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Distractor Analysis for Multiple-Choice Tests: An Empirical
Study With International Language Assessment Data

Shelby J. Haberman,1 Yang Liu,2 & Yi-Hsuan Lee3
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Distractor analyses are routinely conducted in educational assessments with multiple-choice items. In this research report, we focus
on three item response models for distractors: (a) the traditional nominal response (NR) model, (b) a combination of a two-parameter
logistic model for item scores and a NR model for selections of incorrect distractors, and (c) a model in which the item score satisfies a
two-parameter logistic model and distractor selection and proficiency are conditionally independent, given that an incorrect response
is selected. Model comparisons involve generalized residuals, information measures, scale scores, and reliability estimates. To illustrate
the methodology, a study of an international assessment of proficiency of nonnative speakers of a single target language used to make
high-stakes decisions compares the models under study.

Keywords Item response theory; nominal response model; model fit; test scoring
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Known for its effectiveness and economy, the multiple-choice (MC) item format has been widely used in educational
assessments across a variety of content domains (for a recent review, see Gierl, Bulut, Guo, & Zhang, 2017). MC items are
often dichotomously scored by whether the correct answer is selected; however, it is generally believed that distractors,
or incorrect response options, play an important role in determining the quality of MC items and providing diagnostic
information about test performance (e.g., Briggs, Alonzo, Schwab, & Wilson, 2006; Haladyna, 2016). Besides benefiting
the practice of item writing and test development, distractor analysis via modeling the propensity of selecting distracting
options potentially improves measurement precision (Levine & Drasgow, 1983; Thissen & Steinberg, 1984) as well as the
detection of unusual response similarity in the context of test security (e.g., Haberman & Lee, 2017; Wollack, 1997).

Distractor analysis can be performed based on either descriptive statistics or item response theory (IRT) models. Exam-
ination of marginal distributions of distractor selection and the association between distractor selection and estimated
proficiency can be used to identify nondiscriminating or nonfunctioning distractors (Levine & Drasgow, 1983; Wainer,
1989), which in turn guides item revision by content experts. Alternatively, an IRT-based distractor analysis typically
relies on fitting a polytomous IRT model to the raw response data in lieu of the dichotomously scored data. The relation-
ship among distractor selection, item score, and ability can be assessed using corresponding model parameters in place of
observed statistics. Moreover, because polytomous IRT models take into account the additional discriminative power of
incorrect options, scale scores estimated thereof are anticipated to be more precise than those obtained from conventional
dichotomous IRT models fitted to the scored data.

A number of IRT models for distractors have been developed in the literature (Bock, 1972; Briggs et al., 2006; Haberman
& Lee, 2017; Samejima, 1979; Suh & Bolt, 2010; Thissen & Steinberg, 1984; Thissen, Steinberg, & Fitzpatrick, 1989; Wilson,
1992); many of them are extensions of or modifications to Bock’s (1972) nominal response (NR) model, which assumes
a log-linear parameterization. There are also finite mixture models for heterogeneous distractor selection styles (e.g.,
Bolt, Cohen, & Wollack, 2001) and diagnostic classification models for MC items with qualitative latent traits (e.g., de
la Torre, 2009). For simplicity, we only focus on distractor models that are readily described in terms of parameters in
log-linear models; readers who are interested in other distractor models are referred to the original references. When
multiple candidate models are present, it is often desired to select the model of best fit to the observed data. In the present
work, model–data fit is gauged by the estimated log-penalty function (Gilula & Haberman, 1994, 1995, 2001; Haberman,
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2005) and generalized residuals (Haberman & Sinharay, 2013; Haberman, Sinharay, & Chon, 2013). Other assessment
procedures of model–data fit, such as quadratic-form statistics based on marginal residuals (e.g., Joe & Maydeu-Olivares,
2010; Reiser, 1996), are available but not further discussed.

Empirical evidence suggests that IRT models for raw responses to MC items lead to more reliable estimation of scale
scores, since individual preferences of certain distracting options often carry additional information about proficiency.
In an analysis of the Raven Progressive Matrices test data, Thissen (1976) observed that, compared to a two-parameter
logistic (2PL) model fitted to the dichotomously scored data, the NR model fitted to the raw responses yielded substantially
higher test information in the lower half of the latent trait scale. Similar findings were obtained by Lukhele, Thissen, and
Wainer (1994) in the context of achievement testing: When the test items are difficult, the lack of measurement precision
can be ameliorated by utilizing the additional information carried by the distractors.

The goal of the current study is to conduct an empirical distractor analysis for an international assessment of language
proficiency designed for nonnative speakers of a single target language and used in making high-stakes decisions. We are
interested in (a) identifying informative distractors, (b) selecting the best-fitting distractor model, and (c) evaluating the
added value of using distractor models for scoring. The rest of the report is organized as follows. We first introduce in the
Methods section the basic notations, distractor models, procedures to assess model–data fit, and IRT scoring. The data
set under study and a road map of our analysis are then described in the Data section. Next, the techniques developed in
the Methods section are applied to the data, and the main findings are summarized in the Results section. Implications
and future extensions of the present work are discussed in the Discussion and Conclusion section.

Methods

Notation and Setup

Consider a MC test with m items administered to n examinees. Suppose that item j, 1≤ j≤m, has rj > 1 possible responses
indexed by integers from 0 to rj − 1 and that category Kj, 0≤Kj ≤ rj − 1, is the unique answer key. Let Zij be examinee
i’s raw response to item j, 0≤Zij ≤ rj − 1, and let Yij = kj(Zij) be the dichotomous item score, Yij = 0 or 1, where, for
nonnegative integers z < rj, the mapping kj satisfies kj(z) = 1 if z = Kj and kj(z) = 0 otherwise. The set inverse of kj, that

is, j
(

y
)
=
{

z ∶ kj (z) = y
}

, gives the collection of item responses to item j that correspond to item score y: j (1) has
the single element Kj, while j (0) is the set of nonnegative integers that are less than rj and not equal to Kj. Write Zi and
Yi = k(Zi) as the response and score vectors for examinee i with elements Zij and Yij = kj(Zij), 1≤ j≤m, respectively. The
raw responses Zi, 1≤ i≤ n, are assumed to be independent and identically distributed (i.i.d.). The sample spaces of Zi and
Yi are denoted  and  , respectively.

To specify probability models for the common distribution of the item responses Zi, 1≤ i≤ n, let pZ ∶  → (0, 1) be
the response-pattern probability function such that

∑
z∈ pZ (z) = 1. IRT models for distractors considered in this report

amount to restrictive parameterizations of pZ. Let θi denote examinee i’s one-dimensional proficiency level; θi, 1≤ i≤ n,
are i.i.d. following a standard normal distribution  (0, 1) with density function ϕ. Under the conventional assumption
of local independence (e.g., McDonald, 1981), the item responses Zij, 1≤ j≤m, are conditionally independent given θi

for each i, that is, the conditional probability that Zi = z given θi = θ is pZ (z|θ) = ∏m
j=1 pZj

(
zj|θ), where zj is the element

j of z and pZj(z|θ) is the probability that Zij = z given θi = θ. It follows that the marginal probability that Zi = z is

pZ (z) = ∫
∞

−∞
pZ (z|θ) ϕ (θ) dθ. (1)

Similar notations are defined for the generating model of the dichotomously scored data Yi: The marginal probability that
Yi = y is

pY
(

y
)
= ∫

∞

−∞
pY

(
y|θ)ϕ (θ) dθ, (2)

where pY
(

y|θ) = ∏m
j=1 pYj

(
yj|θ) is the probability that Yi = y given θi = θ, yj is the element j of y, and

pYj
(

y|θ) = ∑
z∈j(y)

pZj (z|θ) (3)

is the probability of receiving item score 0≤ y≤ 1 given θi = θ.
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Models for Distractors

This report examines three polytomous IRT models for MC tests.

The Nominal Response Model

In the NR model (Bock, 1972), the conditional probability that Zij = z, 0≤ z ≤ rj − 1, given θi = θ satisfies the log-linear
model is

pZj (z|θ) = exp
(
αjzθ + τjz

)
∑rj−1

k=0 exp
(
αjkθ + τjk

) , (4)

where αjz and τjz, 0≤ z ≤ rj − 1, are category slopes and intercepts, respectively. Identification constraints are needed to
ensure the estimability of the NR model parameters; in particular, we set αjKj = τjKj = 0.

The remaining two models are based on the following hierarchical representation for the conditional probability that
Zij = z given θi = θ:

pZj (z|θ) = pYj
(

y|θ) pZ∣Yj (z|θ) , (5)

where y = kj(z). In Equation 5, the term

pYj
(

y|θ) = exp
[

y
(
αjθ + τj

)]
1 + exp

(
αjθ + τj

) (6)

specifies the probability of receiving item score Yij = y under a 2PL model, where αj and τj are the respective item slope
and intercept, and pZ|Yj(z|θ) is the conditional probability that Zij = z given Y ij = kj(z) and θi = θ. In this report, we fix
pZ|Yj(Kj|θ) = 1 for all θ and further model pZ|Yj(z|θ) for distracting options z ∈ j (0).

The Hybrid Model

One possibility is to further express pZ|Yj(z|θ) using a NR model restricted to the distractors (Suh & Bolt, 2010). More
specifically, for z ∈ j (0),

pZ∣Yj (z|θ) = exp
(
α⋆jzθ + τ⋆jz

)
∑

k∈j(0) exp
(
α⋆jkθ + τ⋆jk

) , (7)

where α⋆jz and τ⋆jz are slopes and intercepts for distractors, respectively. Combining Equations 6 and 7 yields a hybrid
model, which is hitherto referred to as the 2PLNR model.

The Two-Parameter Logistic Model With Noninformative Distributions

The other possibility is to further assume that the conditional distribution of Zij given Yij does not depend on θ, which leads
to the 2PL model with noninformative distributions (2PLND). In particular, let pZ|Yj(z|θ) = πjz > 0 for noninformative
distractors z ∈ j (0), so that

∑
z∈j(0) πjz = 1, and let pZ|Yj(Kj|θ) = πjKj = 1. Consequently, the marginal probability of

Zi = z is the product

pZ (z) = pY (k (z))
m∏

j=1
πzj

(8)

for all z ∈ . The 2PLND model is a special case of the 2PLNR model with α⋆jz = 0 for all z ∈ j (0); the conditional prob-

ability of Zij = z given Yij = 0 is then reparameterized as πjz = exp
(
τ⋆jz

)
∕
[∑

k∈j(0) exp
(
τ⋆jk

)]
. In addition, the 2PLND

model can be deduced from the NR model if we set τjKj = 0 and αjKj = 0 for the correct response Kj and τjz = logπjz −τj
and αjz = −αj for z in j (0).

ETS Research Report No. RR-19-39. © 2019 Educational Testing Service 3
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Estimation of Model Parameters

Let 𝛄 be a d-dimensional vector of model parameters defined on some parameter space Γ. To highlight the dependency of
pZ on 𝛄, we now write pZ(z; 𝛄) = pZ(z). Model examination depends on maximum likelihood (ML) estimation of 𝛄. Let

𝓁 (𝛄) = (nm)−1
n∑

i=1
log pZ

(
Zi; 𝛄

)
(9)

be the scaled sample log-likelihood and �̂� = arg max𝛄∈Γ 𝓁 (𝛄) be the ML estimator of 𝛄. Conditions for consistency and
asymptotic normality of �̂� are provided in the appendix. These conditions are based on Birch (1964) and Berk (1972). For
a discussion of applications to IRT, see Haberman (2016, Section 4.4).

Analysis of Distractor Behavior

The three models under study are compared using three types of evaluation criteria. The first type entails model-free
summary statistics that quantify distractor behaviors. The second type measures model–data fit, which includes general-
ized residuals (Haberman et al., 2013; Haberman & Sinharay, 2013) and estimates of the log-penalty function (Gilula &
Haberman, 1994, 1995, 2001; Haberman, 2005, 2013). The final type pertains to scale scores and measurement precision.

Summary Statistics

Let S (z) =
∑m

j=1 kj

(
zj

)
be the summed score of a response pattern z ∈ . Define indicator function δa(b) = 1 if a = b

and δa(b) = 0 if a≠ b, where a, b∈ℝ. For each distracting option z ∈ j (0), let σ2
zj, σ2

S, and let σzj,S be the conditional
variance of δz(Zij), the conditional variance of S(Zi), and the conditional covariance between δz(Zij) and S(Zi) given
Yij = 0, respectively. It follows that the conditional point-biserial correlation between δz(Zij) and S(Zi) given Yij = 0

is ρzj, S = σzj, S/(σzjσS). Estimating ρzj,S is straightforward when
∑n

i=1 δ0

(
Yij

)
> 0, an event with a probability that

approaches 1 as the sample size n increases. Denote by

ρ̂zj,S = σ̂zj,S∕
(
σ̂zjσ̂S

)
(10)

the sample estimate of ρzj,S, where the variance/covariance components are estimated based on the subsample {i: Yij = 0}.
Equation 10 converges to ρzj,S with probability 1 as the sample size n→∞. A large ρ̂zj,S implies that z is an informative
distractor for item j.

For each distractor option z ∈ j (0), we also denote by πzj(s) the probability of Zij = z conditional on the summed score

S(Zi) = s and an incorrect answer Yij = 0. Provided
∑n

i=1 δ0

(
Yij

)
δs
(

S
(

Zi
))

> 0, which again happens with probability
arbitrarily close to 1 as n→∞, πzj(s) can be consistently estimated by the observed proportion

π̂zj (s) =

∑n
i=1 δz

(
Zij

)
δs
(

S
(

Zi
))

∑n
i=1 δ0

(
Yij

)
δs
(

S
(

Zi
)) . (11)

A nearly constant πzj(s) in s indicates that z is a noninformative distractor. Such a situation can be identified by a plot (see
Figure 2).

Generalized Residuals

Generalized residuals based explicitly on IRT models may be used to analyze distractor behavior under all models consid-
ered in this report. For details concerning the large-sample theory of this discussion, see Haberman and Sinharay (2013).
Two types of generalized residuals are considered here.

First, consider the following residual statistic for an item j, 1≤ j≤m, and z ∈ :

ezj,S (z) = δ0

(
kj

(
zj

))
S (z)

[
δz

(
zj

)
− p̂Z∣Yj

(
zj|z)] , (12)

4 ETS Research Report No. RR-19-39. © 2019 Educational Testing Service
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where p̂Z∣Yj (z|z) is the MLE of

pZ∣Yj (z|z) = ∫
∞

−∞
pZ∣Yj (z|θ) pθ (θ|z) dθ

and pθ(θ| z) = pZ(z| θ)ϕ(θ)/pZ(z) is the conditional probability density of θi given Zi = z. If the model under consideration
holds, then the statistic

Dzj,S =

[ n∑
i=1

δ0

(
Yij

)]−1∕2 n∑
i=1

ezj,S
(

Zi
)

converges in distribution to a normal random variable with mean 0 and variance ω2
zj,S > 0 when the sample size n tends

to infinity. A consistent estimate of ω2
zj,S, denoted ω̂2

zj,S, may be based on the Louis approach (Louis, 1982; see Haberman
& Sinharay, 2013, for more details). This approach facilitates the estimation of ω2

zj,S to the problem of computation of root
mean squared error in regression analysis, and it has the computational advantage that neither the information matrix
nor the Hessian matrix need be used. Let

tzj,S = Dzj,S∕ω̂zj,S (13)

be the generalized residual based on Equation 12, which converges in distribution to  (0, 1) if the model is correctly
specified.

The second generalized residual, often referred to as residuals for item fit (Haberman et al., 2013), compares two esti-
mates of the conditional probability pZ|Yj(z|θ) for an item j, 1≤ j≤m, an item response z ∈ j (0), and a fixed value θ∈ℝ:
the “empirical” estimate

pZ∣Yj (z|θ) =
∑n

i=1 δz

(
Zij

)
p̂Z

(
Zi|θ) ∕p̂Z

(
Zi
)

∑n
i=1 δ0

(
Yij

)
p̂Z

(
Zi|θ) ∕p̂Z

(
Zi
)

and the model-based estimate p̂Z∣Yj (z|θ). Let

Δ̂zj (θ) = pZ∣Yj (z|θ) − p̂Z∣Yj (z|θ) .
If the model holds,

[∑n
i=1 δ0

(
Yij

)]1∕2
Δ̂zj (θ) converges in distribution to a normal random variable with mean 0 and

variance ω2
zj (θ) > 0. The Louis approach can be applied to obtain a consistent estimate of ω2

zj (θ), denoted ω̂2
zj (θ). When

the model is correct, the generalized residual

tzj (θ) =

[ n∑
i=1

δ0

(
Yij

)]1∕2

Δ̂zj (θ) ∕ω̂zj (θ) (14)

converges in distribution to  (0, 1) as the sample size n approaches ∞.

Information Analysis

For an arbitrary response-pattern probability function pZ, consider a log-penalty function −log pZ(z; 𝛄) if Z = z, where Z
is a random vector with the same distribution as Zi, 1≤ i≤ n (Gilula & Haberman, 1994, 1995, 2001; Savage, 1971). Then
the per-item expected log-penalty is

H (𝛄) = −m−1E log pZ (Z; 𝛄) , (15)

where E denotes the expectation with respect to the true data-generating model. Let H0 = infγ∈Γ H (𝛄). In particular, the
infimum H0 is attained if the true model is indeed pZ(·; 𝛄0) for some γ0 ∈ Γ, in which case H(γ0) is the average entropy per
item. The natural consistent estimate of H0 is Ĥ = −𝓁

(
γ̂
)

(Gilula & Haberman, 1994), so that this estimate may be used to
compare models. In samples of intermediate sizes, Akaike or Gilula–Haberman adjustment of Ĥ of order n−1 can be made
to reduce bias issues; however, these adjustments are negligible for the data studied in this report, so only Ĥ is reported.

Recall that the 2PLND model assumes that the distractor selection is unrelated to the latent variable being measured and
is nested within the other two candidate models. Thus it is expected to produce larger generalized residuals and estimated
log-penalty functions. This expectation is empirically verified in this study, with more focus on examining whether such
a difference is substantial enough to justify the use of more complex distractor models.

ETS Research Report No. RR-19-39. © 2019 Educational Testing Service 5
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Scale Scores

For each response pattern z ∈ , define the expected a posteriori (EAP) score

μT (z) = ∫
∞

−∞
T (θ) pθ (θ|z) dθ (16)

of the test characteristic curve, also known as the expected score function,

T (θ) = E [S (Z) |θ] = m∑
j=1

pYj (1|θ) . (17)

Using the EAP score of T(θ) rather than that of θ ensures that scores obtained from different distractor models are com-
pared on the same scale. To quantify the precision of the EAP score, we also compute the associated posterior variances
of T(θ):

σ2
T (z) = ∫

∞

−∞

[
T (θ) − μT (z)

]2 pθ (θ|z) dθ. (18)

As Equations 16 and 18 depend on item parameters 𝛄, plugging in �̂� yields the respective empirical estimates μ̂T (z) and
σ̂2

T (z) for μT(z) and σ2
T (z). The overall measurement precision is gauged by the following reliability measure (Haberman

& Sinharay, 2010):

ρ2 =
Var

[
μT (Z)

]
Var

[
μT (Z)

]
+ E

[
σ2

T (Z)
] . (19)

In Equation 19, the expectation and variance are taken with respect to the generating model of Z, which can be fur-
ther estimated by the corresponding sample statistics. Let μT = n−1 ∑n

i=1 μ̂T
(

Zi
)

, σ2
T = n−1 ∑n

i=1 σ̂
2
T

(
Zi
)

, and s2 (μ̂T
)
=

n−1 ∑n
i=1

[
μ̂T

(
Zi
)
− μT

]2. Then ρ2 can be estimated by

ρ̂2 =
s2 (μ̂T

)
s2
(
μ̂T

)
+ σ2

T

. (20)

One basic question to be addressed is whether IRT models incorporating distractor information improve over those ignor-
ing such information in terms of generating more reliable estimates of latent variable scores. It is worth noting that the
2PLND model yields the same scores and reliability estimate as what would be obtained from the 2PL model based solely
on dichotomized item scores. The additional computational work involved in fitting the NR and 2PLNR models is justi-
fied, if a substantial enough increase in the precision of individual scores and overall reliability is observed, if problems
with sparse data are not serious, and if issues of public policy discussed in the “Discussion and Conclusion” section can
be adequately addressed.

Data

The data were responses of n = 12,123 examinees from a single administration of a large-scale international assessment
of language proficiency in a target language that is not the native language of the examinees. Owing to confidentiality
requirements, little background information of the testing program itself can be disclosed. For simplicity, analysis was
confined to items with two item scores and four possible item responses, that is, j (0) = {0, 1, 2} and j (1) = {3} for all
j. In all, 29 listening items and 39 reading items were studied. Separate analyses were conducted for listening and reading
items. For each section, only examinees who responded to all items were considered, so that 11,383 examinees were used
for listening and 10,232 examinees were used for reading.

Results

Summary Statistics

The conditional point-biserial correlations between distractor choices and summed scores given incorrect answers, that
is, ρ̂zj,S (Equation 10), have means close to 0 and standard deviations about .15 for listening and about .14 for reading; the

6 ETS Research Report No. RR-19-39. © 2019 Educational Testing Service
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answers, that is, ρ̂zj,S. SD = standard deviation. Min = minimum. Max = maximum.
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Figure 2 Observed proportions of distractor choices given incorrect answers, that is, π̂zj (s), plotted against summed score levels. Plots
are only created for the five items (four listening items and one reading item) with ∣ ρ̂zj,S ∣> 0.3 for z = 0,1,2. Numbers for different
distracting options are shown in distinct line types and symbols.

maximum magnitudes of those correlations are .37 for listening and .33 for reading. The empirical distributions of the
conditional point-biserial correlations are displayed in Figure 1. Four listening items and one reading item have ∣ ρ̂zj,S ∣>
.3; for those items, we further calculate the observed proportions of distractor selections conditional on incorrect answers
at each summed score level, π̂zj (s), given in Equation 11 for z = 0, 1, 2 (see Figure 2).

We observe from Figure 2 that distracting options with strong positive (negative) conditional point-biserial correlations
are selected more (less) often as the proficiency level (measured by summed scores) increases. In contrast, the conditional
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Figure 3 Generalized residuals tzj,S for each distractor response z ∈ j (0) and each item j. The statistics were plotted for each pair of
the fitted models. The lower-triangular panels in the scatterplot matrix correspond to listening items, and the upper-triangular pan-
els correspond to reading items. 2PLND = two-parameter logistic model with noninformative distributions. 2PLNR = hybrid model.
NR = nominal response model.

proportions of selection for noninformative distractors, such as z = 2 for Listening Item 11, tend to be stable across a wide
range of summed score levels. In examination of graphs, note that the estimated proportions of estimates are less precise
at the extreme ends of the scale because (a) relatively fewer examinees have low scores in the test and (b) many high-score
examinees are excluded because they correctly answered the item (i.e., z = 3).

Generalized Residuals

For the three models under study, tzj,S were obtained for each distractor response z ∈ j (0) and each item j, 1≤ j≤m. To
facilitate comparisons among the three fitted models, residuals are displayed as a scatterplot matrix in Figure 3: Results
for listening items were plotted in lower-triangular panels, and those for reading items were plotted in upper-triangular
panels.

In no case were data fully compatible with the models considered; nonetheless, there are some notable differences
among the three models under study. For the listening test, the average values of |tzj,S| are 1.64 for the NR model and
1.12 for the 2PLNR model. In contrast, the 2PLND model is less successful: The average value of |tzj,S| is 6.34. A similar
pattern is observed for the reading scale: The average values of |tzj,S| are 2.44 for the NR model, 1.77 for the 2PLNR model,
and 6.63 for the 2PLND model. Owing to the large sample sizes, averages of |Dzj,S| were also calculated. For listening, the
average is .015 for the NR model, .018 for the 2PLNR model, and .254 for the 2PLND model. For reading, the averages are
.027, .017, and .332, respectively. Both the criteria of average ∣tzj, S∣ and average |Dzj,S| as well as the scatterplots (Figure 3)
suggest that the NR and 2PLNR models are comparable and fit the data appreciably better than the 2PLND model.
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Figure 4 Average absolute residuals, that is, 1
3

∑
z∈j(0)

∣ tzj (θ) ∣, as each item has three distractors, for listening items. Results for
the three fitted models are shown in different line types. 2PLND = two-parameter logistic model with noninformative distributions.
2PLNR = hybrid model. NR = nominal response model.

Residuals tzj(θ) were evaluated for each model for θ equal to h/5, where hs are integers between−10 and 10. In Figures 4
and 5, the average |tzj(θ)| values across z ∈ j (0) were plotted for each item j at various θ levels for listening and reading,
respectively.

Again, we observe that none of the three models agrees with the data perfectly, but the fit of the 2PLND model appears
to be noticeably worse than the fits of the NR and 2PLNR models. To summarize the performance of the three fitted
models, we further averaged |tzj(θ)| over distractors z ∈ j (0), θ = h/5, with integers −10≤ h≤ 10 and items 1≤ j≤m.
For listening, the averages were 1.29 for the NR model, 1.24 for the 2PLNR model, and 4.00 for the 2PLND model. For
reading, the averages were 1.75 for the NR model, 1.71 for the 2PLNR model, and 4.16 for the 2PLND model. The averages
of the ∣ Δ̂zj (θ) ∣ across z, θ, and j were also examined to check on sizes of discrepancies. For listening, the averages were
.018 for the NR model, .017 for the 2PLNR model, and .066 for the 2PLND model. For reading, averages were .025 for
the NR model, .025 for the 2PLNR model, and .072 for the 2PLND model. The 2PLND model appears to be substantially
less successful than are the NR and 2PLNR models, and the latter two models have roughly comparable performance. In
summary, the results of generalized residuals further strengthen the conclusion that both the listening and reading tests
contain items with informative distracting options.

Information Analysis

In terms of overall model–data fit, the estimated log-penalty functions also indicate the resemblance between the NR
and 2PLNR models as well as their superiority over the 2PLND model. As noted earlier, because of the large sample sizes,
different estimates of the log-penalty function are essentially the same, so only −𝓁

(
�̂�
)

is reported.
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Figure 5 Average absolute residuals, that is, 1
3

∑
z∈j(0)

|tzj (θ) |, as each item has three distractors, for reading items. Results for the
three fitted models are shown in different line types. 2PLND = two-parameter logistic model with noninformative distributions.
2PLNR = hybrid model. NR = nominal response model.

For listening, the values of −𝓁
(
�̂�
)

are .5816 for the NR model, .5815 for the 2PLNR model, and .5854 for the 2PLND
model. For reading, the values of −𝓁

(
�̂�
)

are .6449 for the NR model, .6448 for the 2PLNR model, and .6497 for the
2PLND model. The information criteria for the NR and 2PLNR models are the same up to the first three decimal places,
and they are .004–.005 smaller than those of the 2PLND model. To help make sense of the magnitude of the information
criteria, we fit the 1PL model with noninformative distributions (the 1PLND model), which further constrains αj = α for
all j in a 2PLND model. Given the range of the slope estimates in the 2PLND models, the 1PLND models are expected
to fit the data much less well. The information criteria for the 1PLND model are .5876 for the listening scale and .6523
for the reading scale—they are only about .002 larger than the values for the 2PLND model. Consequently, we infer that
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Table 1 Correlations of Expected A Posteriori Scores Among the Three Fitted Models in Four Summed Score Groups

Score groupa

Scale Correction Model 1 2 3 4

Listening No 2PLNR vs. 2PLND .886 .918 .955 .983
2PLNR vs. NR .995 .999 .999 .999
2PLND vs. NR .901 .925 .957 .982

Yes 2PLNR vs. 2PLND .979 .987 .995 .999
2PLNR vs. NR .999 1.000 1.000 1.000
2PLND vs. NR .982 .988 .995 .999

Reading No 2PLNR vs. 2PLND .891 .925 .963 .984
2PLNR vs. NR .997 .999 1.000 .999
2PLND vs. NR .905 .932 .964 .982

Yes 2PLNR vs. 2PLND .986 .991 .996 .999
2PLNR vs. NR 1.000 1.000 1.000 1.000
2PLND vs. NR .987 .992 .996 .999

Note. Correlations before and after the correction of range restriction are shown separately. 2PLND = two-parameter logistic model
with noninformative distributions. 2PLNR = hybrid model. NR = nominal response model.
a1 = lowest; 4 = highest.

a .004–.005 decrease in −𝓁
(
�̂�
)

that the NR and 2PLNR models achieve, in comparison with the 2PLND model, in fact
indicates a substantial improvement in model fit.

Scale Scores

For both the listening and reading tests, the correlations of the estimated EAP scores μ̂T
(

Zi
)

, i = 1, … , n, obtained from
the three models are always above .99. It seems to suggest that modeling informative distractors does not have a large
impact on the estimated scale scores in general. We proceed to partition the samples into four subgroups based on their
summed scores S(Zi)1 and compute correlations within each group. For listening, the four groups have respective summed
score ranges [0,11], [12,17], [18,23], and [24,29]; for reading, the four groups have respective summed score ranges [0,15],
[16,23], [24,31], and [32,39]. As the ranges of EAP scores are restricted within groups, we apply the standard correction
known as Thorndike’s (1949) Case 2. Both the corrected and uncorrected results are reported in Table 1. In lower summed
score groups, we observe weaker correlations of EAP scores between the models assuming informative distractors (NR
and 2PLNR) and the model assuming noninformative distractors (2PLND); once the correction is applied, the attenuation
remains but becomes much less salient. In the meantime, the correlation between the NR and 2PLNR models is nearly
perfect across all the score groups before and after the correction.

Next, the estimated posterior variances σ̂2
T

(
Zi
)

, i = 1, … , n, were contrasted between models assuming informative
distractors (NR and 2PLNR) and the 2PLND model. Figure 6 displays the distribution of posterior variance ratios by the
four summed score groups. An improvement in measurement precision by modeling informative distractors is reflected
by a ratio less than 1. For both pairs of models under comparison, the average posterior variance ratios across all examinees
are .94 for the listening test and .92 for the reading test, which suggests slightly improved measurement precision. Within
the lowest score groups in both tests, more than 10% reductions are observed for more than half of the examinees; the
2PLNR model tends to yield slightly smaller posterior variances compared to the NR model. In addition, the within-group
average of posterior variance ratios approaches 1 as the summed score level increases, which implies diminished utility of
modeling informative distractors.

As for the estimated reliability of the scale ρ̂2 (Equation 20), exploitation of distractors has very little gain (<.01), similar
to the other overall criteria of measurement precisions we have discussed. For listening, the reliability estimates are .878
for both the NR and 2PLNR models and .868 for the 2PLND model. For reading, the reliability estimates are .909 for the
NR and 2PLNR models and .900 for the 2PLND model.

Discussion and Conclusion

The methodology introduced in this report provides a relatively simple yet theoretically grounded framework for distrac-
tor analysis. It includes examinations of conditional correlations/proportions, generalized residuals, information criteria,
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Figure 6 Histograms of posterior variance ratios between the NR model and the 2PLND model (shaded bars) and between the 2PLNR
and the 2PLND model (unfilled bars) in four summed score groups. The counts of examinees within each summed score group are
shown at the top of each panel. Results are displayed for the (left) listening test and (right) reading test, respectively. 2PLND = two-
parameter logistic model with noninformative distributions. 2PLNR = hybrid model. NR = nominal response model.

scale scores, and reliability. In the example considered in this report, the simple 2PLND model, which assumes that distrac-
tor selections are not informative given incorrect answers, appears to fit the data worse than the NR and 2PLNR models
do in terms of generalized residuals and information criteria. On the other hand, the latter two models assume informa-
tive distractors and yield almost identical fit. In addition, the relative weakness of the 2PLND model appears to have a
small overall effect on the estimation of scale scores and reliability. The EAP scores obtained from the NR and 2PLNR
models are less correlated with those from the 2PLND models among examinees with low proficiency levels; however,
the difference becomes negligible after a correction of range restriction. In the meantime, smaller posterior variances are
also observed for the NR and 2PLNR models in the low-proficiency groups, which implies better measurement precision.
Other data may lead to different conclusions: For example, the real data example in Bock (1972) did lead to a larger effect
on reliability than what has been observed in the current work.

Although this report focuses on item scores that are 0 or 1, the methodology developed is readily applied to polyto-
mously scored items and other possible models for distractors. However, challenges arise when test items have a large
number of distracting options, as it is difficult to estimate option-specific parameters precisely when the frequencies of
a response option are low. In addition, although the analysis in the report assumes that all examinees receive the same
items, many of the methods developed can be extended to the scenarios in which examinees in the same administration
encounter different items as a result of, for example, adaptive testing and item bank rotation.

It is also questionable whether the general public would accept assigning different credits for different wrong answers,
especially when the overall impact in measurement precision is minimal. For the language assessment example, scores
in the lowest performance group may be too low to be of practical interest: In particular, they are not much above the
expected score for an examinee who randomly guesses. An additional analysis reveals that distractor selection indeed
appears more dispersed as the performance decreases, approaching a random guessing pattern. It calls for future policy
research to determine the added value of distractor analysis to score-based decision-making.

Finally, there is an appreciable cost of maintenance for a testing program if distractor models are used operationally in
place of standard IRT models. Because the distractor models involve more free parameters, more quality-control efforts
are required to assure that the parameters are precisely estimated and remain stable across various test administrations
and subpopulations of examinees.
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Note
1 Originally, five equal-width subgroups were created for each test. Owing to the small sample sizes, we merged the first two groups

so that the correlation coefficients can be estimated more precisely.
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Appendix

Regularity Conditions

Let the parameter space Γ be an open subset of ℝd. For each possible observation vector z ∈ , let pZ(z; 𝛄) be a positive
and continuously differentiable function of𝛄 such that, for each z ∈  and𝛄∈Γ, the gradients of logpZ(z; 𝛄) span the space
ℝd. If the model holds, that is, pZ(z) = pZ(z; 𝛄0) for some 𝛄0 ∈Γ, then assume that pZ(z; 𝛄) converges to pZ(z; 𝛄0) for all
z ∈  only if 𝛄 converges to 𝛄0. More generally, assume that some 𝛄0 ∈Γ exists such that H(𝛄) = −E(𝓁(𝛄))≥H0 = H(𝛄0)
and H(𝛄) only approaches H0 if 𝛄 approaches 𝛄0.
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