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Abstract: Predicting school dropout rates is an important issue for the smooth execution of an
educational system. This problem is solved by classifying students into two classes using educational
activities related statistical datasets. One of the classes must identify the students who have the
tendency to persist. The other class must identify the students who have the tendency to dropout.
This problem often encounters a phenomenon that masks out the obtained results. This study delves
into this phenomenon and provides a reliable educational data mining technique that accurately
predicts the dropout rates. In particular, the three data classifying techniques, namely, decision tree,
neural networks and Balanced Bagging, are used. The performances of these classifies are tested with
and without the use of a downsample, SMOTE and ADASYN data balancing. It is found that among
other parameters geometric mean and UAR provides reliable results while predicting the dropout
rates using Balanced Bagging classifying techniques.

Keywords: dropout rates; accuracy paradox; imbalanced learning; downsample; g-mean predict;
mlp; decision tree; Balanced Bagging; UAR; SMOTE; ADASYN

1. Introduction

Educational Data Mining (EDM) is defined as the intersection between large areas of statistics,
data mining and education [1]. EDM is becoming a source for discovering new knowledge and
patterns of student academic data to teachers and educational institutes managers, in order to support
decision-making for the new challenges of education in the digital age [2].

Among EDM’s applications, prediction of school performance and dropout has been gaining
prominence since it detects a possible dropout or failure in academic activity [3–7]. So, it is possible to
intervene and avoid low performance, or even the student evasion. It is important to emphasize that
dropout leads to wasted life-changing opportunities, less skilled labor on the market, and less chance of
social mobility [8]. To illustrate and measure the relevance of the problem, only in Brazil it is estimated
that 2 billion dollars per year are invested in 1.9 million young people aged 15 to 17 who dropout
high school before the end of the year or are not approved at the end of year [9]. This investment is
equivalent to the cost of all federal institutes and universities in the Brazil in 2017 [10].

Given this scenario, data mining and data visualization tools can help to discover the relationships
between variables available for management (usually extracted from academic control systems)
and school dropout. It can give subsidies for better decision making in order to solve the dropout
problem [11–13]. In these works, the prediction of school dropout is characterized as a classification
problem between two groups of students: (i) one with a tendency to persist, and (ii) another with
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tendency to dropout. However, it is important to consider that several databases used in studies
are imbalanced, in which there is a significantly smaller number of students who dropout when
compared to those who persist in the course [14–17]. When this problem of imbalance happens,
it is important to use techniques which mitigate this phenomenon, in order to achieve more precise
results and avoid the “Accuracy Paradox”, a phenomenon when a high value of accuracy does not
correspond to a high-quality model, because the model is skewed to the majority class and can mask
the obtained results [18].

Due to the relevance of this problem, it is present in this work a study on the performance
analysis of algorithms for school dropout prediction, with and without the use of data balancing
techniques. Decision Tree and MLP neural networks were chosen as target algorithms because they
are the most common techniques in the literature for school dropout prediction [19], and Balanced
Bagging as a new approach to comparison [20–22]. The data-balancing technique adopted is based on
the downsample [20], SMOTE [23] and ADASYN [24]. It is also investigated the existence or not of the
“Accuracy Paradox” phenomenon, and which performance metrics should be better suited to assess
classifiers, such as G-mean [25] and UAR [26,27]. For study validation, this work analyzes educational
data of students from the Integrated Courses (high school with training in professional education
through technical courses) updated in January 2018 for the Federal Institute of Rio Grande do Norte
(IFRN), Brazil.

As contribution of this work, the experimental results indicate:

1. The use of data balancing techniques can significantly increase the performance of predictive
models when data are imbalanced (in case of school dropout);

2. Precision, Recall, F1 and AUC are not adequate performance metrics for imbalanced database in
this work;

3. UAR, G-mean and confusion matrices are adequate performance metrics for imbalanced database,
avoiding the “Accuracy Paradox”.

4. Balanced Bagging outperformed MLP and DT in performance on G-mean and UAR metrics

This paper is organized as follows: In Section 2 the concept of “Accuracy Paradox”, balancing
techniques, and performance metrics are presented. In Section 3 are described the related works.
Section 4 presents the database used to validate the model, the development environment, and the
methodology adopted for the predictive model training and evaluation. In Section 5 the impact of the
use of Balanced Bagging, balancing techniques and the analysis between the metrics Precision, Recall,
AUC, F1, UAR and G-mean are described. Finally, Section 6 describes the importance of the use of
balancing techniques for predictive models, and the choice of appropriate evaluation metrics when the
data is imbalanced. It is also presented the future work.

2. Balancing Data Problem and Performance Evaluation Metrics

Imbalanced learning is the extraction of knowledge about severely skewed data, in which there
is a disproportionate relation between the minority and majority classes. When this phenomenon
occurs, the predictive model can fall into the “Accuracy Paradox”, a situation when a high value of
accuracy does not correspond to a high-quality model, and might also change how a classification
model (e.g., SVM) is trained on imbalanced data [18,28]. For example, if a given dataset includes 1%
of minority class examples and 99% of majority class examples, a naive approach to classifying each
example as a majority class will provide an accuracy of 99%. However, this result does not reflect the
fact that none of the minority examples is identified. It is essential to highlight that in many situations,
these minority examples are more important than the majority class. For instance, when problems
are related to diseases such as cancer or AIDS, in educational problems such as school dropouts,
and Automatic Speech Recognition (ASR).
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2.1. Balancing Data Techniques

There are two conventional approaches to solve the problem of imbalanced data, they are:
(i) cost-sensitive learning, which assigns a high cost to the misclassification of the minority class,
and tries to minimize the total cost; and (ii) the sampling technique, which consists of creating a dataset
that has an appropriate class distribution [20].

The two most popular sampling methods are the downsample (also known as undersample) and
upsample [20]. In downsample, instances of the majority class are randomly discarded until a more
balanced distribution is reached (Figure 1). Consider, for instance, a dataset with ten instances of the
minority class and 90 instances of the majority class. In downsample, it can try to create a balanced class
distribution by selecting 80 major class instances to remove. The resulting dataset will then consist
of 20 instances, with ten instances of the majority class (randomly selected) and ten instances of the
minority class equal to the original dataset.

In the case of the upsample technique, instances of minority classes are copied and repeated from
the original dataset until a more distribution be achieved (Figure 1). Thus, if there are two instances
of minority classes and 100 instances of the majority class, the two instances of minority class will
be copied 49 times each. The resulting dataset would consist of 200 instances: the first dominant
class of 100 instances and 100 instances of minority classes (i.e., 50 copies of each of the two minority
class instances).

Figure 1. Downsample flow (left) and Upsample flow (right).

There are works show that the downsample technique has better results on upsample when the
Decision Tree model was used [29], and with the Neural Networks model, and we highlight that the
implementation of the downsample is computationally less costly [30].

Although both downsample and upsample techniques have good results, they have deficiencies.
For instance, in the downsample, multiple instances are discarded, so instances that could produce a
better decision surface may be lost in the sampling process. Regarding upsample, copying the minority
instances may cause overfitting [28].

To avoid overfitting for upsampling, two techniques can be used: SMOTE and ADASYN.
The Synthetic Minority Over-sampling Technique (SMOTE) is the most commonly used version
of upsample. The algorithm consists when copying data uses the strategy based on the K-Nearest
Neighbors (KNN) algorithm [23]. Another upsample strategy is ADASYN. The idea is to use a
weighted distribution for different minority class examples according to their level of difficulty in
learning, where more synthetic data is generated for minority class examples that are harder to learn
compared to those minority examples that are easier to learn [24].

There are also hybrid approaches with excellent results, such as the Balanced Bagging.
This algorithm creates new subsets from the original set sampling, in order to equalize the minority
class with the same number of instances as the majority class using downsample. The next step,
for each of these subsets it’s trains a Decision Tree. At the end aggregate the predictions of the
ensemble and make the final prediction [20,22], as seen in the Figure 2.
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Figure 2. The Balanced Bagging flow.

Another approach to mitigate the problem of imbalance data is to use models that contemplate
training in this balancing BalanceCascade [31]; SVM assigning costs to instances [32]; to Naive-Bayes,
since the predictions are calibrated by the probability of the sample; the Decision Trees generated
from the Hellinger distance calculation (HDDTs) [28]; k-means balancing [33]; and Probabilistic
Sampling [34,35].

2.2. Metrics for Performance Evaluation

To evaluate the performance of classifiers, one of the most used metrics in the literature is the
confusion matrix [36], which relates the prediction result of the model and the real class. Matrix format
may change depending on which axis represents the prediction and the real class. In this paper we will
use the sklearn default [37], where Negative class represents Class 0 (dropout students), and Positive
represents Class 1 (persistents students). The matrix is divided into four quadrants:

• True Negative (TN) is the number of correctly classified negative instances located in the
1st quadrant.

• False Negative (FN) is the number of positive instances incorrectly classified as negative located
in the 2nd quadrant.

• False Positive (FP) is the number of negative instances classified incorrectly as positive located in
the 3rd quadrant.

• True Positive (TP) is the number of positive instances correctly classified as positive located in
the 4th quadrant.

For the sake of understanding, the Figure 3 presents a confusion matrix with TN equal to 49, FN
equal to 129, FP equal to 38 and TP equal to 1714.

From the confusion matrix can be generated performance evaluation metrics of the trained model.
The most used metrics are the Recall and Precision. Its definitions are presented in Table 1. For both of
them, the hit of the majority class (TP) has a great weight in the final value of the evaluation, making
minority class errors little evident in the final result.

A way to merger Precision and Recall is F1 score [36], that can be interpreted as a weighted
average of the Precision and Recall, where an F1 score reaches its best value at 1 and worst score at 0.
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Figure 3. Confusion matrix example.

Unlike Precision and Recall, a interesting metric robust to imbalance data is Unweighted Average
Recall (UAR). This is a popular metric in the area of ASR, that to consider unweighted rather than
weighted average recall. The reason is that unaffected by a change in class frequency [26,27]. As seen
in Table 1, it is calculated by average between the Recall of Class 0 and the Recall of Class 1.

Table 1. Evaluation metrics.

Metric Formula

Precision
TP

TP + FP

Recall
TP

TP + FN

UAR (Recall0 + Recall1)/2

F1 2 ∗ Precision ∗ Recall
Precision + Recall

AUC
∫ 1

x=0
TPR(FPR−1(x))dx

G-mean

√
TP

TP + FN
× TN

TN + FP

Another interesting metrics more adequate to handle with imbalanced data can be also derived
from the confusion matrix, namely, G-mean and Receiver Operating Characteristic (ROC) curve [25].
The former weighs equally the accuracy of the majority and minority class. On the other hand, the latter
summarizes the performance of the classifiers over a range of true positive rates (TPRs) and false
positive rates (FPRs) [38]. TPR and FPR are defined by Equations (1) and (2).

TPR =
TP

TP + FN
(1)

FPR =
FP

TN + FP
(2)
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When evaluating models with various error rates, the ROC curves are able to determine which
proportion of instances will be correctly classified for a given FPR. Figure 4 presents the ROC curve for
the confusion matrix shown in Figure 3.

Figure 4. ROC Curve Example.

While ROC curves provide a visual method to determine the effectiveness of a classifier, the area
under the ROC curve (AUC) has become the standard metric for evaluating imbalanced classes [39].
This is due to the fact that the calculated value is independent of the selected threshold and the
previous probabilities, generating a single number that can be used to compare the classifiers.

For the sake of understanding, the Table 2 summarizes the results described in Figure 3. It is
interesting to note that the value of the G-mean, UAR and AUC metrics differs significantly from
the good results presented by the other metrics. This is due to the imbalance of data, where the hit
of the majority class hides the high number of errors of the minority class evidenced by the FP of
the confusion matrix. By taking into account the accuracy of the minority class, only the G-mean,
UAR and AUC manages to show the high error of this class when compared to the other metrics.
Therefore, the G-mean, UAR and AUC metric are more robust to the Accuracy Paradox, where a high
performance value does not represent the quality of the model.

Table 2. Evaluation metrics.

Metrics Formula

Precision 0.978
Recall 0.930
UAR 0.746

F1 0.953
AUC 0.798

G-mean 0.723

3. Related Work

In this section, it is present the related works regarding predictive models applied to the school
dropout problem. From the literature review are highlight the variables and data mining techniques
adopted as well as the performance evaluation metrics of the models.
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The authors argue in [19] that the most used input attributes for predictive model applied to
school dropout problem are variables related to student performance, such as Cumulative Grade
Points Average (CGPA ), quizzes, lab work, class test, and attendance. Another category of widely
used variables is the demographic data of the students, such as gender, age, family background,
and disability. Finally, some papers use variables related to extra-curricular activities, e.g., high school
background and social interaction network. The algorithms used to generate the models were: Decision
Tree, Artificial Neural Networks, Naive Bayes, K-Nearest Neighbor, and Support Vector Machine.
Among them, those with the best accuracy were Neural Network (98%) and Decision Tree (91%).

A Neural Network is a massively parallel distributed processor made up of simple processing
units, which have the natural propensity to store experimental knowledge and make it available for
use [40]. Artificial neural networks were developed to resemble the biological structures found in
living beings due to the capacity to store knowledge that they present. This learning takes place
through the connections, or synaptic weights, that exist between the neurons. The most famous and
used neural network is the multilayer perceptron, which uses several massively connected and layered
neurons. The amount of neurons, such as the number of layers, depends directly on the problem.
However, some studies show that a three-layer MLP (input, hide, and output) is capable of mapping
any function, either linear or nonlinear [41].

Decision Tree (DT) is a non-parametric supervised learning method used for classification and
regression. The goal is to create a model that predicts the value of a target variable by learning simple
decision rules inferred from a set of pre-selected input data using the divide strategy to conquer [32].

Another paper, authors used a Logistic Regression technique to create a predictive model of
evasion, considering only the academic data of students. Accuracy and confusion matrices were
adopted as a performance measure. The model was used to aid in the decision making of a student
retention policy and obtained a 14% reduction in the dropout rate [11].

A interesting model prediction applied for school dropout problem, the authors used data from
e-learning courses, and a combination of machine learning techniques such as MLP, support vector
machines and probabilistic ensemble simplified fuzzy ARTMAP through three decision schemes.
Demographic data (gender, residency, working experience), prior academic performance (educational
level, multiple choice test grade, project grade, project submission date, Section activity) were suggested
as input variables. Accuracy, sensitivity, and precision metrics were used in evaluations [42].

In another paper, the decision tree techniques and hierarchical clustering are used to predict
student performance. The method has two stages: predicting students’ academic achievement at the
end of a four-year study program; studying typical progressions and combining them with prediction
results. The input variables of the model are related only to the performance of the student, such as:
admission marks from high school, and final marks of first and second-year courses at university.
As an evaluation of the model, it were used the metrics accuracy, kappa and confusion matrices [43].

In work proposed in [15], the C4.5 technique is used to identify possible failing students during
the first four weeks of the semester. The model adopted as input data the engagement ratio, bangor
engagement metric, student’s program, the school, and the year of study. The model was evaluated
from the metrics: true positive, false positive, precision, the area under the ROC Curve.

As evidenced in Table 3, in none of the studies surveyed was the concern presented with data
balancing, even some of them showing imbalanced bases. Differently from the studies mentioned
above, this paper analyses the influence of the use of balancing techniques on model performance,
the verification of the “Accuracy Paradox”, and how to measure the performance of the predictive
model more reliably.
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Table 3. Related Works Comparison.

Reference Prediction Techniques Input Parameters Evaluation Metric

[19]

Decision tree, Artificial
Neural Networks, Naive
Bayes, K-Nearest Neighbor
and Support Vector Machine

Academic performance,
demographic data,
extra-curricular
activities, high school
background and social
interaction network

Accuracy

[11] Logistic Regression academic performance accuracy, confusion matrices

[42]

Combination of MLP
techniques, support
vector machines and
probabilistic ensemble
simplified fuzzy ARTMAP
through Decision tree

Demographic data, prior
academic performance,
academic performance

Accuracy, sensitivity
and precision

[43]
Decision tree,
hierarchical clustering Academic performance Accuracy/Kappa,

Confusion matrices

[15] Decision Tree
Engagement, student’s
program, the school, and
the year of study

True Positive, False Positive,
Precision, Area under
ROC Curve

This paper

MLP, Decision Tree
with Downsample,
SMOTE, ADASYN and
Balanced Bagging

Demographic data,
academic performance

Confusion Matrices,
Precision, Recall, AUC,
G-mean, F1, UAR

4. Methodology

The data used in this study are based on 7718 students of Integrated Education (secondary
education with training in professional education through technical courses with duration of four years,
in the face-to-face modality) of the Federal Institute of Rio Grande do Norte (IFRN). This educational
institution is located in northeastern Brazil and distributed by 20 campuses in different cities in
the state of Rio Grande do Norte (RN). The available database was extracted from the Unified
Public Administration System (SUAP (suap.ifrn.edu.br)), developed by IFRN, and has demographic
information, socioeconomic characterization and the final average of students in the subjects. The last
update was in January 2018.

It were selected 25 attributes, of which six are related to academic performance in Portuguese
and Mathematics subjects since these are frequent subjects of all courses in the first year of student
enrollment. The remaining 19 attributes are related to demographic and socio-economic characteristics
of the students (Table 4). Before training, the data were divided into test set (25% of data) and training
(75% of data). Instances with NULL values have been removed.

The learning models applied were DT, MLP (Section 3) and Balanced Bagging (Section 2.1).
The development environment used was the programming language Python and the packages:

Pandas and Numpy, for manipulation of the data; scikit-learn for classic supervised learning [37];
imbalanced-learn [22] for supervised learning with imbalanced classes; Seaborn and Matplotlib, for the
graphics. All code is available in [44].

The Figure 5 describes the pipeline for the predictive model of school dropout considering the
challenge of imbalanced data. The target is to create a prediction model with an emphasis on the
predicted accuracy of the student evaded.

suap.ifrn.edu.br
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Table 4. Description of selected variables.

Variable Description

LnguaPortuguesae LiteraturaI90H Grade in portuguese

LnguaPortuguesae LiteraturaI90H
Dependencia Number of dependencies in Portuguese

LnguaPortuguesae LiteraturaI90Hfreq Percentage of attendance in Portuguese

MatemticaI120H Grade in Math

MatemticaI120H_ dependencia Number of dependencies in Math

MatemticaI120H_freq Percentage of attendance in Math

aluno_exclusivo_ rede_publica student only attended in public school

descricao_area_residencial Student Residential Area: Urban, Rural, Indigenous,
Quilombola, Uninformed

descricao_companhia_ domiciliar Home Company: Spouse, Mother, Father, Parents, Other,
Uninformed, Relative (s) or Friend (s), Alone

descricao_estado_civil Description of student’s marital status: married, divorced,
undeclared, single, stable union

course Course name

descricao_imovel
What is the financial situation of the property in which
the student lives: rented, assigned or loaned, financed, not
informed, other, pension or accommodation, own

descricao_mae_ escolaridade

Schooling of the student’s mother: literate, complete
elementary school, incomplete elementary school, complete
high school, incomplete high school, complete high school,
incomplete higher school, do not know, did not study, complete
postgraduate, incomplete postgraduate

descricao_pai_ escolaridade Schooling of the student’s father

descricao_raca Student’s self-declared race: yellow, white, indigenous,
undeclared, brown, black

descricao_responsavel_ escolaridade Schooling of student’s legal guardian

descricao_responsavel_ financeiro
Who is the student’s financial officer: grandfather, spouse,
brother, mother, the student himself, others, father,
relatives, uncle

descricao_trabalho

Student’s job description: retired, self-employed, INSS
beneficiary or pensioner, private company, internship or
scholarship, never worked, not working, not informed,
fisherman, public service, employed, rural worker / farmer

pessoa_fisica_sexo Student’s gender: M, F

possui_necessidade_ especial True for students with special needs

qtd_pessoas_domicilio Number of people living with student

Sigla What is the student Campus

qnt_pc Sum of computers, notebooks and netbooks

qnt_salarios Gross family income

tempo_entre_conclusao_ ingresso Time between completion of elementary school and entry
into IFRN
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Figure 5. Pipeline for the predictive model of school dropout.

Synthetically, the pipeline follows the steps:

1. Balance Data: Downsample, SMOTE, ADASYN were used to generate balanced data and
produce models that avoid the paradox of precision. The original training set was 5788, of which
262 minority class (dropout students) and 5526 majority class (persistent students) instances. After
using the Downsampling, there was a reduction in the class of persistent students, and the new
data set consisted of 524 equally distributed instances. Using the SMOTE balancing technique,
the minority class set was incremented to a total of 5526 instances and the new dataset now has
11052 instances. For ADASYN the new set was 5537 for minority class and 5526 for majority class.

2. Model / Tunning: on the balanced data are used machine learning techniques (DT, MLP, Balanced
Bagging) to predict dropout. For tuning the parameters we used the exhaustive search over
specified parameter values for each Model through the Gridsearch package [37]. For the DT
we performed a search on the parameters: function that defines the node break (gini, entropy),
the maximum tree depth (None, 3, 5), the minimum number of samples required for the leaf
(None, 5, 10, 20). For the MLP the optimized parameters were: the optimization function
(Limited-memory BFGS), maximum number of iterations (200), regularization term (0.1, 0.01,
0.001), number of neurons in the hidden layer (5, 8, 11, 14, 17), the seed used by the random
number generator (0, 42), and rectified linear unit function like activation function. Finally, for
Balanced Bagging the number of DT that makes up the ensemble (10, 30, 100, 200, 300)

3. Metrics/Evaluation: with the trained models, evaluations should be performed using metrics:
precision, recall, F1, UAR, AUC, G-mean and the confusion matrix.

As seen in [19], the most common and more accurate used models in the prediction problem
under the school dropout context are MLP and Decision Tree. Thus, both of them are considered
in the proposal for this work. Additionally, the downsample technique is also adopted because it
presented better results when tunned with Neural Networks [30] and Decision Tree [29]. Furthermore,
downsample technique has a small computational cost [30]. For comparison, in this paper we also use
SMOTE, ADASYN as balancing techniques, and the Balanced Bagging as hybrid model.
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To validate if there was a difference in performance between the models, we used the
Kruskal-Wallis statistical test [45]. This test have performed to check if there are significant differences
among the medians for each method with p-value 0.05.

5. Results and Discussion

This section presents the performance comparison of the classic MLP, DT and Balanced Bagging
methods when applied for the prediction of school dropout. Scenarios with the use of downsampling,
SMOTE, ADASYN and without the use of any balancing technique are verified. After the classification
algorithm training process, the confusion matrix (Figure 6), precision, recall, F1, G-mean, UAR and
AUC over the entire test set (Table 5) are also investigated to evaluated the model. It is important to
highlight that the minority class represents the group of students droppout, and the majority class the
group of students that persist in the course.

(a) MLP (b) MLP Downsample (c) MLP SMOTE

(d) MLP ADASYN (e) DT (f) DT Downsample

(g) DT SMOTE (h) DT ADASYN (i) Balanced Bagging

Figure 6. Confusion Matrix for the predictive model under school dropout study.
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Table 5. Comparison of performance metrics between models.

Name Precision Recall F1 UAR AUC G-mean

DecisionTree 0.975 0.977 0.976 0.724 0.737 0.678
MLP 0.978 0.930 0.954 0.747 0.798 0.724

DT Undersample 0.989 0.806 0.888 0.811 0.736 0.811
MLP Undersample 0.990 0.872 0.927 0.844 0.798 0.844

DT SMOTE 0.975 0.964 0.969 0.723 0.731 0.682
MLP SMOTE 0.991 0.874 0.929 0.856 0.798 0.856
DT ADASYN 0.973 0.970 0.971 0.703 0.743 0.651

MLP ADASYN 0.991 0.862 0.922 0.845 0.798 0.844
Balanced Bagging 0.990 0.903 0.945 0.860 0.929 0.859

In Figure 6a,e we have a high error of the minority class (38 errors of a total of 87 instances for the
DT, and 46 errors for the MLP) when the sampling technique is not used, as is usually employed in
the literature. However, this poor result was obfuscated due to excellent accuracy shown in Precision,
Recall and F1 metrics (all values close to 1.0 in rows I and II, columns I, II and III of Table 5) for DT and
MLP. Nevertheless, the AUC, UAR and G-mean metrics were able to detect the high minority class
error, with ratings all below 0.74 (rows I and II, columns IV, V, VI).

When the downsample technique was used it is possible to note in results shown in Figure 6b,f
a significant decrease of the minority class error (16 errors of a total of 87 instances for the DT and
MLP). As expected, the G-mean and UAR metric resulted in a performance increase (both metrics
0.811 for DT, both metrics 0.844 for MLP), but AUC kept lower values (0.736 for DT and 0.798 for MLP).
However, it is essential to highlight the increase of the FN error when using the downsample technique
(from 43 to 357 in the DT, from 129 to 236 for MLP). This behavior impacted in the decrease of Recall
(from 0.977 to 0.806 for DT and 0.930 to 0.872 for MLP) since this metric emphasizes the accuracy of
the majority class. The precision and F1 metrics were maintained with high values.

When using the SMOTE technique we noticed a decrease of minority class errors for MLP
(Figure 6c), but for DT the error was maintained (Figure 6g) when compared to the model without
balancing technique. Similarly with the downsample, the high-error minority smote DT had high
performance values for Precision, Recall, and F1 (row V, columns I, II, III), while G-mean, UAR,
and AUC scored low (row V, columns IV, V, VI). For MLP with SMOTE that had few minority errors,
the G-mean and UAR metrics showed an increase in values, however the AUC maintained low
values (row VI).

When using ADASYN, a situation similar to SMOTE occurred: there was an improvement in the
minority class correctness for MLP (identified by the G-mean and UAR metrics), however there was
no score improvement in with DT.

In all the experiments described above, the AUC score had little variation, regardless of
improvement in minority class accuracy. In other words, the AUC could not represent the increase in
accuracy of the student dropout, the focus of this work. However, the metrics UAR and G-mean were
able to identify the increase in accuracy of the minority class with values close to all models as seen in
the Figure 7.

Finally, when analyzing the Balanced Bagging technique (last line Table 3), it was verified that in
all robust unbalance metrics it had the best results (UAR:0.860, G-mean:0.859 and AUC:0.929). Looking
at the confusion matrix (Figure 6i), it is verified that this excellent result is due to the reduction of
minority class error with a smaller majority class error when compared to other balancing techniques.
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(a) G-mean metric values for
learning models

(b) UAR metric values for
learning models

Figure 7. Algorithms Comparison.

In order to verify that the metrics have statistically different values, we have applied a 10-fold
cross validation over the test set. In addition, the Kruskal statistical test was performed for UAR and
G-mean metrics. Thus, Figure 8 presents the boxplot results with 10-fold cross validation for each
learning model. In item (a) it was used the G-mean metric and in item (b) the UAR metric. In both
graphs the Balanced Bagging median obtained the best results. For all Kruskal tests, the p-value was
close to 0 and less than 0.05 between Balanced Bagging and all other models. It means that at least a
model exists that is better than the others, in this case, the Balanced Bagging.

(a) Box-plot with G-mean metric values for
learning models

(b) Box-plot with UAR metric values for
learning models

Figure 8. Algorithms Comparison.

It becomes evident after analyzing the results that the imbalance of data makes metrics like Recall,
Precision, and F1 more likely to emphasize only the accuracy of the majority class whereas it falls into
the Accuracy Paradox.On the other hand, the G-mean and UAR metric presented as a better candidates
to evaluate predictive models on imbalanced data because it counts in its calculation the accuracy
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of the minority class. It is also evidenced that, after the use of the Balanced Bagging, downsample
for MLP and DT, SMOTE for MLP and ADASYN for MLP, there were an increase in the performance
of the model to predict the minority class represented by the decrease of the FP error. Nevertheless,
the improvement in the prediction of the minority class worsened the accuracy of the majority class
represented by the increase of the FN error. In the judgment of the authors, the impact observed in
FN does not present significant problems since it predicts that the student would dropout but did
not occur. This fact does not bring a significant burden to the institution of education under study.
On the other side, the problem of FP error has a significant impact, given it means that the student’s
prediction kept in school, but the result was that the student dropped out.

6. Conclusions

After analyzing the results, we concluded that the Accuracy, Recall and F1 metrics failed to
detect the high amount of errors of the minority class (the student dropped out) when the data was
imbalanced. The AUC metric remained stable even when there was an increase in accuracy. However,
G-mean and UAR metrics were able to capture the minority class error for the two classifiers. We also
concluded that the use of data balancing technique before training the predictive model promotes a
significant increase in the results when measured by the G-mean and UAR metrics. In other words,
there was an improvement in the prediction of the students being dropped out. However, the best
model for the problem addressed in this paper was Balanced Bagging. Therefore, for imbalanced data
contexts, it is recommended to use the G-mean and UAR metric to measure the quality of the most
reliable model and avoid the Accuracy Paradox. The use of data balancing techniques is also able to
increase the performance of the predictive model, but better results can be obtained with Balanced
Bagging. As future work, we plan to consider the use of other advanced machine learning techniques,
such as Deep Learning and Probabilistic Programming, and the testing of other balance techniques,
such as k-means balancing and probabilistic sampling.
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Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Notations

EDM Educational Data Mining
MLP Multilayer Perceptron
DT Decision Tree
SVM Support Vector Machine
KNN K-Nearest Neighbors
SMOTE Synthetic Minority Over-sampling
ADASYN Adaptive Synthetic Sampling
UAR Unweighted Average Recall
ROC Receiver Operating Characteristic
AUC Area Under the Curve
ASR Automatic Speech Recognition
IFRN Federal Institute of Rio Grande do Norte
TN True Negative
FN False Negative
FP False Positive
TP True Positive
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