit to the estimators of means based on very large subgroups.

Implementation With Resampling Methods

The equations presented throughout this report express variances of estimators posttransformation (usually, Ŷ) as a lin-
ear function of specific variances and covariances (e.g., var

(
σ̂X
)

), which is important for understanding the nature of
the transformation on the variances. While the equations can be used to estimate variances in practice, a more general
approach may be used to estimate the variance of any estimator posttransformation.

As I describe in the Variance Component Decomposition Approximation section, the variance decomposition of the
total variance into conventional variance and linking variance is inherently approximate. Furthermore, the sum of the
variance due to θ̂ and the variance due to â and b̂ does not closely approximate the variance for type AB and type A
estimators, unless the source sample is very large, because the covariance of the two components needs to be considered
as well. Therefore procedures that simultaneously estimate the variance due to both sources and naturally account for the
covariance of θ̂ with â and b̂ have a significant practical advantage over procedures that estimate the variance components
separately.

Resampling methods, including the bootstrap (Efron & Tibshirani, 1993) and the jackknife (Tukey, 1958), are
commonly used for a wide range of applications to estimate variances. For example, NAEP uses a type of jackknife
to estimate variances (Johnson & Rust, 1992). While applying a resampling method directly to the scores posttrans-
formation will not account for variance of â and b̂, a relatively simple modification to the resampling method to
allow for â and b̂ to vary with θ̂ in the resamples can be used to directly obtain the total variance of Ŷ from both
linking (â and b̂) and prelinking (θ̂) sources. The use of resampling to obtain the total variance may be referred to as
total resampling.

Up until the present point in the report, the target and source samples have been assumed to be dependent, with the
understanding that the covariance terms between estimates from different samples may simply be set to zero if the samples
are independent. However, for the resampling methods considered here, a slightly different approach is recommended
based on whether the two samples are independent or dependent.
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Dependent Samples

Following the definition of type AB estimators (Equation 10), the total variance of a type AB estimator is

var
(

ŶAB

)
= var

(
âθ̂AB + b̂

)
. (157)

Following the definition of type A estimators (Equation 11), the total variance of a type A estimator is

var
(

ŶA

)
= var

(
âθ̂A

)
. (158)

The total resampling method can be employed simply by using the posttransformation estimator (Equation 10 for type
AB estimators or Equation 11 for type A estimators) in each resample, and otherwise following the standard resampling
procedures to obtain the variance of the total estimator rather than just one component in the Taylor series of the estimator
(see the Variance Component Decomposition Approximation section). Critically, all estimates (i.e., â, b̂, and θ̂AB for type
AB estimators or â and θ̂A for type A estimators) must be reestimated in every resample, with â and b̂ calculated from the
mean and standard deviation estimates for that resample.

The total resampling method can be generalized for the case of any estimator, even estimators that do not conform
to the type AB or type A definitions. The transformation is applied to the individual scores with Equation 7 within each
resample, providing correct variances of individual scores. Correct variances of statistics of interest calculated via standard
procedures from the individual scores therefore follow. For example, this procedure can be used to estimate the variance
of achievement levels posttransformation, which was otherwise an intractable problem.

B. Liu and Mazzeo (2019) developed a total resampling method by extending the jackknife procedure. They applied this
procedure to NAEP data, but the procedure would also apply to other assessments involving jackknife replicate weights.

Independent Samples

While the total resampling method described for dependent samples may be applied to independent samples, there is
no need to account for dependency between the target and pretransformation source sample estimators, which are inde-
pendent. Relatedly, applying the total resampling method described above requires pairing the resamples from the two
samples to get multiple estimates of a and b, but the pairing is not meaningful.

Instead, the independency between the samples may be leveraged to obtain the variance contribution of each sample
separately, which may then be combined. Following a similar logic to decompose the variance of an estimator posttransfor-
mation into linking and prelinking variance components, the variance for the independent samples case, varind

(
Ŷ
)

, may

be approximated by a sum of variance from the target sample, varX

(
Ŷ
)

, and variance from the source sample, varθ
(

Ŷ
)

,
as

varind,RS
(

Ŷ
)
= varX

(
Ŷ
)
+ varθ

(
Ŷ
)
≈ varind

(
Ŷ
)
, (159)

where the superscript ind, RS denotes that the variance is for the independent samples resampling method. In the inde-
pendent sample case, the covariance between the source and target sample components is zero.

Specifically, varX

(
Ŷ
)

is the variance of Ŷ assuming all source statistics are known, and varθ
(

Ŷ
)

is the variance of Ŷ
assuming all target statistics are known. For type AB estimators and type A estimators, respectively, the variance compo-
nents may be expressed as

varθ
(

ŶAB

)
= var

(
σXσ̂−1

θ

(
θ̂AB − μ̂θ

)
+ μX

)
, (160)

varX

(
ŶAB

)
= var

(
σ̂Xσ−1

θ
(
θAB − μθ

)
+ μ̂X

)
, (161)

varθ
(

ŶA

)
= var

(
σXσ̂−1

θ θ̂A

)
, (162)

varX

(
ŶA

)
= var

(
σ̂Xσ−1

θ θA
)
. (163)

Theorem 19. For type AB estimators, the difference between the variance of the total resampling method for independent
samples and the exact variance when samples are independent is

varind,RS
(

ŶAB

)
− varind

(
ŶAB

)
= var

(
Ẑ
)

var
(
σ̂X
)
. (164)
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Proof. The variance from the source sample can be simplified by treating the target sample estimates as known:

varθ
(

ŶAB

)
= var

[
σXσ̂−1

θ

(
θ̂AB − μ̂θ

)
+ μX

]
(165)

= var
(
σXẐ + μX

)
(166)

= σ2
Xvar

(
Ẑ
)
. (167)

Similarly, the variance from the target sample can be simplified by treating the source sample estimates as known:

varX

(
ŶAB

)
= var

[
σ̂Xσ−1

θ
(
θAB − μθ

)
+ μ̂X

]
(168)

= var
(
σ̂XZ + μ̂X

)
(169)

= Z2var
(
σ̂X
)
+ var

(
μ̂X
)
+ 2Zcovar

(
σ̂X , μ̂X

)
. (170)

Inserting Equations 167 and 170 into Equation 159 gives

varind,RS
(

ŶAB

)
= Z2var

(
σ̂X
)
+ var

(
μ̂X
)
+ 2Zcovar

(
σ̂X , μ̂X

)
+ σ2

Xvar
(

Ẑ
)
. (171)

The exact variance of a type AB estimator when samples are independent can be obtained simply by setting any covari-
ance of a pretransformed source sample estimator and a target sample estimator to zero in Equation 84, which gives

varind
(

ŶAB

)
= σ2

Xvar
(

Ẑ
)
+ Z2var

(
σ̂X
)
+ var

(
μ̂X
)
+ 2Zcovar

(
σ̂X , μ̂X

)
+ var

(
Ẑ
)

var
(
σ̂X
)
. (172)

Finally, take the difference between Equations 171 and 172. ▪

Theorem 20. For type A estimators, the difference between the variance of the total resampling method for independent
samples and the exact variance when samples are independent is

varind,RS
(

ŶA

)
− varind

(
ŶA

)
= var

(
R̂
)

var
(
σ̂X
)
. (173)

Proof. The variance from the source sample can be simplified by treating the target sample estimates as known:

varθ
(

ŶA

)
= var

(
σXσ̂−1

θ θ̂A

)
(174)

= var
(
σXR̂

)
(175)

= σ2
Xvar

(
R̂
)
. (176)

Similarly, the variance from the target sample can be simplified by treating the source sample estimates as known:

varX

(
ŶA

)
= var

(
σ̂Xσ−1

θ θA
)

(177)

= var
(
σ̂XR

)
(178)

= R2var
(
σ̂X
)
. (179)

Inserting Equations 176 and 179 into Equation 159 gives

varind,RS
(

ŶA

)
= R2var

(
σ̂X
)
+ σ2

Xvar
(

R̂
)
. (180)

The exact variance when samples are independent can be obtained simply by setting any covariance of a pretransformed
source sample estimator and a target sample estimator to zero in Equation 106, which gives

varind
(

ŶA

)
= σ2

Xvar
(

R̂
)
+ R2var

(
σ̂X
)
+ var

(
R̂
)

var
(
σ̂X
)
. (181)

Finally, take the difference between Equations 180 and 181. ▪

22 ETS Research Report No. RR-19-42. © 2019 Educational Testing Service



P. A. Jewsbury Error Variance in Common Population Linking Bridge Studies

Equations 164 and 173 show that the total resampling method for independent samples is not exact for types AB and A
estimators. However, the term that is neglected by the total resampling method for independent samples was previously
found to be negligible for large samples (Remark 4). Therefore the difference between the total resampling method for
independent samples and the exact variance, for types AB and A estimators, is negligible for large samples.

When computational efficiency is an issue, the target and/or source sample components may be estimated with
equations or precalculated. Most notably, the target sample component for types AB and A estimators are quadratic
functions of Z and R, respectively (see Equations 167 and 176). The coefficients of the quadratic functions may be
preestimated, and the function may be used for a given estimate of Z to obtain the target sample component without use
of a resampling method in real time, with very little computation.

Differences and Combinations

Earlier theoretical results showed that the linking transformation affected not only the variance of estimators based on the
source sample scores posttransformation but the correlations of estimators from the source sample with other estimators
from both the target and source samples. This affects the variances of difference estimators within the source sample (e.g.,
the mean of boys vs. the mean of girls), variances of difference estimators between the target and source samples (e.g.,
the mean of boys who took the new assessment vs. the mean of boys who took the previous assessment), and variances
of estimators from a combined target and source sample (e.g., the mean of boys aggregated across the results from both
assessments).

To properly estimate the variance of the differences and combinations described previously, and other estimators not
described, the total resampling method can be readily generalized. The same logic applies when the total statistic is esti-
mated in every resample. For example, for the difference between two type AB or type A estimators from the source
sample,

var
(

Ŷ1 − Ŷ2

)
= var

(
â
[
θ̂1 − θ̂2

])
; (182)

for the difference between a type AB estimator from the source sample and an estimator from the target sample,

var
(

Ŷ − X̂
)
= var

(
âθ̂ + b̂ − X̂

)
. (183)

Measurement Error

Until this point, the present report has considered only one source of variance. However, many assessments have two
distinct sources of variance that can be considered separately. When the scores are not measured directly but rather esti-
mated indirectly with a model such as item response theory, variance of the estimate is present due to the latency of the
score (Mislevy, Johnson, & Muraki, 1992; von Davier, Sinharay, Oranje, & Beaton, 2006). In large-scale educational assess-
ments, this variance is defined as measurement variance, distinct from sampling variance, from the sampling design. The
measurement variance, varmeas, is typically assumed to be independent of sampling variance, varsamp (von Davier et al.,
2006); that is,

var
(

Ŷ
)
≈ varsamp

(
Ŷ
)
+ varmeas

(
Ŷ
)
. (184)

Each of the sampling and measurement variance components can be obtained with any of the procedures described
above, and then combined with Equation 184. For example, the exact variance equation for type A estimators
(Equation 106) can be used to obtain the two variance components separately:

varsamp

(
ŶA

)
= σ2

Xvarsamp

(
R̂
)
+ R2varsamp

(
σ̂X
)
+ varsamp

(
R̂
)

varsamp
(
σ̂X
)

+ covarsamp

(
σ̂2

X , R̂2
)
− covar2

samp

(
σ̂X , R̂

)
− 2σXRcovarsamp

(
σ̂X , R̂

)
(185)

and

varmeas

(
ŶA

)
= σ2

Xvarmeas

(
R̂
)
+ R2varmeas

(
σ̂X
)
+ varmeas

(
R̂
)

varmeas
(
σ̂X
)

+ covarmeas

(
σ̂2

X , R̂2
)
− covar2

meas

(
σ̂X , R̂

)
− 2σXRcovarmeas

(
σ̂X , R̂

)
. (186)
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Notably, even if the samples are dependent, the models are typically estimated independently. Consequently, applying
the dependent sample total resampling method for the sampling variance combined with the independent sample total
resampling method for the measurement variance may be most practical. Note that applying a resampling method for the
measurement variance would involve sampling from posterior distributions (see B. Liu & Mazzeo, 2019).

Discussion

In the present report, I describe the variances of linearly transformed estimators in common population linking bridge
studies. A distinction is made between type AB estimators, such as individual scores, means, and percentiles, in which
variances of both â and b̂ may impact the total variance of the estimator, and type A estimators, such as differences or gaps
and standard deviations, in which only the variance of â may impact the total variance of the estimator.

For type AB and type A estimators, both exact and approximate equations for the variance components and exact
equations for the total variance are derived and discussed. Because linking affects not only the variance of an estimator
but also the covariance of the estimator with other estimators from either the target or source samples, equations for
the variance of (a) estimated differences between source parameters, (b) estimated differences between source and target
parameters, and (c) statistics based on a combined sample obtained by aggregating results from the target and source
samples were derived and discussed. Finally, a general method to estimate variances of estimators posttransformation is
recommended.

For type AB estimators, the contribution of estimators from the two samples to the Taylor series-based equation for
the linking variance component is symmetrical, comprising the sum of the variances of the target and source population
mean estimators (for type AB estimators), the sum of the variances of the target and source population standard deviation
estimators proportional to the standardized score squared, and covariance terms (see Equations 42 and 48). The mutual
dependency of both the linking and prelinking variance components on the variances of the source sample mean and
standard deviation estimators falls out when combined with the linking–prelinking covariance, meaning that, surpris-
ingly, uncertainty of source sample estimates after transformation does not depend on uncertainty of the source sample
mean and standard deviation estimates (see Equation 84). For type A estimators, the same is true, except the terms with
the mean estimators are not present in the equations (see Equation 106).

The findings that the terms involving the source mean and standard deviation fall out in the total variance of estimators
posttransformation reflects the fact that the mean estimator from the target sample (for type AB estimators), the standard
deviation estimator from the target sample, and the standardized score from the source sample are sufficient for type AB
and type A estimators posttransformation. The derivations for the exact variance began with the posttransformed estima-
tor as functions of these variables. This parameterization is especially helpful because the only source sample estimator in
the resulting equations is invariant to the transformation, which may be estimated without concern about the effects of
the transformation.

When a source sample score is understood as a function of the source sample mean estimate, the source sample standard
deviation estimate, and a standardized score estimate (see Equations 36 and 63), the effect of linking is readily understood.
Essentially, the effect of linking is to swap the source sample mean and standard deviation estimates with the target sample
mean and standard deviation estimates while the standardized score estimate remains unchanged. Correspondingly, the
effect of linking on the variance of the individual score is the swapping of the (co)variances of the source sample mean
and standard deviation estimators with the (co)variances of the target sample mean and standard deviation estimators
(see Equations 116 and 117).

The swapping of (co)variance terms impacts not only the variance of estimators but also the covariance of estimators
with other estimators. First, the variance for a comparison of two scores from the source sample posttransformation
has the same form as the variance for a comparison of two scores from the target sample (see Equation 118). Second,
because the scores from both samples posttransformation have the same mean and standard deviation estimates, the
positive dependency between scores from the two samples is increased. With increased positive dependency, tests for
differences between source and target parameters become more powerful (see Equation 140). Third, the increased positive
dependency between the samples results in less efficiency gain from combining the two samples than may be expected
(see Equation 147).

In general, the relative difference between the (co)variances of an estimator posttransformation and an estimator pre-
transformation depends on the extent to which the variance of the estimator depends on the variances of the population
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mean and standard deviation estimators. For estimators based on small subgroups, the variance of population mean and
standard deviation estimators may be of relatively small importance. Consequently, the effect of linking may be relatively
small. In contrast, estimators based on larger subgroups may see larger relative changes when linking is properly accounted
for—or when linking is improperly accounted for.

The variance component decomposition approach into linking and prelinking variance components was evaluated.
Although the approach is very intuitive, involving the conventional variance (prelinking variance component) and an
additional source of variance associated with uncertainty of the transformation coefficients, the approach has some limi-
tations. The approach is inherently approximate but can be shown to arise from two assumptions described in the Variance
Component Decomposition Approximation section. While these assumptions appear to be highly approximated for types
AB and A estimators, such as means and standard deviations, whether the assumptions are appropriate for other types of
estimators, such as achievement level estimators, is less clear. Furthermore, the procedure may substantially overestimate
the total variance if the covariance of the two components is not taken into account, unless the source sample is very large.

The total resampling procedures are based on standard resampling procedures, such as the bootstrap (Efron & Tib-
shirani, 1993) and the jackknife (Tukey, 1958), but modified to simultaneously account for variance of both sources:
prelinking variance (i.e., variance due to Ŷ) and linking variance (i.e., variance due to â and b̂). By simultaneously account-
ing for all sources, the approximation inherent in the variance component decomposition is avoided, and the covariances
between all sources are naturally accounted for. Furthermore, the procedure is readily extended to properly account for
how the transformation impacts the correlation of the estimators with each other and other estimators.

The effect of linking on the variances should be considered in the design of the bridge study. The relative size of the
two samples is the major factor in determining whether the linking causes the variance of source sample estimators to
increase or decrease, and by how much (see Equations 116 and 117). In particular, the mean and standard deviation of
the transformed scores have the same variance as the target sample mean and standard deviation, regardless of whether
the source sample scores are used alone or combined with the target sample scores (see Equations 114, 115, and 156).
For educational assessments that track changes over time, the target sample should be large enough to obtain satisfactory
population mean and standard deviation estimates, and the source sample should be large enough to obtain satisfactory
standardized score estimates for subgroups of interest.

Accurate estimation of errors is critical for the validity of inferences made on the basis of the results. Conventional
procedures to estimate errors are not valid for scores that have been transformed in a bridge study. The results in this report
show that the effects of the linking transformation on the variance of estimators have consequences for understanding the
results, designing the bridge study, and selecting or developing a valid error variance estimation procedure.
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Appendix

AB Estimators

Lemma 1. An individual score is a type AB estimator.

Proof. Equation 7 has the same form as Equation 10. ▪

Lemma 2. A sample mean is a type AB estimator.

Proof. The posttransformation sample mean for group g comprising all test takers within the set G is defined as

μ̂g =

(∑
i∈G

wi

)−1 ∑
i∈G

wiŶi, (A1)

where wi is the weight for student i. Substituting Equation 7 into Equation A1 and simplifying gives

μ̂g =

(∑
i∈G

wi

)−1 ∑
i∈G

wi

[
âθ̂i + b̂

]
(A2)

= b̂ +

(∑
i∈G

wi

)−1 ∑
i∈G

wiâθ̂i (A3)

= b̂ + â

(∑
i∈G

wi

)−1 ∑
i∈G

wiθ̂i (A4)

= b̂ + âμ̂g′ , (A5)
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where μ̂g′ is the pretransformation subgroup mean for group g,

μ̂g′ =

(∑
i∈G

wi

)−1 ∑
i∈G

wiθ̂i. (A6)

Equation A5 has the same form as Equation 10. ▪

Lemma 3. A sample percentile can be defined as a type AB estimator.

Proof. If the estimated value at the pth percentile is defined as the mean for all test takers at the pth percentile, the pth
percentile is a group mean. The transformation does not change the rank order of scores, so a given percentile comprises
the same test takers both pre- and posttransformation. Therefore Lemma 2 for group means applies to percentiles. ▪

Type A Estimators

Lemma 4. A sample standard deviation is a type A estimator.

Proof. The posttransformation sample standard deviation for group g comprising all test takers within the set G is defined
as

σ̂g =

√√√√√(∑
i∈G

wi

)−1 ∑
i∈G

wi

(
Ŷi − μ̂Y

)2
. (A7)

Substituting Equation 7 and the definition of a mean and simplifying,

σ̂g =

√√√√√(∑
i∈G

wi

)−1 ∑
i∈G

wi

(
âθ̂i + b̂ −

∑
i

wi

(
âθ̂i + b̂

))2

(A8)

=

√√√√√(∑
i∈G

wi

)−1 ∑
i∈G

wi

(
âθ̂i −

∑
i

wiâθ̂i

)2

(A9)

= â

√√√√√(∑
i∈G

wi

)−1 ∑
i∈G

wi

(
θ̂i − μ̂θ

)2
(A10)

= â σ̂g′ , (A11)

where σ̂g′ is the pretransformation sample mean for group g,

σ̂g′ =

√√√√√(∑
i∈G

wi

)−1 ∑
i∈G

wi

(
θ̂i − μ̂θ

)2
. (A12)

Note that
∑

iwi = 1. Equation A11 has the same form as Equation 11. ▪

Lemma 5. A difference between two type AB estimators is a type A estimator.

Proof. By the definition of a type AB estimator (Equation 10), the difference between two type AB estimators posttrans-
formation is related to the corresponding pretransformed estimator as

ŶAB1 − ŶAB2 = âθ̂AB1 + b̂ −
(

âθ̂AB2 + b̂
)

(A13)

= â
(
θ̂AB1 − θ̂AB2

)
. (A14)

▪
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Lemma 6. A difference between two type A estimators is a type A estimator.

Proof. By the definition of a type A estimator (Equation 11), the difference between two type A estimators posttransfor-
mation is related to the corresponding pretransformation estimator as

ŶA1 − ŶA2 = âθ̂A1 − âθ̂A2 (A15)

= â
(
θ̂A1 − θ̂A2

)
. (A16)

▪

First-Order Taylor Series–Based Variance Approximation

First-order Taylor series-based variance approximation is a common method for approximating variances and can provide
excellent approximations for variances of linear functions (Binder, 1983). Denote �̂� =

[
ϕ̂1, … , ϕ̂N

]
as an N-length vector

of estimators and𝚽 = [ϕ1, … ,ϕN] as an N-length vector of the corresponding estimands. In the present report, the Taylor
series-based approximation to the variance of a function of estimators, f

(
�̂�
)

, is based on its Taylor series at �̂� = 𝚽.
Specifically,

f
(
�̂�
)
=

∞∑
n=0

1
n!

[(
�̂� −𝚽

)
· ∇̂𝚽

]n
f (𝚽) , (A17)

where

∇̂𝚽 = d
d�̂�

=
⎡⎢⎢⎢⎣

δ
δϕ̂1
⋮
δ

δϕ̂N

⎤⎥⎥⎥⎦ . (A18)

First-order Taylor series are based only on the zeroth- and first-order terms (n = 0, 1); that is,

f
(
�̂�
)
≈

1∑
n=0

1
n!

[(
�̂� −𝚽

)
· ∇𝚽

]n
f (𝚽) (A19)

= f (𝚽) +
(
�̂� −𝚽

)
· ∇𝚽f (𝚽) . (A20)

As first-order Taylor series are simply a sum of random variables, deriving the variance of the first-order Taylor series
is straightforward and may be much more tractable than the original function. The first-order Taylor series-based approx-
imation to the variance is the variance of the first-order Taylor series, which in general is

var
[

f
(
�̂�
)]

≈ varTS
[

f
(
�̂�
)]

(A21)

= var
[

f (𝚽) +
(
�̂� −𝚽

)
· ∇̂𝚽f (𝚽)

]
(A22)

= var
[
�̂� · ∇̂𝚽f (𝚽)

]
(A23)

= var

[ N∑
i

δf (𝚽)

δϕ̂i

ϕ̂i

]
(A24)

=
N∑
i

N∑
j

δf (𝚽)

δϕ̂i

δf (𝚽)

δϕ̂j

covar
(
ϕ̂i, ϕ̂j

)
. (A25)

Finally, in matrix notation,

var
[

f
(
�̂�
)]

≈ varTS
[

f
(
�̂�
)]

= ∇T
̂𝚽

f (𝚽) · 𝚺̂𝚽 · ∇̂𝚽f (𝚽) , (A26)

28 ETS Research Report No. RR-19-42. © 2019 Educational Testing Service



P. A. Jewsbury Error Variance in Common Population Linking Bridge Studies

where

𝚺̂𝚽 =
⎡⎢⎢⎢⎣

covar
(
ϕ̂1, ϕ̂1

)
· · · covar

(
ϕ̂1, ϕ̂N

)
⋮ ⋱ ⋮

covar
(
ϕ̂N , ϕ̂1

)
· · · covar

(
ϕ̂N , ϕ̂N

)
⎤⎥⎥⎥⎦ . (A27)

First-order Taylor series approximation may also be used to approximate the covariance of two functions. Denote �̂�i =[
ϕ̂i1, … , ϕ̂iNi

]
as an Ni-length vector of estimators and 𝚽i =

[
ϕi1, … ,ϕNi

]
as an Ni-length vector of the corresponding

estimands, for i = 1, 2. The covariance of two functions, f1

(
�̂�1

)
and f2

(
�̂�2

)
, may be approximated as the covariance of

the first-order Taylor series of each of the two functions. Specifically,

covar
[

f1

(
�̂�1

)
, f2

(
�̂�2

)]
≈ covarTS

[
f1

(
�̂�1

)
, f2

(
�̂�2

)]
(A28)

= covar
[

f1
(
𝚽1
)
+
(
�̂�1 −𝚽1

)
· ∇̂𝚽1

f
(
𝚽1
)
, f2
(
𝚽2
)
+
(
�̂�2 −𝚽2

)
· ∇̂𝚽2

f
(
𝚽2
)]

(A29)

= covar
[
�̂�1 · ∇̂𝚽1

f
(
𝚽1
)
, �̂�2 · ∇̂𝚽2

f
(
𝚽2
)]

(A30)

= covar

[ N∑
i

δf1
(
𝚽1
)

δϕ̂1i

ϕ̂1i,

N∑
i

δf2
(
𝚽2
)

δϕ̂2i

ϕ̂2i

]
(A31)

=
N∑
i

N∑
j

δf1
(
𝚽1
)

δϕ̂1i

δf2
(
𝚽2
)

δϕ̂2j

covar
(
ϕ̂1i, ϕ̂2j

)
. (A32)

Finally, in matrix notation,

covar
[

f1

(
�̂�1

)
, f2

(
�̂�2

)]
≈ covarTS

[
f1

(
�̂�1

)
, f2

(
�̂�2

)]
(A33)

= ∇T
̂𝚽1

f
(
𝚽1
)
· 𝚺̂𝚽1,

̂𝚽2
· ∇̂𝚽2

f
(
𝚽2
)
, (A34)

where

𝚺̂𝚽1,
̂𝚽2

=
⎡⎢⎢⎢⎣

covar
(
ϕ̂11, ϕ̂21

)
· · · covar

(
ϕ̂11, ϕ̂2N2

)
⋮ ⋱ ⋮

covar
(
ϕ̂1N1

, ϕ̂21

)
· · · covar

(
ϕ̂1N1

, ϕ̂2N2

)
⎤⎥⎥⎥⎦ . (A35)
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