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ABSTRACT 
This paper shows the results of the epistemological and didactical analysis of the sense of variation 
of functions. Specifically, on the conceptions of growth and decay in a function that underlie the 
demonstrations of the theorem that links the sign of 𝑓𝑓’ with the sense of variation of 𝑓𝑓. The 
epistemological approach covered the years 1795 to 1912. It was identified that the conceptions 
of Fourier, Lagrange and Cauchy about growth and decay differ from the conception in the formal 
current definition; however, the posed procedures and definitions provide elements that foster 
reconstruction processes of the definitions and properties of increasing and decreasing functions. 
It is important to highlight that the current definition of growth and decay has a solid foundation 
on the definition made by Osgood in 1912. The didactical analysis identified that the current text 
books inherit some of the limitations and inconsistencies of the definitions found on the 
epistemological approach. The conflicting issues enhance the starting point for the development 
of a didactic engineering for the treatment of the sense of variation of a function at a pre-
university level. 
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INTRODUCTION 
Analysis of functions is a required content in the curricula and programs of upper secondary levels, at least 

in Mexico. Analysis of functions is understood as the study of the sense of variation, growth and decay in a 
function, intervals of concavity and convexity, inflection points, vertical, horizontal and oblique asymptotes 
and identification of maximum and minimum values (Leithold, 1992; Swokowski, 1982). It is an integrative 
concept where the main concepts of differential calculus are used and converge; it encourages the students’ 
mathematical reasoning maturity to understand and apply the theorems and results built in these concepts. 

Despite of the importance of this content, several works focused on the study of the teaching and learning 
processes of calculus make evident the difficulties in understanding the basic concepts of calculus among 
students in middle and high school levels of education, such as the concept of function, growth and decay, 
maximums and minimums, and others (Castillo, 2009; Cuevas & Delgado, 2016; Delgado, 2013; Díaz, 2009; 
Pineda, 2013; Reséndiz, 2006; Rubí, Moreno, Pou, & Jordán, 2010; Ruiz, Hernández, & Gutiérrez, 2015; 
Salinas & Alanís, 2009; Zúñiga, 2009). 

This issue gave rise to investigations from different theoretical and methodological referents to study the 
sense of variation of a function (Díaz, 2009; Engler, Vrancken, Gregorini, Müller, Hecklein & Henzenn, 2008; 
Rey Cabrera, 2016; Zúñiga, 2009). The results of these investigations highlight the existence of difficulties in 
the understanding and treatment of this content of teachers and students. For example, Russo (2016), 
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Sánchez-Matamoros, García and Llinares (2008) document the difficulties in understanding, building and 
interpreting the basic concepts of calculus faced by students, such as the concept of function, growth and decay 
and maximums and minimums. Engler and Vrancken (2002) observed students’ difficulties to solve problems 
that involved the fundamental concepts of calculus: first and second derivative and their relationships with 
the concepts of growth and decay in a function, concavity and convexity and maximum, minimum and 
inflection points. These issues are identified in the students for two reasons; on the one hand they have not 
built a proper meaning in the first courses of calculus, as a consequence of the diverse previous conceptions of 
the students that may have contradictory aspects and are very resistant to change; on the other hand, there 
is a trend in traditional teaching to overestimate algorithmization and analytical methods over the 
development of abilities concerning mathematical thinking. 

Besides, a study of Valero (2003) found that upper secondary school students, who have already addressed 
the topic of analysis of functions, associated increasing functions with positive functions and decreasing 
functions with negative functions. The researcher in this study identified the following alternative conceptions 
about the sense of variation of functions: the conception that considers that a function with a positive image 
is necessarily increasing; the conception that considers that a function has a negative image only when it is 
decreasing; considering the zeros of a function as stabilization points; the conception that a function has a 
positive image only when its abscissae and ordinate are positive; the conception that a function has a negative 
image only when its abscissae and ordinate are negative; the conception that consists in considering intervals 
as if they were points; the conceptions in which the function does not grow or decrease at 𝑥𝑥 =  0; a function is 
increasing if its graph goes up with no coordination among the changes in the abscissae and the changes in 
the ordinates; a function is decreasing if its graph goes down. These conceptions will be considered in the 
productions of the students in subsequent paragraphs. 

As identified before, teachers and students have difficulties in understanding calculus, specifically the 
sense of variation of a function. These situations draw our attention to the next problem: How can the teaching 
and learning processes of the sense of variation of a function be promoted in a pre-university educational level? 

THEORETICAL FOUNDATION 
The aim of this work is to contribute to the elaboration and implementation of a didactic engineering for 

the treatment of the sense of variation of a function. Teacher, students and mathematical content are the main 
actors in this activity. It is also assumed the possibility of students building knowledge from adaptations of 
the environment in which the knowledge is built. 

Brousseau (1978) proposes that the design of situations that include a set of activities promoting the 
fictitious emergence of knowledge is a proper setting for students’ learning. These activities will turn the class 
into a micro-scientific community within which knowledge (concepts and results) is built as a necessary and 
optimal tool to overcome the epistemological, didactical and cognitive obstacles of the mathematics content in 
play, giving place to different a-didactic phases (in the production of knowledge, these are modeled activities 
conceived for the independent interaction between student and environment, without the teacher 
intervention) and didactic phases (action, formulation, validation and institutionalization) which are 
fundamental phases in the construction of knowledge according to the theory. Specifically, these situations 
are treated as a consequence of the preliminary analysis of the central object of study described in this work. 
In these micro-scientific communities, students make individual or team proposals to overcome the obstacles, 
submit them to discussion with their peers, validate or question them through counterexamples, establishing 
a dialectic between validation and refutation similar to the one described by Lakatos (1976). 

Lakatos (1976) emphasizes that, in many cases, the first ideas of the proof of some results contained 
implicit elements supported by evidence or used not-completely defined notions, hiding some mistakes or 
contradictions. Suggesting a counterexample that evidences a contradiction, may lead to question the proof 
looking for implicit elements that give place to that counterexample, improving conjectures, demonstrations 
or definitions of the notions involved until they are rejected or placed in the proper place of the theoretical 
axiomatic building. In this sense, Brousseau established that situations involving the fictitious emergence of 
knowledge must be designed in such a way that students explore a similar path to the one mathematicians 
take (process described by Lakatos). In this path, mistakes and the existence of contradictions in arguments 
(evidenced by the counterexamples) are not seen as eventualities but acquire a positive status promoting that 
students examine their arguments, diagnose problems and overcome them, give meaning to the contents, 
procedures or cognitive processes. This may lead to new knowledge and ideas. 
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On the other hand, García and Morales (2013), Hernández, Locia, Morales and Sigarreta (2019), Klymchuk 
(2012), Morales, Locia, Ramírez, Sigarreta and Mederos (2018), Zazkis and Chernoff (2008) concur that the 
formulation of conjectures and the use of counterexamples stimulates students reasoning of the how and why 
of the processes followed to reach the conclusions and reduce algorithmic and rote learning procedures so that 
it is necessary to introduce proper settings that promote the achievement of these pedagogical virtues of 
counterexamples. 

METHODOLOGICAL FOUNDATION 
Didactic engineering (DE) is the methodology used in this investigation, because it assigns a specific 

function to the research according to the four phases that conform it: phase 1 of preliminary analysis; phase 2 
of conception and an a priori analysis; phase 3 of experimentation; and phase 4 of an a posteriori analysis and 
assessment. The fundamental characteristic of the DE is the confrontation between the a priori and the a 
posteriori analysis of the productions of the implementation of the tasks in the classroom. 

This paper presents the preliminary analysis which includes an epistemological, didactical and cognitive 
study of the object of study, the sense of variation of functions of a real variable. In this context, the focus is 
the analysis of the historic-epistemological development of the different conceptions witnessed, of the 
knowledge involved in the study of the sense of variation of the functions and the differences and similarities 
between the knowledge in construction, the scientific knowledge and the taught knowledge. The analysis of 
the traditional teaching and its effects considered the role of textbooks through the characterizations or 
communications that the teacher obtained from them. From the analysis of students’ conceptions, information 
is obtained referring to the application and correct use of the properties of concepts, theorems and definitions. 

METHOD 
The conceptions of growth in a function underlying the demonstrations of the theorem that link the sign of 

𝑓𝑓’ with the sense of variation of f given by Lagrange and Cauchy are considered in the epistemological analysis. 
The evolution of the notion of increasing function, from the works of Fourier in 1795, until its formalization in 
the current definition given by Osgood in 1912, is monitored from original sources. 

The main textbooks on these notions used in upper-secondary level and the first years of university are 
considered in the didactical analysis; it is assumed that these books are a fundamental part in the teaching 
and learning processes. Three aspects organized the analysis of texts: (a) analysis of the treatment of 
definitions, (b) analysis of the main theorems and results, and (c) analysis of the effective procedures. 

For the cognitive analysis, a tool with written activities and direct questions was applied to fourteen 
students in the first semester of the Bachelor’s Degree in Mathematics. The productions of the students about 
their representations, justifications and built meanings in their prior level of education were analyzed. 

HISTORIC-EPISTEMOLOGICAL, DIDACTICAL AND COGNITIVE ELEMENTS OF THE 
NOTION OF SENSE OF VARIATION: DISCUSSION AND ANALYSIS 

Definitions 

At the end of the 18th century the first elements of the formalization of the Calculus are identified; 
therefore, it was decided to study the definitions of the sense of variation of functions in the period of time 
from 1795 to 1912. In this period, the pure geometric studies of Fourier, the implicit definitions of Lagrange 
and Cauchy, the first explicit definition evoked by Ampère and the first formal definition about the sense of 
variation expressed by Osgood in 1912 were identified. 

Fourier 

One of the first evidences of the relationship between the sign of the derivative and the sense of variation 
of a function was found in the works of Joseph Fourier by the end of 1795. The search for maximums and 
minimums by purely geometric considerations allowed him to identify the necessary condition to obtain an 
extreme point, as described here (see Figure 1): the curve of a function and “the curve of the slopes” namely, 
the derivative function, are reproduced in the same figure (from the lower figure to the point M in the curve 
of a function, he sets 𝑀𝑀𝑀𝑀 = 1; then 𝑆𝑆𝑆𝑆 is the tangent of the angle SMR that he draws in P to obtain a point that 
belongs to the slope curve). In this way, he observed that an extreme point of the slope curve corresponds with 
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an inflection point in the curve of a function. He immediately reports the “second slope curve (curve that could 
be denominated second curve)” to observe that if the first curve is convex, the second one has increasing 
ordinates and the ordinates of the third one are positive and if the first curve is concave, the ordinates of the 
second one are decreasing and the ordinates of the third are negative (Renaud, 2017). 

After this, the search for new ways to study extreme points continued; the search in “purely analytical 
ways” using the theorem of Taylor was among them, 

The review of the original texts of Lagrange and Cauchy revealed lemmas and theorems with implicit signs 
of conceptions of the definition of an increasing function, even when they never presented an explicit formal 
definition of increasing/decreasing function. 

Lagrange and Cauchy 

The proofs given by Lagrange and Cauchy (later analyzed) indicate that they have implicit conceptions of 
what an increasing function is (they never gave a definition) but these conceptions do not match exactly. The 
conception of Lagrange is closer to what we actually find in higher education textbooks because it can be 
deduced that the difference 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) is positive with the hypothesis of the positivity of the derivative and 
the inequality 𝑏𝑏 > 𝑎𝑎. 

On the other hand, the implicit definition of an increasing function of Cauchy can be formulated in the 
next way: a function f defined in an interval I is an increasing function if, for any element a of I, there is a 
neighborhood 𝑉𝑉(𝑎𝑎) such that for any x in 𝑉𝑉(𝑎𝑎), the order between 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑥𝑥) is the same as between a and 
x. The definition of Lagrange is global and punctual and refers to two given points (arbitrarily and 
independently); the local properties remain in a neighborhood of each of the arbitrary points in the definition 
of Cauchy. It can be proved without difficulties that both definitions are equivalent from a mathematical point 
of view. However, according to Chorlay (2007), these definitions are significantly different from the 
epistemological point of view (in drawing attention to the differences between local and global properties) and 
also from the cognitive point of view. 

Ampère 

The first implicit “definition” of an increasing function is found in Ampère (1824) and is expressed in the 
following terms: A continuous function is increasing in the interval between two values of the independent 
variable if it increases for larger values of this variable and, consequently, it decreases for smaller values of the 
same variable; it is said that the function is decreasing if its values are decreasing as long as the independent 
variable increases, and it increases to the extent that such variable decreases. It is evident that if 𝑦𝑦 and Y 
represent the values of the function of one independent variable, corresponding to the two values 𝑥𝑥 and X of this 
variable, the fraction 𝑌𝑌−𝑦𝑦

𝑋𝑋−𝑥𝑥
, named as the quotient of the differences of the variable and its function, will always 

be positive for increasing functions, and negative for decreasing functions.1 

 
1 On dit qu’une function continue est croissante dans l’intervalle de deux valeurs de la variable indépendante, quand elle 
augmente à mesure qu’on donne à cette variable des valeurs de plus en plus grandes, et qu’elle irait par conséquent en 
diminuant, si l’on donnait à la même variable des valeurs de plus en plus petites: on dit que la fonction est décroissante 
quand elle va en diminuant à mesure que la variable indépendante augmente, et en augmentant à mesure que cette dernière 
diminue. Il est évident que si 𝑦𝑦 et 𝑌𝑌 représentent deux valuers d’ une fonction d’une seule variable indépendante, 
correspondantes à deux valeurs 𝑥𝑥 et 𝑋𝑋 de cette variable, la fraction 𝑌𝑌−𝑦𝑦

𝑋𝑋−𝑥𝑥
, que l’on nomme le rapport des différences de la 

variable et de sa fonction, sera toujours positive quand la function est croissante, et négative quand elle est décroissante.  

 
Figure 1. Geometric illustration of the curve of a function and “the curve of the slopes” 
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More than a definition, this is an intuitive description of the variation of how two quantities change, one 
of which depends on the other (if one increases, the other one does as well, when referring to increasing 
function; or when one increases, the other decreases when referring to decreasing function). Chorlay (2007) 
named this “the narrative style” which is prior to formalization. 

Osgood 

It is amazing that the notion of the sense of variation of a function was not defined, as actually known, 
until 1912 when W.F. Osgood wrote for the first time in the book Lehrbuch der funktionentheorie (Textbook of 
Function Theory): A function is called monotonous if it has the following behavior: Let 𝑥𝑥1 and 𝑥𝑥2 be two arbitrary 
points in the domain of definition such that 𝑥𝑥1<𝑥𝑥2. Then, without exception, it should always be 𝑓𝑓(𝑥𝑥1) ≤ 𝑓𝑓(𝑥𝑥2), 
or always 𝑓𝑓(𝑥𝑥1) ≥ 𝑓𝑓(𝑥𝑥2), (Osgood, 1912, p.27)2 

It is important to highlight that this definition did not appear in the previous edition of this book in 1907. 
The definition appears in the edition from 1912 immediately after the demonstration of the theorem of finite 
increments, that was made in the same way as today, and after expressing the generalization of the theorem 
as the development of a sum of powers and what remains as what is actually known as Lagrange remainder. 

Concerning the results of the sense of variation of the functions of real variable and the existence of 
maximums and minimums, the actual definitions are given in terms of inequalities. Furthermore, this is the 
definition that appears in the actual mathematical textbooks and was the culmination of the analysis of 
functions taking the works of Fourier, Lagrange, Cauchy, Ampère and Osgood as reference. 

In this way, the notions of growth and decay of a function of real variable were evoked in a purely narrative 
way (Chorlay, 2007) for a long time; it was made explicit for the first time in the works of Ampère but only 
found a purely punctual formulation until Osgood, acquiring at the same time the status of a real definition. 
The conception that underlies this definition is the transformation of an ordered set into another ordered set 
in such a way that the order is preserved if the function is increasing or is inverted if the function is decreasing. 

Theorems 

Rolle 

Rolle’s theorem was published in 1690 in the book Traité d’Algèbre (Treatise on Algebra) with the title of 
“Method of Cascades”. This method consists in submitting an equation to a process of “preparation”; in this 
way, given a polynomial equation 𝑓𝑓(𝑥𝑥) = 0, Rolle specified a multiplication of the function 𝑓𝑓(𝑥𝑥) by a sequence 
and equates to 0, and obtained what he named a cascade. After multiplying each term of 𝑓𝑓(𝑥𝑥) with the 
corresponding term of the sequence, the resulting expression is divided by 𝑥𝑥 and equated the quotient to zero. 
Subsequent cascades are obtained by the reiteration of this process until the first cascade of the form 𝑎𝑎𝑎𝑎 + 𝑏𝑏 =
0 is achieved. From this point, Rolle considered the following cascades and obtained the upper and lower 
bounds ensuring that those intervals contain one (and only one) root. Eventually, the theorem was proved in 
a book about Algebra and Geometry named Démonstration d’une méthode pour résoudre les égalités de tous les 
degrés, suivi de deux autres méthodes, dont la première donne les moyens de résoudre ces mêmes égalités par 
la géométrie, et la seconde pur résoudre plusieurs questions de Diophante qui n’ont point été résolues 
(Demonstration of a method to solve equations of all degrees, followed by two other methods, the first of which 
gives the means to solve these same equations by geometry, and the second to solve several Diophantine problems 
that have not been resolved) in 1691, that contributes to the solution of the problem of the existence of the roots 
of equations of any degree. It is important to make clear that the first proofs of the theorem that associates 
the sense of variation of a function with the sign of its derivative did not use this theorem. 

The origin of the transition of this theorem from Algebra to Mathematical Analysis is in the genius of 
Euler; he expressed this theorem in terms of the language of Calculus for the first time in his work Institutiones 
calculi differentialis (Foundations of Differential Calculus) (Suárez, 2011; Suso and Velasco, 2013). Since one 
of the cases in which two given real roots of the equation 𝑧𝑧 =0 is when the function 𝑧𝑧 reaches a minimum or 
maximum value, it can be deduced that if the equation 𝑧𝑧 =  0 has two real roots, then the equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 =  0 

necessarily has a real root. Similarly, if the equation 𝑧𝑧 =  0 has three real roots, then the equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  0 

 
2 Eine Funktion heißt monoton, wenn sie, wie folgt, beschaffen ist. Seien 𝑥𝑥1 y 𝑥𝑥2 irgen zwei Punkte des Definitions bereichs 
und sei 𝑥𝑥1<𝑥𝑥2. Dann soll ohne Ausnahme 𝑓𝑓(𝑥𝑥1) ≤ 𝑓𝑓(𝑥𝑥2) sein oder aber es soll stets 𝑓𝑓(𝑥𝑥1) ≥ 𝑓𝑓(𝑥𝑥2) sein. 
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undoubtedly has two real roots. And, in general, if the equation 𝑧𝑧 =  0 has m real roots, then the equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =
 0 necessarily has at least (m-1) roots (Euler, 1755)3. 

Euler’s presentation of Rolle’s theorem is quite different from the ones of their predecessors, because for 
the first time, it is presented with the support of calculus and without the method of cascades even when the 
polynomial equations are still in the context. Eventually, Lagrange and Cauchy obtained their mean value 
theorems applying Rolle’s theorem to different types of functions. 

Lagrange 

For its part, as noted in the title and in the preface of his work, Theory of analytic functions that contain 
the foundations of differential calculus deprived of any consideration of infinitely small or evanescent, limits 
or fluxions and reduced to the algebraic analysis of finite quantities, (Théorie des fonctions analytiques, 
contenant les principes du calcul différentiel, d´egagés de toute considération d’infiniment petits, 
d’evanouissans, de limites et de fluxions, et réduite àl’analyse algébrique des quantités finies), Lagrange (1797), 
rejected the notions of infinitely small quantities or evanescent quantities, the notions of limit and fluxions as 
the starting point for a systematic and rigorous exposition of the mathematical analysis, placing as a 
fundamental notion the development of a function in a series of the form: “𝑓𝑓(𝑥𝑥 + 𝑖𝑖) = 𝑓𝑓(𝑥𝑥) + 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑖𝑖2 + 𝑟𝑟𝑖𝑖3 +
&𝑐𝑐”, with 𝑝𝑝, 𝑞𝑞, 𝑟𝑟,… also functions of 𝑥𝑥, as the fundamental notion. Lagrange defines the derivative of a function 
𝑓𝑓(𝑥𝑥), avoiding the notion of limit, as the coefficient of the factor 𝑖𝑖 in this development, namely as 𝑓𝑓′(𝑥𝑥) = 𝑝𝑝. 
The derivatives of superior orders are defined in a similar way. 

Lagrange states and proves the following lemma in this work:  

If a prime function of 𝑧𝑧 like 𝑓𝑓′𝑧𝑧 is always positive for any value of 𝑧𝑧, from 𝑧𝑧 = 𝑎𝑎 up to 𝑧𝑧 = 𝑏𝑏 
supposing that 𝑏𝑏 is > 𝑎𝑎, the difference of the primite functions corresponds to these two 
values of 𝑧𝑧, i.e., 𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓, it will necessarily be a positive quantity. (p. 45)4 

We will only mention some aspects of the demonstration in view of the goal and orientation of this work: 
Lagrange avoids the use of the notion of limit and uses another “basic principle” stated and proved at the 
beginning of his work, this should be seen […] as one of the fundamental principles of the theory (p.12): in the 
serial development of a function, i can always be taken sufficiently small so that any term is greater than the 
sum of the terms that follow it. 

In the ninth lesson of Leçons sur le calcul des fonctions (Lessons on the calculus of functions) (Lagrange, 
1806) entitled On how to obtain the limits of the development of a function when there is only a finite number 
of terms, with the same goal of the previous lemma, Lagrange it was proposed to find bounds for the remainder 
of the polynomial development of order n-1, namely, for an n-times derivable function; which corresponds in 
actual terms to the inequality of Taylor-Lagrange. For this purpose, he established a modification to the 
previos lemma, and expressed, would be useful in repeatedly. This principle is stated in the following terms: 

A function that vanishes when the variable does will necessarily have, insofar as the 
variable increases positively, some finite values having the same sign as those of its 
derivative function, or the opposite sign, if the variable increases negatively, insofar as the 
values of the derivative function will maintain the same sign and do not become infinite. 
(p. 89)5 

 
3 Quia inter binas quasuis aequationis 𝑧𝑧 = 0 radices reales datur vnus cafus, quo function 𝑧𝑧 fit maximum vel minimum; 
fequitur fi aequatio 𝑧𝑧 = 0 duas habeat radices reales, tum aequationem 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 =  0 neceffario vnam radicem habituram effe 

realem. Pariter fi aequatio 𝑧𝑧 = 0 tres habeat radices reales, tum aequatio 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  0 certo duas habebit radices reales. Atque 
generatim fi aequatio 𝑧𝑧 = 0 habeat m radices reales, neceffe eft vt aequationis 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 =  0 ad minimun fint (𝑚𝑚− 1) radices reales. 

4 Si une fonction prime de 𝑧𝑧 telle que 𝑓𝑓’𝑧𝑧 est toujours positive pour toutes les valeurs de 𝑧𝑧, depuis 𝑧𝑧 = 𝑎𝑎 jusqu’à 𝑧𝑧 = 𝑏𝑏, 𝑏𝑏 étant 
> 𝑎𝑎, la différence des fonctions primitives qui répondent à ces deux valeurs de 𝑧𝑧, savoir, 𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓, será nécessairement une 
quantité positive. 
5 Une fonction qui est nulle lorsque la variable est nulle aura necessairement, pendant que la variable croitra positivement, 
des valeurs finies et de meme signe que celles de sa fonction derivee, ou de signe oppose si la variable croit negativement, 
tant que les valeurs de la fonction derivee conserveront le meme signe et ne deviendront pas infinies. 
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The demonstration of Lagrange is based on the following claim: It is clear that in the expression 
𝑓𝑓(𝑥𝑥 +  𝑖𝑖)  =  𝑓𝑓𝑓𝑓 +  𝑖𝑖(𝑓𝑓’𝑥𝑥 +  𝑉𝑉) 

where 𝑉𝑉 is a function of 𝑥𝑥 and 𝑖𝑖 and vanishes for 𝑖𝑖 = 0, increasing imperceptibly 𝑖𝑖 starting from zero, the value 
of 𝑉𝑉 will increase imperceptibly from zero, whether it is positive or negative, up to certain point. We read here 
a continuous function and assume, in actual terms, that it is piecewise monotone even when the notion of 
continuous function does not appear. 

Let us note that even when he did not wish to use the definition of derivative from the notion of limit in 
this demonstration, his arguments included this idea in phrases like one can always give 𝑖𝑖 a value such that 
the corresponding value of 𝑉𝑉, apart from the sign, is smaller than a given quantity, and for smaller values of 𝑖𝑖 
the value of 𝑉𝑉 is also smaller. We can even note the existence of an implicit notion of increasing function in the 
statement or mentioned theorem that is similar to the one we use now with inequalities. 

An interesting situation of these results is that the goal of the proof of this theorem was not the analysis 
of the sense of variation of functions, but with these theorems, Lagrange proved the theorem that is now 
known as the Theorem of finite increments (or Lagrange’s theorem). Nowadays, this theorem is the base to 
prove the theorem that links the sign of the derivative with the sense of variation of a function. 

Cauchy 

On the other hand, unlike Lagrange, Cauchy based his works of rigorization of the analysis in the notion 
of limit. In the sixth lesson of his book Résumé des leçons données à l’Ecole Royale Polytechnique sur le Calcul 
Infinitésimal (Summary of lessons given at the Royal Polytechnic School on Infinitesimal Calculus), Cauchy 
(1823) focused on the presentation of problems whose solutions required the derivative of functions of one 
single variable. He defined derivative as a limit and posed the first problem associated with the theorem that 
links the sign of the derivative with the sense of variation of a function; he established and solved it in the 
following terms: 

Problem. Assuming that the function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is continuos relative to 𝑥𝑥 in the 
neighborhood of a specific value 𝑥𝑥 = 𝑥𝑥0, one asks whether the function increases or 
decreases from this value, as the variable itself is made to increase or decrease. (p. 21)6 

As we know, this theorem is valid, so no counterexample can be the opposite. However, the proof given by 
Cauchy is not the one we now know and use in the courses of analysis at the university level. 

We can sum up the proof given by Cauchy in the following way: first, a step from the infinitesimal 
(positivity of 𝑓𝑓′(𝑥𝑥0)) to the local (the positivity of Δ𝑦𝑦

Δ𝑥𝑥
 can be deduced from the positivity of 𝑓𝑓′(𝑥𝑥0) for really small 

values of ∆𝑥𝑥). Then he goes from the local to the global in an interval. We now know that in the step from the 
infinitesimal to the local, it is not possible to deduce the increment of 𝑓𝑓 in a neighborhood of 𝑥𝑥0 from the fact 
that 𝑓𝑓′(𝑥𝑥0) is positive (Chorlay, 2014). This fact is evident with the next counterexample: 

𝑓𝑓(𝑥𝑥) = �
1
2
𝑥𝑥 + 𝑥𝑥2 sin

1
𝑥𝑥 , if 𝑥𝑥 ≠ 0

0, if 𝑥𝑥 = 0
 

In fact, it can be shown that this well-defined, continuous and derivable function in all ℝ satisfies that 
𝑓𝑓′(0) = 1

2
> 0; however, it is not increasing in any neighborhood of 0, according to the actual definition of an 

increasing function. 
The “mistake” underlying the proof of Cauchy is the conception of growth that he seems to have and that 

can be perceived in the last lines of his demonstration: “Let us assume that the function 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) remains 
continuous between two given limits 𝑥𝑥 =  𝑥𝑥0 and 𝑥𝑥 =  𝑋𝑋. If variable 𝑥𝑥 is made to increase by imperceptible 
degrees from the first limit to the second one, function 𝑦𝑦 shall increase every time its derivative, while being 
finite, has a positive value” (Chorlay, 2007, p. 34). This is the same situation presented in the theorem proved 
by Lagrange. 

 
6 Problème. La function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) étant suppose continue par rapport à 𝑥𝑥 dans le voisonage de la valeur particulière 𝑥𝑥 = 𝑥𝑥0, 
on demande si, à partir de cette valeur, la function croît ou diminue, tandis que l’on fait croître or diminuer la variable elle-
même. 
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DEFINITIONS ABOUT THE SENSE OF VARIATION OF A FUNCTION IN TEXTBOOKS 
The following books were reviewed: Aguilar, Bravo, Gallegos, Cerón, and Reyes, 2010; Apostol, 1967; 

Arteaga and Espinoza, 2014; Ayres, 1971; Ayres and Mendelson, 2001; Contreras, 2014; Cuéllar, 2007; Cuevas, 
Sánchez and Aparicio, 2012; Garza, 2015; Granville, 2007; Ibañez and García, 2007; Leithold, 1992; Ortiz, 
2009; Ortiz, Ortiz and Ortiz, 2011; Piskunov, 2008; Sántalo and Carbonell, 2011; Silva, 2014; Stewart, 2007; 
Swokowski, 1982; Valdés, 1983. 

Four definitions of an increasing function were identified in these texts: 
Definition 1: A function 𝑓𝑓 is increasing in a set 𝑆𝑆, if for any two points 𝑥𝑥1 and 𝑥𝑥2 of 𝑆𝑆, 𝑥𝑥1 < 𝑥𝑥2 implies that 

𝑓𝑓(𝑥𝑥1) ≤ 𝑓𝑓(𝑥𝑥2). 
Definition 2: A function 𝑓𝑓 is said to be increasing, when a greater value of the argument 𝑥𝑥 corresponds to 

a greater value of the function. In other words, 𝑓𝑓 is increasing if when 𝑥𝑥 increases, 𝑓𝑓(𝑥𝑥) increases and if by 
decreasing 𝑥𝑥, 𝑓𝑓(𝑥𝑥) decreases.  

Definition 3: A function is increasing in the interval (𝑎𝑎, 𝑏𝑏), if 𝑓𝑓′(𝑥𝑥) > 0 for all 𝑥𝑥 ∈ (𝑎𝑎, 𝑏𝑏). 
Definition 4: It is said that a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is increasing for 𝑥𝑥 = 𝑎𝑎 if a neighborhood of 𝑎𝑎 verifies that: 

If 𝑥𝑥 > 𝑎𝑎 then 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑎𝑎) and if 𝑥𝑥 < 𝑎𝑎 then 𝑓𝑓(𝑥𝑥) < 𝑓𝑓(𝑎𝑎). It is said that a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is increasing in an 
interval if it is increasing in all values of that interval.  

The definition of a decreasing function is formulated in an analog way.  
In general terms, we can say that Definition 1 matches with the one given by Osgood (1912). Let us note 

that definition 1 is based on the idea of function as an application or transformation between two sets; 
therefore, the properties of variation are properties of the applications between two sets of ordered sets. We 
have said before that the conception underlying this definition is that the order is preserved when the function 
is increasing, and is inverted when the function is decreasing. This definition, with some variations, is found 
in the most common textbooks in the first years of college in our country (Apostol, 1967; Arteaga & Espinoza 
2014; Leithold, 1992; Ortiz, 2009; Ortiz, et al., 2011; Stewart, 2007; Swokowski, 1982; Valdés, 1983). 

Definition 2 is aligned with the definition given by Ampère in 1824, even when it is not a proper definition 
but an informal expression or explanation of the idea of increase or decrease according to the intuitive idea of 
dynamic variation of functions mentioned in the previous paragraphs. This definition is presented in the 
textbooks Ayres (1971), Ayres and Mendelson (2001), Contreras (2014), Cuéllar (2007), Garza (2015), Granville 
(2007) and Ibañez and García (2007). 

Definition 3 introduces strong restrictions to the field of application of functions that can be considered 
as increasing or decreasing. The first of these restrictions refers to the condition that functions should be 
defined at an interval, while definition 1 defines functions in an arbitrary numerical set S. The other 
restriction, stronger than the first one, is the requirement of differentiability in the interior points of the 
interval in the domain. More than a definition, it is the condition established in the theorem that connects the 
sign of the derivative with the sense of variation of the function. We find this definition in the textbooks of 
Aguilar et al. (2010), Arteaga and Espinoza, (2014), Garza (2015) and Silva (2014). 

Definition 4 considers first the increase of a function in a punctual way and then used this to define the 
global notion of increase introducing a universal quantifier for the points of an interval. It can be observed in 
this definition that being defined at an interval is an absolutely necessary condition and it is not possible to 
weaken it by replacing the interval with an arbitrary set, because it is possible to find non-increasing 
functions, from the intuitive point of view or from definition 1, that satisfy definition 4 when the domain is a 
disconnected set, like in the case of the union of two disconnected sets. It is possible to prove that if a function 
is increasing in an arbitrary set in the sense of definition 1 then it is also increasing in the sense of definition 
4, but the reciprocal claim is not satisfied (counterexample: the function 𝑓𝑓(𝑥𝑥) = −1

𝑥𝑥
 defined in ℝ\{0}). However 

in a connected domain, both definitions are equivalent. This definition was only found in Sántalo and 
Carbonell (2011). 

The former discussion is summarized in Table 1. The first column identifies the definitions found in the 
textbooks and the second column identifies their relationship with other definitions identified in the 
epistemological analysis. 
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Table 1. Comparative analysis of the definitions 
DEFINITIONS 

Comments Found in textbooks Identified in the 
epistemological analysis 

Definition 1: A 
function 𝑓𝑓 is increasing 
in a set 𝑆𝑆, if for any two 
points 𝑥𝑥1 and 𝑥𝑥2 of 𝑆𝑆, 
𝑥𝑥1  <  𝑥𝑥2 implies that 
𝑓𝑓(𝑥𝑥1)  ≤  𝑓𝑓(𝑥𝑥2). 
 

Definition: A function is 
named monotonous if it has the 
following behavior: Let 𝑥𝑥1and 
𝑥𝑥2 be two arbitrary points in the 
domain of definition such that 
𝑥𝑥1<𝑥𝑥2. Then, without exceptions, 
it should always be 𝑓𝑓(𝑥𝑥1) ≤
𝑓𝑓(𝑥𝑥2), or always be 𝑓𝑓(𝑥𝑥1) ≥
𝑓𝑓(𝑥𝑥2), (Osgood, 1912). 

The two definitions establish the same conditions. 
An important element rests on the fact that the proposal of 
Osgood (1912) is the result of the analysis of the contributions of 
Fourier, Ampère, Lagrange and Cauchy; each of these 
mathematicians made contributions to the definition essentially 
from a geometrical and algebraic approach. However, the 
definition in the textbook does not have this background, 
namely, a process of construction or reconstruction where the 
problems that make the establishment of rigorous conditions for 
increasing or decreasing functions are identified. 
According to Chorlay (2010), even when only one quantifier 
appears, there is a double hidden quantification in the 
definition (for any element 𝑥𝑥1 of S and any element 𝑥𝑥2 of S) that 
is undoubtedly an important obstacle for students’ 
comprehension because formulations with double universal 
quantification followed by an order hypothesis (as in this case) 
lead to difficulties due to the poor cognitive integration of the 
definition in the long term and to the smooth integration of the 
conceptual image from the beginning. Even when this double 
quantification is correct from a technical point of view, it is not 
correct from a cognitive and epistemological point of view (in 
which the differences between the local and global properties 
are emphasized). 

Definition 2: A 
function 𝑓𝑓 is said to be 
increasing, when a 
greater value of the 
argument 𝑥𝑥 
corresponds to a 
greater value of the 
function. In other 
words, 𝑓𝑓 is increasing if 
increasing 𝑥𝑥, increases 
𝑓𝑓(𝑥𝑥) and if by 
decreasing 𝑥𝑥, decreases 
𝑓𝑓(𝑥𝑥). The definition of a 
decreasing function is 
formulated in an analog 
way.  

Definition: It is said that a 
continuous function is 
increasing at an interval 
between two values of the 
independent variable if it 
increases for larger values of 
this variable and, 
consequently, it decreases for 
smaller values of the same 
variable; it is said that the 
function is decreasing if its 
values are decreasing as long 
as the independent variable 
increases to the extent that 
such variable decreases 
(Ampère, 1924). 

It is wise to highlight that the definition of Ampère is supported 
by the explanation of the behavior of the quotient of variations 
between the independent and dependent variables. Specifically, 
it establishes that: if 𝑦𝑦 and 𝑌𝑌 represent the values of the 
function of one independent variable, corresponding to the two 
values 𝑥𝑥 and 𝑋𝑋 of this variable, the quotient 𝑌𝑌−𝑦𝑦

𝑋𝑋−𝑥𝑥
 of the 

differences of the variable and its function, will always be 
positive for increasing functions, and negative for decreasing 
functions. 
This definition has an implicit notion of slope (according to the 
actual theory); however, this idea promotes the comprehension 
of the behavior of a function in each of the points of the 
definition. The definition in the textbook only addresses the 
implication but hides the condition that made the formulation 
possible. 

Definition 3. A 
function is increasing 
in the interval (𝑎𝑎, 𝑏𝑏), if 
𝑓𝑓′(𝑥𝑥) > 0 for all 𝑥𝑥 ∈ (𝑎𝑎, 
𝑏𝑏).  

 

In this case, the epistemological analysis identified that the 
definition established in the textbooks is formulated as a 
theorem. This definition excludes the field of functions that are 
not derivable but where it is possible to identify if they are 
increasing or decreasing functions. 

Definition 4. It is said 
that a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 
is increasing for 𝑥𝑥 = 𝑎𝑎 if 
a neighborhood of 𝑎𝑎 
verifies that: If 𝑥𝑥 > 𝑎𝑎 
then 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑎𝑎) and if 
𝑥𝑥 < 𝑎𝑎 then 𝑓𝑓(𝑥𝑥) < 𝑓𝑓(𝑎𝑎). 
It is said that a 
function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is 
increasing at an 
interval if it is 
increasing in all values 
of that interval. 

 

This definition in the textbooks differs from the others in that it 
defines if a function is increasing or decreasing at a single point 
and then extends the definition to the points of an interval, and 
finally, in the whole interval. It can be observed in this 
definition that being defined at an interval is an absolutely 
necessary condition and is not possible to weaken it by replacing 
the interval with an arbitrary set. It is possible to show that, in 
an arbitrary set, if a function is increasing (in the sense of 
definition 1) then it is locally increasing (in the sense of 
definition 4) but that the affirmation of the reciprocal is not 
satisfied. That is to say, there are functions defined in an 
arbitrary set that are locally increasing but not globally 
increasing. However, in a connected domain, both definitions 
are equivalent. The authors of this definition see the need to 
explain that “a function is increasing if by increasing 𝑥𝑥 then 𝑦𝑦 
also increases “. 
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ANALYSIS OF THE MAIN THEOREMS OF THE SENSE OF VARIATION OF A FUNCTION 
IN TEXTBOOKS 

We will present some notes about the only textbooks that make explicit the theorem that links the sign of 
the derivative with the sense of variation of a function and are primarily used in the first years of college. 
Apostol (1967), Ayres (1971), Ayres and Mendelson (2001), Leithold (1992), Piskunov (2008), Swokowski (1982) 
and Valdés (1983) show classic demonstrations; that is to say, the proof is based on the theorem of finite 
increments. Furthermore, they show graphical explanations to make evident that the slope of the tangent 
lines that represent the function at the points in the intervals where the function is increasing is positive and 
associate it immediately with the derivative of the function. On the other hand, the books of Contreras (2014), 
Ortiz (2007), Ortiz et al. (2011) and Stewart (2007) show the graphical explanation mentioned before without 
giving a demonstration. 

The books of Ayres (1971) and Granville (2007) enunciate the theorem in only one sense. However, they 
both present identical demonstrations (except for differences in notation) to the one in Cauchy (1823). We have 
already mentioned in the epistemological study that this proof has a misstep. We referred to the step where 
the positivity of 𝑓𝑓′ in a point 𝑥𝑥0 implies the growth of the function 𝑓𝑓 in a neighborhood of 𝑥𝑥0. The year 2001 
edition of the book of Ayres, written in collaboration with Mendelson, corrects this mistake and shows the 
classic demonstration using the theorem of finite increments. 

ANALYSIS OF THE EFFECTIVE PROCEDURES 
With regard to the processes found in the analyzed textbooks, three steps are used to determine the sense 

of variation of the functions: (1) obtain the derivative 𝑓𝑓’(𝑥𝑥) of the function, (2) obtain the critical values and 
(3) determine the sign of the derivative 𝑓𝑓’ of the function 𝑓𝑓. It is in the third step where variations are observed 
because there were at least two procedures in the analyzed texts. The first procedure corresponds to the 
solution made by algebraic methods using inequalities, it was found in Aguilar et al. (2010). The second 
procedure goes as follows: after the points where the derivative is zero are determined, one smaller value and 
one greater value than the root (probative value) are chosen for each of these points. These values are 
substituted in the analytical expression of the derivative and the signs of these values are observed. 

We point out that the study of the sign of the derivative in the second procedure was only made for integer 
roots, consecutive integer values and focused their attention on the use of a “probative number”, “chosen 
value”, “smaller value” or “bigger value” inside the interval of the domain; this value substitutes the 
independent variable in the derivative and the sign of the result is considered so that the function is increasing 
if 𝑓𝑓’(𝑥𝑥) > 0 and decreasing if 𝑓𝑓’(𝑥𝑥) < 0. 

PRODUCTIONS OF THE STUDENTS 
Several activities were conducted in the search for mathematical elements associated with the topic of 

analysis of functions in the students. These instruments were applied to fourteen students in their first year 
of the Bachelor’s in Mathematics at UAG; they had already studied a differential calculus course as part of 
their pre-college curriculum. There were two main goals in these activities: (1) explore their prevailing 
mathematical elements and concepts about the study of the analysis of functions, even after their calculus 
course and (2) explore their strategies to solve these questions. 

Results from the first objective proposed, obtained from the direct questions to the students and their 
written productions, suggest that they use deeply grounded mathematical elements studied in previous levels 
instead of explicitly using the definitions when applying the essence of “preserving order” in the concept of 
increasing/decreasing function. More precisely, not one of them managed to define the concepts of increasing 
or decreasing functions when they were asked to do so; they used expressions such as “if the graph goes up, 
the function is increasing; and if it goes down, it is decreasing”. When they were shown the graph of a parabola, 
a piecewise monotone function which is increasing at some intervals and decreasing at others, the students 
answered “if we placed ourselves in the vertex of the parabola and walked to the left, the function is increasing, 
and if we walked to the right, the function is also increasing”. 

When they were asked later on to order the numbers 𝑓𝑓(−1) and 𝑓𝑓(1) given that 𝑓𝑓 is an increasing function, 
they claim that 𝑓𝑓(−1) should be smaller than 𝑓𝑓(1) because −1 is a negative number; it was really complicated 
for them to compare the images of a function only with the information of monotony. 
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The instrument used made to respond to both objectives, had only one activity with a polynomial function 
of the form 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 2𝑥𝑥2 + 1; students were asked to obtain: the intervals where the function is increasing 
or decreasing and relative or global maximums and minimums. 

On the procedural level, these difficulties are present in the analysis of functions. One of the alternative 
conceptions expressed by Valero (2003), namely a function is increasing if its graph goes up, with no 
coordination among the changes in the abscissae and the changes in the ordinates; a function is decreasing if 
its graph goes down, emerges in the students that did not get an acceptable result when they established that 
if the graph goes up towards either side, then the function is increasing (Figure 2). An analogous procedure 
is assumed for a decreasing function. 

It can be noted that these results are part of the problem related to the concept of increasing/decreasing 
function; this problem could come from the fact that pre-college teachers do not use definitions in class so 
students will only form intuitive ideas, but also from the diverse characterizations of the definitions found in 
the textbooks or because names can sometimes induce mistakes, in this case because the intuitive notion we 
all have of an increasing function is that the graph is ascending. 

With regard to the strategies for solving obtained in the written document, we found that all students 
applied a “standard” procedure documented in the analysis of textbooks: (1) deriving the function, (2) equating 
it to zero, (3) analysis of the sign, (4) applying the criterion of the first derivative. We identified two significant 
procedures in the third step obtained from four students that attained an acceptable result. A first process, 
used by two students, is the use of inequalities and locating these points in the sketch of the graph. A second 
process is the use of a “probative number” involving the application of a table with a not-founded method whose 
procedure consists of the determination of the critical points, the establishment of intervals of domain of the 
function for each of them, then considering a “probative number”, “choosing a value”, “smaller number” or 
“bigger number” inside the interval and substituting it in the independent variable and evaluating the 
derivative. The sign of the result is obtained: if the sign of 𝑓𝑓’(𝑥𝑥) > 0 then it is increasing, and if the sign of 
𝑓𝑓’(𝑥𝑥) < 0 then it is decreasing. This second strategy is found in the characterization presented in some 
textbooks during the analysis of the sense of variation of the functions. About the rest of the productions, three 
students used the second procedure without getting the solutions and the rest could not finish this part, one 
of them because he made mistakes in the derivative. 

From the application of this instrument, we observed some particularities that are important to highlight. 
The only examples shown in the textbooks are polynomial functions; the use of the “probative value” is not 
grounded and only shows examples with integer values. These particularities lead to making mistakes like 
the following: not being able to identify an inflection point when it appears and making changes to the 
quadrants in the Cartesian plane; the identification of the monotony when it changes between two integer 
roots; and the application of concepts during the analysis of the sign. These identified particularities are part 
of the intuitive ideas formed previously by the students. 

About the question to obtain maximums and minimums, most of the students obtained the correct solution, 
with some differences. Some of them solved the problem by determining the critical points and substituting 
them in the function 𝑓𝑓 to determine the coordinates of the maximum and minimum points; then the 
conceptions found by Valero (2003) appeared again about the consideration of zeros in the function as points of 

 
Figure 2. Alternative conception of increasing function obtained from a student 
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stabilization. On the other hand, other students located the extreme points identifying them graphically. The 
use of the definition is not observed. 

CONCLUSIONS 
The historical study of the sense of variation shows that the first definitions were presented in a “narrative 

style” or with purely geometrical arguments. The comparison between these definitions and those posed in 
current textbooks gives evidence that the current presentations hide the process of reconstruction and the 
resources that enabled the formal exposition of the definitions and theorems about the growth or decay of a 
function. It was also identified that the actual definition (increasing/decreasing function) was given by Osgood 
in 1912. 

The proofs of the properties given by Lagrange and Cauchy showed that they did not understand the notion 
of growth and decay of a function in the same way. The implicit conceptions of an increasing function that 
appear in the proofs that result in the theorem that links the sign of the derivative with the sense of variation 
of a function are not exactly the same, because they had different goals to achieve. Lagrange was focused on 
finding bounds for the remainder in the polynomial development of order n-1, while the intention of Cauchy 
was to ground his formalization works of the analysis of the notion of limit. Therefore, this was a notion that 
both mathematicians considered evident. 

The review of the textbooks gives evidence of the small importance given to definitions and theorems; the 
conceptions identified in the evolution of the notion of the sense of variation were also found in some of these 
textbooks. It even gives evidence of the lack of seriousness in the presentation of the theorem that links the 
sign of 𝑓𝑓’ with the sense of variation of a function 𝑓𝑓, because it is presented in a narrative style in some texts 
(Ayres, 1967; Granville, 2017). These authors presented a very similar demonstration to the one shown by 
Cauchy that, as said before, contains some mistakes. A consequence of this problem is that the processes to 
analyze the sense of variation of functions are presented as an algorithmic sequence of steps without a 
profound analysis, making more difficult the appropriation of these definitions and theorems, even in a long 
term. As documented in the study, conducted with students to explore the concepts associated with the 
analysis of variation of functions, the students followed the definitions and theorems found in the textbooks; 
some of them answered intuitively without mature and solid arguments to handle the conceptual level 
required for this type of study. 

These findings in the epistemological, didactical and cognitive study will be considered for the design of a 
system of activities in a didactical engineering that promotes the transition between the dynamical and static 
work related to the concepts of increasing and decreasing functions as part of the treatment of the sense of 
variation of a function. 
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