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mance to construct ratings of teacher quality. While the properties of constit-
uent measures have been studied, little is known about whether composite
ratings themselves are sufficiently reliable to support high-stakes decision
making. We address this gap by estimating the consistency of composite rat-
ings of teacher quality from New Mexico’s teacher evaluation system from
2015 to 2016. We estimate that roughly 40% of teachers would receive a dif-
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systems.
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Multiple measure systems are the predominant form of teacher evaluation
in the post-No Child Left Behind era (Steinberg & Donaldson, 2016). By

combining data from classroom observations, student test scores, student sur-
veys, and other measures of teaching quality and effectiveness, these systems
produce ratings of teacher quality that can be more robustly predictive of stu-
dent outcomes than when these measures are used in isolation (T. J. Kane,
McCaffrey, Miller, & Staiger, 2013; Mihaly, McCaffrey, Staiger, & Lockwood,
2013). Accordingly, states and districts increasingly use composite ratings to
inform the compensation, professional development, and dismissal of teachers.
Adopting high-stakes multiple measure systems may positively affect subse-
quent teacher performance and student test scores (Cullen, Koedel, &
Parsons, 2016; Dee & Wyckoff, 2015).

Effective teaching is complex and multifaceted (Borko, 2004; Cochran-
Smith, 2003; Leinhardt & Greeno, 1986), making the use of multiple meas-
ures to evaluate teachers intuitively appealing. However, best practices for
using multiple measure systems to inform high-stakes decisions remains elu-
sive. A broad literature exists on the validity and reliability of the most pop-
ular components of multiple measure systems, for example, value-added
estimates (Koedel, Mihaly, & Rockoff, 2015), classroom observations (Ho
& Kane, 2013), and student surveys (English, Burniske, Meibaum, &
Lachlan-Haché, 2016). Fewer studies examine how these components oper-
ate in concert when used as parts of a composite score and whether the
resulting composites are sufficiently precise to support the human capital
decisions being made using them (Martı́nez, Schweig, & Goldschmidt,
2016; Steinberg & Kraft, 2017).

This article addresses this gap in the literature by being among the first
to estimate the consistency of summative ratings of teacher effectiveness
using data obtained from an active, at-scale teacher evaluation system.
Specifically, we adapt simulation methods previously used in studies of stu-
dent assessments to estimate the consistency of teacher effectiveness deci-
sions based on the multiple measures employed in the New Mexico
Educator Effectiveness System (NMTEACH) during the 2015–2016 academic
year, defining consistency as the likelihood that a teacher would receive the
same NMTEACH rating if the evaluation process were repeated in the same
school year. Our analysis addresses the following research questions:

Research Question 1: To what extent are NMTEACH ratings of teacher quality con-
sistent across simulated repetitions of the evaluation process?

Research Question 2: To what extent can rating consistency potentially be
improved by changes in evaluation policy? Specifically, to what extent does
rating consistency vary as a function of (a) the reliabilities of the component
measures, (b) weights assigned to the component measures, and (c) the loca-
tions of the cut-points between rating categories?
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Results for Research Question 1 provide estimates of the consistency of
NMTEACH ratings under ‘‘business-as-usual’’ conditions while the analyses
conducted under Research Question 2 demonstrate how changes to compo-
nent measure and cut-point properties can affect composite rating consis-
tency, suggesting possible policy levers for changing these properties. This
study makes two contributions to the literature. First, estimates from this
study provide important empirical benchmarks for the level of consistency
policymakers can expect when implementing and revising teacher evalua-
tion policy. Second, the empirical approach can be adapted and used to
explore classification consistency in districts and states across the country.

We first provide a synopsis of existing literature on multiple measure
teacher evaluation and a description of NMTEACH. Next, we describe our
methods for estimating the consistency of teacher ratings, using both para-
metric (Douglas & Mislevy, 2010; Martı́nez et al., 2016) and nonparametric
(Brennan & Wan, 2004) techniques. Last, we present results and discuss their
substantive implications regarding the relationship between policy design
and rating consistency.

Background

The Case for Multiple Measure Teacher Evaluation

The current proliferation of multiple measure teacher evaluation was pre-
ceded by a swell of advocacy and research arguing that teacher evaluation sys-
tems failed to provide useful feedback on teacher performance (Bill & Melinda
Gates Foundation, 2010; Weisberg et al., 2009). Traditionally, teacher evalua-
tion consisted of loosely structured administrator observations, which critics
claimed failed to discriminate among teachers of different effectiveness levels
or support teacher professional development (Weisberg et al., 2009; Wise,
Darling-Hammond, McLaughlin, & Bernstein, 1985). Concurrently, research
suggested that teachers were the largest within-school contributor to student
achievement (Goldhader, Brewer, & Anderson, 1999; Nye, Konstantopoulos,
& Hedges, 2004) and that teacher background characteristics or qualifications
inadequately explain their contributions (Baker et al., 2010; Nye et al., 2004;
Rivkin, Hanushek, & Kain, 2005).

In response to these concerns, several Obama Administration-era poli-
cies, such as Race to the Top, No Child Left Behind waivers, and Teacher
Incentive Fund grants, either encouraged or required states and districts to
develop multiple measure teacher evaluation systems that combined infor-
mation from administrator observations with outcome-based measures of
effectiveness, such as student test scores or survey responses (U.S.
Department of Education, 2010). Relative to single measure systems, multi-
ple measure systems are thought to provide more valid (Baker et al., 2010;
Goe, Holdheide, & Miller, 2011) and stable (Steele, Hamilton, & Stecher,

Doan et al.

2118



2010) ratings of teacher performance. From 2010–2011 to 2016–2017, 46
states enacted reforms of their teacher evaluation systems, with roughly
80% (36 of 46) of these systems requiring that measures of student test score
performance be incorporated alongside classroom observation measures
(Kraft & Gilmour, 2017; Steinberg & Donaldson, 2016).

Research on Individual Teacher Evaluation Measures

The base of knowledge on the properties of the constituent measures of
multiple measure systems (e.g., value-added models, classroom observa-
tions, student surveys) is rapidly growing. There have been several high-
profile experimental and quasiexperimental studies showing that value-
added estimates of teacher effectiveness are minimally biased predictors of
student test score achievement (e.g., T. J. Kane et al., 2013) and are associ-
ated with long-run student outcomes (Chetty, Friedman, & Rockoff, 2014).
However, evidence pointing to value-added measures’ relatively low reliabil-
ity, incentives for ‘‘teaching to the test,’’ and lack of clear guidance for teach-
ers’ formative development raise concerns regarding the appropriateness of
their use for evaluating individual teachers (American Educational Research
Association, 2015; Corcoran & Goldhaber, 2013).1

There is also evidence that evaluation based on structured teacher
observations, such as the Charlotte Danielson Framework for Teaching;
Danielson, 2007) and CLASS (Pianta, Hamre, Haynes, Mintz, & La Paro,
2006), can be used to improve teacher practice (Taylor & Tyler, 2012).
Observation scores are also positively associated with student achievement
(e.g., Bacher-Hicks, Chin, Kane, & Staiger, 2017; T. J. Kane, Taylor, Tyler,
& Wooten, 2010). However, observations also have many limitations. At
scale, they are expensive and labor intensive (Rothstein & Mathis, 2013)
and obtaining reliable scores from observation rubrics may pose significant
administrative challenges (Hill, Umland, Litke, & Kapitula, 2012; Ho & Kane,
2013). Additionally, some research shows that observation scores are poten-
tially biased by observer (Grissom & Loeb, 2017; Ho & Kane, 2013) and stu-
dent (Mihaly & McCaffrey, 2014; Steinberg & Garrett, 2016) characteristics.

Finally, recent work has shown that indicators derived from student sur-
veys, such as the Panorama Student Survey (Panorama, 2015) and the Tripod
Student Survey (Ferguson, 2010), also correlate significantly with student
achievement (Kyriakides, 2005), value-added and observation-based ratings
of instructional practice (Bill & Melinda Gates Foundation, 2010), and can be
used to distinguish reliably between the practices of different teachers
(Balch, 2012; Ferguson 2010). However, student ratings can be susceptible
to halo effects (Wallace, Kelcey, & Ruzeck, 2016) and influenced by student
demographics, age, and similar factors (Cherng & Halpin, 2016; Ferguson,
2010; Worrell & Kuterbach, 2001).
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Research on Multiple Measure Systems

Research on the properties of composite, rather than individual, evalu-
ation measures, is relatively lacking. Several papers examine correlations
between observation scores and value-added estimates, finding consistently
significant relationships of varying strength (Grossman, Loeb, Cohen, &
Wyckoff, 2013; Strunk, Weinstein, & Makkonen, 2014). While these studies
establish concurrent validity between measures, they do not provide infor-
mation on the properties of composite scores that combine these measures.
It is often assumed that combining measures produces more precise esti-
mates of teacher quality, thus improving decision making (Jackson &
Mackler, 2016). However, there is abundant methodological literature chal-
lenging this conventional wisdom (e.g., Cronbach, Linn, Brennan, &
Haertel, 1997). Aggregating multiple measures does not, in general, ‘‘cancel
out’’ the measurement error inherent in each individual measure. Rather, the
reliability of composites depends on the component weights, reliabilities,
variances, and correlations of the individual measures (M. Kane & Case,
2004). Composite scores can be less precise than individual measures
when more reliable measures are combined with less reliable ones (M.
Kane & Case, 2004). Given that combination rules have been demonstrated
to affect the validity and reliability of composites scores (Chester, 2003;
Douglas & Mislevy, 2010; Martı́nez et al., 2016), research explicitly studying
composites, rather than simply the relationships between their constituent
measures, is needed.

Research using the data from the Measures of Effective Teaching (MET)
project are among the most thorough investigations of the properties of indi-
vidual and composite measures of teacher quality. This research demon-
strates that observation, value-added, and student survey information can
be combined to produce unbiased composite measures of teacher effective-
ness that are predictive of multiple student outcomes (T. J. Kane et al., 2013;
Mihaly et al., 2013). Two recent papers describe how changes to combina-
tion rules affect teacher ratings. Martı́nez et al. (2016) consider how the
use of different combination models (e.g., compensatory, disjunctive, con-
junctive) affect teachers’ ‘‘pass’’ rate and the consistency of those ratings.
Steinberg and Kraft (2017) focus their attention on compensatory models,
which weight and combine individual teacher evaluation measures to
form composite scores of teacher effectiveness, finding that changes to mea-
sure weights can substantially affect the final distribution of composite effec-
tiveness ratings.

The Importance of Consistency in Teacher Evaluation

Much of the prior research on teacher evaluation measures focuses on
properties of the summative scores themselves, including their predictive
validity, or the extent to which differences in these measures are predictive
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of differences in the outcomes of the students taught by those teachers. By
comparison, far less focuses on whether these measures can be used to con-
sistently classify teaching as effective or ineffective, a critical property for the
fairness and efficiency of a teacher evaluation system.

While teacher evaluation measures are intended to capture different
dimensions of teaching effectiveness, scores obtained from these measures
are, to varying degrees, affected by several factors unrelated to effectiveness.
For example, if determinations about teaching effectiveness are made based
on classroom observations, an individual teacher’s scores may depend on
the specific days when observations occur, the specific students in the class-
room, the specific lesson being taught, or the severity or leniency of the
observer, among other factors (Cronbach et al., 1997; M. Kane, 2011). This
measurement error introduces uncertainty into summative scores and, as
a result, into decisions about whether to classify teaching as effective or inef-
fective. If decisions about effectiveness are heavily influenced by factors out-
side of a teacher’s control, stakeholder perceptions of evaluation system
fairness can be weakened, hampering the efficiency with which policy-
makers can use rewards and sanctions based on these scores to develop
a more effective teaching workforce. However, if decisions about effective-
ness are relatively robust to this uncertainty, there is more evidence to sup-
port teacher evaluation claims.

Evidence of the extent to which classification decisions are robust to
measurement error is often referred to as classification consistency. In this
analysis, we estimate the within-year classification consistency of teachers’
NMTEACH ratings and investigate how different features of the NMTEACH
system affect consistency. In doing so, we provide policymakers and
researchers with accessible benchmarks with which to gauge the reliability
of the decisions based on summative scores derived from multiple measure
systems commonly used to evaluate teachers across the United States.

Our analysis builds on prior work studying multiple measure evaluation
systems in two ways. We are the first to study the properties of ordinal effec-
tiveness ratings using data collected from an active, at-scale teacher evalua-
tion system, presenting findings that are arguably more generalizable than
prior studies using data from research-based settings such as the MET pro-
ject. Second, our simulation-based methods allow us to look expressly at
how measurement error in the underlying NMTEACH measures affect the
consistency of the resulting composite ratings, offering policymakers and
program designers insight into the potential gains (or losses) to rating con-
sistency that could result from changes to component measure reliability.

The NMTEACH System

The NMTEACH Educator Effectiveness System (‘‘NMTEACH’’) was
implemented during the 2013–2014 academic year as the state of New
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Mexico’s teacher evaluation policy for all public and state-run charter
schools. NMTEACH uses a compensatory model of teacher evaluation
broadly similar to other compensatory systems around the country:
Teachers are assigned an annual Level 1–5 rating on the basis of a composite
summative score constructed from their observation scores, value-added
estimates (if available), and other measures such as teacher attendance
and parent/student survey results. Teachers classified as Level 1
(‘‘Ineffective’’) or Level 2 (‘‘Minimally Effective’’) are assigned to a ‘‘profes-
sional growth plan,’’ with districts retaining ultimate discretion for assigning
professional growth plans. Additional detail on the measures and composite
score calculation is provided below.

Measures

NMTEACH incorporates an expansive set of teacher evaluation measures,
relative to other multiple measure systems across the country (Kraft &
Gilmour, 2017). During the 2015–2016 academic year, NMTEACH used teacher
performance on up to five measures, or components, to calculate teachers’
composite scores and ratings (1) teachers’ ‘‘overall’’ value-added score or
VAS, (2) observation scores from Domains 2 and 3 of the NMTEACH observa-
tion rubric, (3) observation scores from Domains 1 and 4 of the NMTEACH
observation rubric, (4) teacher attendance, and (5) parent/student surveys.

Teacher VASs are estimated separately by grade, subject, and year using
a teacher random effects model controlling for up to 2 years of prior test
scores, whether a student was in an intervention course (e.g., ESL [English
as second language], reading intervention), and the proportion of the aca-
demic year a student was enrolled in that teacher’s course. To create a sum-
mative NMTEACH score, an ‘‘overall’’ VAS is calculated for each teacher,
which is a student-count weighted average of all available year-grade-subject
specific VAS over the past 3 years. The NMTEACH classroom observation
protocol is a modified version of the Charlotte Danielson Framework for
Teaching rubric and consists of four domains: (1) Preparation and
Planning, (2) Creating an Environment for Learning, (3) Teaching for
Learning, and (4) Professionalism. Teachers’ scores in Domains 2 and 3
and Domains 1 and 4 are weighted separately under NMTEACH. Starting
in 2015–2016, teachers clearing a specific benchmark on their overall and
VA scores are only required to be evaluated once annually on Domains 2
and 3; the remaining teachers are evaluated 2 or 3 times a year, depending
on the specifics of their district plan. Nearly all teachers were evaluated on
Domains 1 and 4 only once. Student (for Grade 3–12 teachers) and parent
(for Grade K–2 teachers) surveys are factored into teachers’ summative
scores. These surveys contain 10 items asking students/parents to rate their
teacher’s ability to create ‘‘opportunities to learn.’’ The use of the surveys and
teacher attendance was left to the discretion of the district.
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Composite Scores

NMTEACH produces a 22–200 composite score by taking a weighted
sum of teachers’ performance on each of the component measures.
Teachers’ 22–200 composite scores are then used to assign a 1–5
NMTEACH summative rating (or effectiveness level). To place all measures
on a common scale, raw scores in each component are transformed into
a proportion (or proportion-like) 0–1 score. For observations and student
surveys, a proportion is calculated by dividing a teacher’s points earned
by total possible points, summed across all nonmissing indicators/items.
Teachers’ attendance rates, already proportions, require no further transfor-
mation. VAS cannot be transformed into a proportion of total possible points
since they are bounded by negative and positive infinity. Therefore, teach-
ers’ overall VAS are converted to percentiles using a cumulative distribution
function to obtain a proportion-like measure. This conversion results in
teachers with median VAS earning 50% of total points possible.

Once scaled values are obtained for each component, they are multi-
plied by the total points possible for that component and summed to deter-
mine a teacher’s final 22–200 composite score. The set of weights (referred
to as ‘‘Steps’’ within the NMTEACH framework) assigned to each teacher’s
component measures vary according to the number of years for which
a teacher has valid student achievement data. Table 1 describes the weights
assigned to each measure, disaggregated by step.

Table 2 shows the ratings and their associated summative score cut-
points. The use of five rating categories is relatively rare compared to other
states that use multiple measure teacher evaluation systems, where four cat-
egories are more common (Kraft & Gilmour, 2017).

Table 1

Measure Weight Allocations, by Step

Step VAS, %

Domains

2 and 3, %

Domains

1 and 4, % Attendance, % Surveys, %

1 (0 years test data) 0 50 40 5 5

2 (1–2 years test data) 25 40 25 5 5

3 (31 years test data) 50 25 15 5 5

Note. VAS = value-added score. Table 1 presents measure weights (as percentage of sum-
mative score) for the three steps used in NMTEACH (New Mexico Educator Effectiveness
System) in 2015–2016. Step assignment is based on the years of valid student test data
a teacher has, that is, Step 1 teachers have 0 years, Step 2 teachers have 1–2 years, and
Step 3 teachers have 31 years of test data.
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Data and Methods

Data

Our analysis uses data from the 2015–2016 academic year. During that
year, roughly 21,000 New Mexico teachers received an NMTEACH effective-
ness level. Of these 21,000 teachers, 17% of teachers were evaluated using
Step 1 weights, with the remaining 83% evenly split between Step 2 and
Step 3 teachers. Table 3 presents descriptives for NMTEACH measure scores
and demographic characteristics, disaggregated by step. Measure scores are
presented in ‘‘proportion’’ form so that they are comparable across teachers
in different steps; histograms for individual measure scores are available in
Appendix Figure A1, in the online version of the journal. Across all three
steps, teachers earned roughly 70% of available points on all measures
except for VAS, where the average Steps 2 and 3 teacher, by construction,
earned roughly 50% of total possible points.

Table 4 shows the proportion of teachers using each measure toward
their summative score, by step. While the proportion of teachers using
value-added estimates and Domains 2 and 3 scores are as expected, there
is variation in the use of Domains 1 and 4 scores, teacher attendance, and
survey measures, with over 92% of teachers receiving Domains 1 and 4
scores, and fewer districts choosing to use teacher and student surveys.

In Table 5, we present the distribution of NMTEACH ratings and average
points earned during the 2015–2016 school year, disaggregated by step. As
has been noted elsewhere, NMTEACH is one of few teacher evaluation sys-
tems that produce roughly normally distributed summative ratings (Kraft &
Gilmour, 2017). This is broadly true of the ratings in all steps, though the
concentration of Level 3 ratings is highest among Step 1 teachers and
becomes more diffuse as steps increase in weight allotted to VAS.
Additionally, Step 1 teachers, on average, score 10 and 15 points higher
than Step 2 and Step 3 teachers, respectively.

Table 2

2015–2016 NMTEACH Ratings

Rating Lower Bound Upper Bound

5. Exemplary 173 200

4. Highly effective 146 \173

3. Effective 119 \146

2. Minimally effective 92 \119

1. Ineffective 22 \92

Note. NMTEACH = New Mexico Educator Effectiveness System.
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When plotting the composite scores by step (see Figure 1), the differen-
ces in the step-specific score distributions become more apparent. While the
mean composite scores for all three steps are within the bounds of the Level
3, or ‘‘Effective’’ category, Figure 1 makes clear that the distribution of sum-
mative scores for steps with higher VAS weights occupy a lower range of the

Table 3

Descriptive Characteristics

Step

Measures 1 2 3

VAS — 0.504 (0.257) 0.529 (0.236)

Domains 2 and 3 0.702 (0.099) 0.698 (0.1) 0.73 (0.101)

Domains 1 and 4 0.712 (0.114) 0.711 (0.111) 0.745 (0.115)

Parent and student surveys 0.799 (0.105) 0.803 (0.111) 0.817 (0.103)

Teacher attendance 0.755 (0.246) 0.782 (0.228) 0.776 (0.234)

Black 0.015 (0.123) 0.016 (0.125) 0.011 (0.103)

Hispanic 0.315 (0.465) 0.33 (0.47) 0.349 (0.477)

Other 0.065 (0.247) 0.046 (0.209) 0.044 (0.205)

White 0.604 (0.489) 0.608 (0.488) 0.597 (0.491)

Associates 0.003 (0.056) 0.001 (0.034) 0 (0.018)

Bachelors 0.566 (0.496) 0.586 (0.493) 0.548 (0.498)

Doctorate 0.008 (0.092) 0.008 (0.087) 0.006 (0.076)

Education specialist 0.001 (0.034) 0 (0.021) 0 (0.018)

Masters 0.407 (0.491) 0.396 (0.489) 0.442 (0.497)

Nondegree 0.015 (0.12) 0.009 (0.095) 0.003 (0.059)

Years experience (total) 10.655 (10.04) 9.186 (9.32) 12.372 (8.853)

Years experience (district) 7.201 (7.841) 6.248 (7.485) 9.357 (7.536)

Salary 43878.79

(11970.023)

43765.152

(12517.188)

48351.581

(27839.638)

N 3,626 8,760 8,886

Note. VAS = value-added score. Variable means, standard deviations, and number of obser-
vations presented by step.

Table 4

Percentage of Teachers Using Measure in NMTEACH Rating, By Step

Step VAS Domains 2 and 3 Domains 1 and 4 Attendance Surveys

1 0 100 92.6 77.2 42.9

2 100 100 93.9 82.6 58.3

3 100 100 95.9 83.0 67.1

Note. NMTEACH = New Mexico Educator Effectiveness System; VAS = value-added score.
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summative score scale. We later simulate changes to VAS weights to see its
effect on rating consistency, though the differences in composites scores
across steps also illustrate that such changes would also likely shift the dis-
tribution of composite scores (Steinberg & Kraft, 2017). Additionally, we see
that the distribution of summative scores for Step 1 teachers is nonsymmet-
ric, with bunching toward the higher end of the summative score range. This
aligns with other literature (e.g., Grissom & Loeb, 2017) finding that admin-
istrator-issued classroom observations scores tend to be negatively skewed,

Table 5

Distribution of 2015–2016 NMTEACH Ratings, by Step

Step Level 1, % Level 2, % Level 3, % Level 4, % Level 5, % Average Points N

Overall 5.50 23.20 42.50 24.90 3.90 131.90 21,272

1 0.80 7.30 51.70 33.70 6.50 142.07 3,626

2 2.40 24.10 47.50 23.80 2.10 132.14 8,760

3 10.50 28.70 33.70 22.40 4.60 127.51 8,886

Note. NMTEACH = New Mexico Educator Effectiveness System.

Figure 1. Distribution of 2015–2016 NMTEACH summative scores, by step.

Note. Vertical dotted lines indicate cut-points for NMTEACH ratings (1/2 = 92, 2/3 = 119, 3/4 =

146, 4/5 = 173). NMTEACH = New Mexico Educator Effectiveness System.
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generally leading to teachers receiving higher scores on these measures than
normally distributed value-added measures.

Methods

We focus specifically on estimating the within-year consistency of the
summative NMTEACH ratings received by New Mexico teachers during
the 2015–2016 school year. Summative ratings are distinct from composite
scores, and throughout the article, we use the term rating to refer to the ordi-
nal classifications (Level 1 to Level 5) received by teachers, whereas ‘‘score’’
is used to refer to teachers’ 22–200 score, that is, subsequently used to assign
their rating. Consistency is related to reliability and is sometimes referred to
as the reliability of classifications (Lee, Hanson, & Brennan, 2002) but is a dis-
tinct concept in several ways. Steinberg and Kraft (2017) examine the simi-
larity of the distribution of teacher ratings across multiple weighting
schemes, calculating something akin to scale reliability, which is largely
driven by the extent to which teacher performance is correlated across meas-
ures. Other researchers have focused on the year-to-year stability of teach-
ers’ composite scores (e.g., T. J. Kane et al., 2013). Estimates of year-to-
year stability differ from our measure of within-year consistency in that
‘‘true’’ teacher ability is more likely to change across years. Empirical studies
typically find that teacher effectiveness tends to increase as teachers accrue
experience, with the rate of improvement sharpest early in a teacher’s career
(Papay & Kraft, 2015). Estimating the consistency of ratings based on year-to-
year stability will confound these genuine changes in teacher effectiveness
with inconsistency in the ratings themselves. Additionally, the various inter-
ventions based on teacher ratings (professional development for low-rated
teachers, performance pay for high-rated teachers) imply that policymakers
actively encourage teachers to improve over time and believe that changes
to ratings are tied to genuine changes in their effectiveness. For this reason,
we focus on estimating the consistency of composite ratings within-year
where underlying teacher quality is more likely to be stable and any incon-
sistency we find is more likely to be the result of variance across factors (e.g.,
students, lessons, raters) that are typically considered measurement error.

Under current NMTEACH policy, all valid component scores for a teacher
are used toward the calculation of their NMTEACH composite score and sub-
sequent rating; there is no existing ‘‘second, independent assessment,’’ as
described by Cronbach et al. (1997), that could be used to estimate consis-
tency. Therefore, estimating the consistency of ratings on repeated measure-
ment requires the simulation of replicate scores. We approach this
simulation in two ways. Our first method uses sample information and
assumptions about the joint distribution of observed component scores to
generate plausible replicate scores. We assign ratings to these replicate scores
per NMTEACH rules and take the rate of agreement between two replicate
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scores as an estimate of consistency. Our second approach eschews these
parametric assumptions and adopts a bootstrap method, calculating replicate
scores using randomly sampled subsets of teachers’ actual scores. Our simu-
lation method and consistency calculation are described below.

Parametric Simulation

First, we use the method adopted in Douglas and Mislevy (2010) and
Martı́nez et al. (2016), hereafter the ‘‘parametric’’ method, where replicate
measure scores are simulated using parameters estimated from the 2015–
2016 NMTEACH data. This method has three distinct steps.

1. We simulate 10,000 true scores (representing 10,000 teachers) for all five
NMTEACH measures from a disattenuated multivariate normal distribution
(Bock and Peterson, 1975), obtained using sample means and covariances
from a sample of teachers with nonmissing values for all five measures. Table
6 shows the observed (upper triangle) and disattenuated true score (lower trian-
gle) correlations, with estimates of measure reliability on the diagonal.

2. For each teacher-by-measure combination, we draw two replicate measure scores
from a normal distribution with mean equal to the true score for that teacher-by-
measure and standard deviation equal to the standard error of measurement
implied by the observed standard deviation and reliability for that measure.2

3. NMTEACH ratings are then calculated for both sets of replicate scores using
NMTEACH business rules from 2015–2016. This simulation is done separately
by NMTEACH step, resulting in a final sample size of 30,000 (10,000 3 3 Steps)
simulated teachers.

This method depends greatly on estimates of measure reliability to estimate
true scores and to generate replicate scores. Because different estimates of reli-
ability could result in different estimates of consistency, we briefly describe
our approach to estimating component measure reliability here. VAS reliability
(r = 0.64) is estimated as the correlation of teachers’ adjacent-year overall VAS
scores.3 Reliability for Domains 2 and 3 (r = 0.62) is estimated by identifying
a subset of teachers who received two observations from distinct raters on two
separate occasions and taking the correlation of these paired observations.
Domains 1 and 4 reliability (r = 0.96) is based on a fully nested generalizability
study decomposing observed score variance into occasion, teacher and
observer components (Brennan, 2001; Mashburn, Meyer, Allen, & Pianta,
2014; Schweig, 2018).4 Reliabilities for the student surveys (r = 0.52) were
based on the intraclass correlation–type coefficients for scores averaged
over multiple raters (Brennan, 2001; Shrout & Fleiss, 1979).

Nonparametric Bootstrap

Our bootstrap approach (Brennan & Wan, 2004) takes advantage of the
fact that teachers often receive multiple observations over the course of the
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school year and/or receive separate value-added estimates across multiple
subjects. Roughly 70% of New Mexico teachers in our sample are observed
multiple times on at least one of the 10 observation items included in
Domains 2 and 3 of the NMTEACH rubric and 60% of teachers with value-
added estimates received VAS scores in two or more subjects, resulting in
a sample size of 16,651 teachers for these simulations. Teachers who
were included in the nonparametric sample were slightly lower performing
but more experienced than colleagues excluded from the sample (see
Appendix Table A1, in the online version of the journal, for full comparison
table).

Official NMTEACH policy constructs an ‘‘overall’’ component score by
simply averaging across a teacher’s available scores during the policy-
specified time frame (i.e., 1 year for observation scores, up to 3 years for
VASs). To form replicates using our nonparametric approach, we calculate
averages using a randomly sampled (with replacement) set of teachers’
scores rather than all available scores using a four-step process:

1. For each teacher 3 measure combination, we randomly sample (with replace-
ment) as many elements as were used for that teacher’s actual 2015–2016 score.

2. Randomly sampled elements are averaged, within measure, to form a teacher’s
first replicate measure score.

3. Steps 1 and 2 are repeated to form a second set of replicate measure scores.
4. NMTEACH ratings are then calculated for both sets of replicate scores using

NMTEACH business rules from 2015–2016.

Table 6

Observed and Disattenuated Correlations

VAS D23 D14 ATT SVY

VAS 0.636 0.236 0.207 0.071 0.119

D23 0.348 0.620 0.810 0.046 0.245

D14 0.266 0.992 0.955 0.072 0.210

ATT 0.089 0.055 0.074 1.000 0.040

SVY 0.210 0.396 0.300 0.056 0.515

Note. VAS = value-added score. Table shows observed (upper triangle) and disattenuated
(lower triangle) correlations. Correlations are disattenuated using the multivariate proce-
dure described in Bock and Peterson (1975). Bolded values on diagonal are reliability esti-
mates. VAS reliability is estimated as the correlation of teachers’ adjacent-year overall VAS
scores. Domains 2 and 3 reliability is estimated by identifying a subset of teachers who
received two observations from distinct raters on two separate occasions and taking the
correlation of these paired observations. Reliability for Domains 1 and 4 was estimated
in a separate G-study (Schweig, 2018). Reliability for the student surveys were based on
the intraclass correlation-type coefficients for scores averaged over multiple raters.
Attendance reliability is assumed to be 1.
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Important, these samples may include multiple instances of the same score and
no instances of others, whereas a teacher’s actual component score uses a single
instance of all available scores. Measures (or items within measures) on which
teachers do not vary within year, such as attendance and Domain 1 and 4
scores, are taken as constant and ‘‘filled down’’ across replicates.5

Relative to the parametric method, these are several advantages of this
approach. First, the bootstrap method does not require any assumptions about
how teacher performance is jointly distributed across measures. Second, the
bootstrap method does not require estimates of measure reliability, as it sim-
ply uses variation in scores across observation cycles and subjects as an empir-
ical method for generating measurement error across replicates.

Consistency estimates obtained using the bootstrap method are likely
positively biased due to the finite set of scores that we use to sample with
replacement, particularly for the observation measures. In the nonparametric
sample, the median teacher has six VA scores but only two sets of observa-
tion scores from which to resample. If a teacher has only two sets of scores
for a given observation item, there is a 37.5% chance that both replicates will
draw the same set of scores for that item. In contrast, because the parametric
method draws replicates from an infinitely large set of values, the likelihood
of exact matches for component scores across replicates is very slim, guaran-
teeing that each replicate will have some degree of deviation from the other.
This issue also pertains to the sampling of teacher VAS but is mitigated
because NMTEACH policy uses teacher VAS across all subjects over 3 years
for a given teacher.

Comparing Simulated and Actual NMTEACH Scores

We assess the plausibility of our simulated NMTEACH scores by apprais-
ing the similarity of the simulated and empirical score distribution. In gen-
eral, both the parametric and nonparametric closely overlap the observed
score distributions and successfully recover the empirical means and cova-
riances. However, the nonparametric method is more successful at recover-
ing the skew of the Step 1 distribution and the kurtosis of the Step 3
distribution. This is illustrated in Figure 2, where the simulated score distri-
bution is overlaid on the distribution of actual NMTEACH scores.

Calculating Consistency

Once NMTEACH ratings are assigned, we calculate, separately for the
parametric and nonparametric replicates, a consistency statistic defined as
the percentage of teachers who have the same 1–5 summative rating across
both replicates. Maintaining the definition used elsewhere in the literature
(Brennan & Wan, 2004; Douglas & Mislevy, 2010; Livingston & Lewis,
1995; Martı́nez et al., 2016), this definition of consistency refers to the agree-
ment of two observed ratings that are measured with error.
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Policy Conditions

To answer the second research question, we conduct policy simulations
to examine the effects of three potential mechanisms for improving rating
consistency. The goal of these simulations is to illustrate the gains (or losses)
to consistency that policymakers might expect to see following changes to
(1) measure reliability, (2) measure weights, and (3) the number and loca-
tion of rating cut-points.

First, we examine the relationship between measure reliability and com-
posite rating consistency. Intuitively, increases in measure reliability will
likely result in increases to composite rating consistency. Unlike the other
policy conditions that we explore through simulation, changes to measure
reliability cannot be directly imposed. Instead, policymakers will need to
modify other evaluation policies, which will improve measure reliability
indirectly. These policies might include increasing the number of years of
student test score data that are included in a teacher’s VAS calculation,
increasing the number of required classroom observations, or imposing
a minimum number of students to be assigned to a teacher evaluated using
student-level scores (i.e., VAS, student surveys). These policy modifications
will result in increases to the reliability of the relevant component measures,
and subsequently, the consistency of the composite rating. We explore this
relationship between measure reliability and rating consistency empirically

Figure 2. Replicate and actual NMTEACH score distributions.

Note. VAS = value-added score; NMTEACH = New Mexico Educator Effectiveness System. Clear

figures in foreground are histograms of the replicate summative score distribution. Gray figures

in background histograms of the actual 2015–2016 NMTEACH summative scores used to simulate

the replicate scores. The parametric method uses a sample of teachers who have scores on all five

measures. The nonparametric method uses a sample of teachers of have multiple scores on the

Domains 2 and 3 observation and/or VAS measures, depending on step.
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by repeating our parametric simulations and varying the inputted reliability
of (1) the Domain 2 and 3 observation scores and (2) VAS with each iteration.
This method allows us to see the full range in the relationships among VAS
reliability, observation score reliability and rating consistency. Observation
score and VAS reliabilities higher than what is used in our parametric simu-
lations (r = 0.62 and r = 0.64, respectively) are included to suggest improve-
ments to consistency that may come as result to implementation of policies
that increasing score reliability. Conversely, because our empirical estimates
of both VAS and observation score reliabilities are higher than is typically
reported in the literature, simulations using lower estimates of score reliabil-
ity provide important sensitivity analyses and can be useful for applying our
findings to other evaluation systems.

Second, we consider the effect of changing the weights of individual
measures on consistency. Changes to the weights assigned to component
measures are typically discussed as a mechanism to change the distribution
of the final composite scores (Steinberg & Kraft, 2017). However, such
changes will also affect the consistency of resulting composite rating. If
weights are shifted toward more reliable components and away from less
reliable ones, we would expect rating consistency to increase as well.
Similar to our investigation of measure reliability, we can plot the relation-
ship between measure weight and rating consistency by running successive
simulations, changing the weights assigned to each measure with each iter-
ation. Specifically, we begin our simulation using the Step 1 weights and
repeat the simulation 100 times, each time assigning an additional percent-
age point to teachers’ VAS and distributing the remaining weight proportion-
ally among the other measures. We run these iterative simulations using both
parametric and nonparametric methods. We restrict this analysis to Steps 2
and 3 teachers, since changes to VAS weight will have no effect on Step 1
teachers who do not have VAS scores.

The third mechanism for affecting rating consistency is adjusting the
location and number of rating cut-points. Cut-point placement does not
affect the underlying amount of measurement error for a given score but
can exacerbate the consequences of measurement error. Assuming homo-
skedastic measurement error, observations closer to rating cut-points are
more likely to be inconsistently rated. By extension, the sample-wide consis-
tency rate will be lower if rating cut-points are located in denser regions of
the underlying summative score distribution. We illustrate the importance of
cut-point location by examining how consistency around a single cut-point
varies as the cut-point location on the 22–200 summative score scale changes
with each iteration of the simulation. Additionally, if proximity to a cut-point
decreases consistency, removing a cut-point altogether, thus condensing the
number of rating categories, will increase it. While NMTEACH uses a five-
level rating system, other evaluation systems across the country typically
use only three or four different levels of ratings (Kraft & Gilmour, 2017).
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Therefore, we also estimate the consistency of a hypothetical three category
rating system. We do this by collapsing the five-level rating NMTEACH sys-
tem to a three-category system in two ways: (1) a ‘‘tail-heavy’’ system that
collapses Levels 1 and 2 and 4 and 5, leaving Level 3 unchanged and (2)
a ‘‘center-heavy’’ distribution that collapses Levels 3, 4, and 5, leaving
Levels 1 and 2 unchanged.

Results

Parametric Results

Table 7 shows estimates of the overall and step-specific consistency
rates of NMTEACH ratings. In addition to rates of rating consistency, we
also provide the correlation between teachers’ (22–200) replicated summa-
tive scores, which can be interpreted as a measure of the summative scores’
reliability, and the implied standard error of measurement of the summative
score. Using parametric simulation, we estimate that 60% of teachers would
obtain the same NMTEACH rating on remeasurement. The degree of devia-
tion is generally limited to within one rating level, as 97% of teachers
received replicate ratings that were at least 61 level of each other. In addi-
tion, we find that as steps increase in the weight given to VAS, measures of
consistency drop accordingly. The consistency rate of Step 1 teachers (72%)
is roughly 30 percentage points higher than that of Step 3 teachers (45%).
Encouragingly, 92% of Step 3 teachers still receive replicate ratings within
1 level of each other.

Appendix Table A2 (available in the online version of the journal) pro-
vides a complete transition matrix disaggregated by rating level for teachers’
ratings across replicate scores obtained using the parametric method. Values

Table 7

Consistency Estimates Using Parametric Replication Method

Step Exact, % 61, % 62, % Corr. SEM

Overall 60 97 100 0.79 12.20

Step 1 72 100 100 0.88 6.44

Step 2 62 99 100 0.79 9.34

Step 3 45 92 100 0.70 15.73

Note. This table presents estimates of rating consistency using the parametric simulation
method. Consistency compares ratings calculated from observations’ replicate Score 1
and replicate Score 2. ‘‘Exact,’’ ‘‘61,’’ and ‘‘62’’ show the percentage of cases whose rat-
ings match exactly within 1 level and within 2 level, respectively. ‘‘Corr’’ is the correlation
between the observations’ underlying summative scores. SEM is the implied standard error
of measurement, calculated as SEM5SD*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corrð Þ

p
, where SD is the observed standard

deviation of replicate score 1 and Corr is used as an estimate of measure reliability.
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in the transition matrix are row percentages indicating the percentage of
observations receiving the column level (Replicate 2), conditional on receiv-
ing the row level (Replicate 1).

Nonparametric Results

Using the nonparametric replicates, we see similar general patterns as
those obtained from the parametric replicates, with rates of consistency
that are 15–20 percentage points higher when using the nonparametric rep-
lication method (see Table 8). As previously explained, we believe these
nonparametric consistency rates may be positively biased as result of the
small person-by-measure samples we are bootstrapping from. Consistent
with the pattern observed with the parametric replicates, increases in the
weight given to VAS are shown to have an adverse effect on rating consis-
tency. Appendix Table A3 (available in the online version of the journal)
provides transition matrices, disaggregated by rating level for teachers’ rat-
ings across replicate scores obtained using the nonparametric method.

Policy Simulations

Next, we conducted policy simulations to examine how rating consis-
tency would be affected by changes to three aspects of the NMTEACH sys-
tem: (1) measure reliability, (2) measure weights, and (3) the number and
location of rating cut-points.

Changing Observation Score Reliability

First, we examine how rating consistency changes in response to
changes to reliability of Domain 2 and Domain 3 observation scores.

Table 8

Consistency Estimates Using Nonparametric Replication Method

Step Exact, % 61, % 6 2, % Corr. SEM

Overall 75 98 100 0.86 8.63

Step 1 95 100 100 0.99 1.50

Step 2 80 100 100 0.90 5.81

Step 3 63 96 99 0.81 11.67

Note. This table presents estimates of rating consistency using the nonparametric simula-
tion method. Consistency compares ratings calculated from observations’ replicate Score 1
and replicate Score 2. ‘‘Exact,’’ ‘‘61,’’ and ‘‘62’’ show the percentage of cases whose rat-
ings match exactly within 1 level and within 2 level, respectively. ‘‘Corr’’ is the correlation
between the observations’ underlying summative scores. SEM is the implied standard error
of measurement, calculated as SEM5SD*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corrð Þ

p
, where SD is the observed standard

deviation of replicate score 1 and Corr is used as an estimate of measure reliability.
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Figure 3 shows replicate consistency estimates across repeated parametric
simulations for hypothetical teachers in all 3 steps, with each iteration of
the simulation using a different reliability estimate for observation scores.
The vertical dashed line in the figure indicates the reliability estimate used
in our parametric estimates, which equals .62.

As expected, increases to the reliability of the observation score results
in increases to rating consistency. However, there are relatively small
declines in consistency as the reliability of the observation scores decreases.
If observation score reliabilities are decreased to around .50, for example,
the overall consistency rate drops by only 2 percentage points relative to
the results reported in Table 7 (60% to 58%). This is potentially an important
result for policymakers, as the .50 reliability is close to observation score reli-
abilities reported elsewhere, including those reported as a part of the MET
project (Cantrell & Kane, 2013).

Changing VAS Reliability

Next, we examine how rating consistency changes in response to
changes to VAS reliability. Figure 4 shows replicate consistency estimates
across repeated parametric simulations for Step 2 and 3 hypothetical teach-
ers, with each iteration of the simulation using a different reliability estimate
for VAS. The vertical dashed line in the figure indicates the VAS reliability

Figure 3. Changes to rating consistency for Step 1–3 teachers, by observation

score reliability.

Note. Vertical dotted line indicates estimate of observation score reliability used in parametric

simulation, .62.
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estimate used in our parametric estimates, .64. Step 1 hypothetical teachers
are omitted because their rating consistency is unaffected by changes to VAS
reliability.

As expected, increases to the reliability of VAS also result in increases to
rating consistency. Simulations suggest that for value-added reliability esti-
mates that are at the lower end of those typically encountered in practice
(r = 0.20), consistency rates for Step 2 and 3 teachers drop by roughly 11 per-
centage points relative to the results reported in Table 7. Our simulation sug-
gests that the returns to rating consistency are nonlinear, with the marginal
effect of VAS reliability increasing as VAS approaches perfect reliability.

Changing VAS Weight

To plot the relationship between measure weight and value-added reli-
ability, we again use repeated simulation, this time, iterating the weight given
to VAS. Weights for non-VAS measures are assigned such that they maintain
the ratio used in Step 1, that is, the Domain 2 and 3 scores, Domain 1 and
4 scores, teacher attendance, and student surveys always occupy 50%, 40%,
5%, and 5% of the non-VAS weight, respectively. The consistency rates from
both the parametric and nonparametric methods are plotted in Figure 5.

Similar to the effect of changes on VAS reliability, increases to VAS
weight exhibit the expected negative effect on rating consistency, but the

Figure 4. Changes to rating consistency for Steps 2/3 teachers, by VAS reliability.

Note. VAS = value-added score. Vertical dotted line indicates estimate of VAS reliability used in

parametric simulation, .64.
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relationship between these quantities also appears nonlinear: Increases in
VAS weight from 0% to 60% have a roughly linear negative relationship
with composite reliability but appear to have no effect on reliability after
the 60% mark. This plateau is unlikely to affect policy decisions, since the
range of VAS weights currently used in most multiple measure systems are
within 0% to 50%. Within the observed range across teacher evaluation sys-
tems, our findings suggest that decisions to adjust the weights of VASs have
a pronounced effect on rating consistency.

Changing NMTEACH Cut-Points

Last, we describe the role of cut-point location on the consistency of com-
posite ratings by incrementing the location of a single cut-point along the 200-
point NMTEACH summative score scale. The consistency statistic in this sim-
ulation is the percentage of teachers who are consistently rated above or
below the cut-point location for that given simulation. This statistic is analo-
gous to calculating a consistency rate for a two-category system, which can
be a useful result for systems that have multilevel composite ratings but attach
consequences to only one of these ratings. Figure 6 shows the consistency
rates as a function of cut-point location, disaggregated by method and step.

Figure 5. Changes to rating consistency for Steps 2/3 teachers, by VAS weight.

Note. VAS = value-added score. Step 1 weights are used for all measures in the ‘‘VAS % = 0’’

iteration. For each additional iteration of the simulation, non-VAS measures are assigned

the remaining weight not assigned to VAS, maintaining the same ratio found in Step 1, for

example, the Domain 2 and 3 score will always occupy 50% of the non-VAS weight and the

Domain 1 and 4 score will always occupy 40% of the non-VAS weight.
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We find that the cut-point location at which composites are least reliable
vary by step. The consistency curves are essentially mirror images of the
composite score distributions, where the ‘‘valleys’’ of the former are located
at the ‘‘peaks’’ of the latter. The valley of the consistency curves, that is, the
cut-points of lowest consistency, for Steps 1 and 3 teachers are at the 3/4 and
2/3 boundaries, respectively, with the location of the Step 2 valley split in-
between.

In this same vein, we examine how consistency rates would be affected
by reducing the number of rating categories from five (the current
NMTEACH system) to three. We construct both a ‘‘tail-heavy’’ three category
system, which combines Levels 1 and 2 and Levels 4 and 5, and a ‘‘center-
heavy’’ three category system, which combines Levels 2, 3, and 4. Cut-points
for the tail-heavy distribution will be closer to the center of the distribution
than those for the center-heavy distribution. Therefore, examining differen-
ces between the consistency rates for the tail-heavy and center-heavy sys-
tems allow us to examine the effects of category reduction as well as cut-
point location on rating consistency. Parametric results for the tail-heavy

Figure 6. Changes to consistency of teacher ratings, by cut-point location.

Note. Figure shows the consistency rate for a two-category rating system (i.e., below/above

cut-point), iterating the cut-point location from 0 to 200. Vertical dotted lines indicate cut-

points for NMTEACH ratings (1/2 = 92, 2/3 = 119, 3/4 = 146, 4/5 = 173). NMTEACH = New

Mexico Educator Effectiveness System.
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and center-heavy three categories are in Tables 9 and 10, respectively.
Nonparametric results are provided in Appendix Tables A4 and A5 (available
in the online version of the journal).

Relative to the overall results, consistency rates are higher for a hypothet-
ical three category system than for a five-category system. However, the reli-
ability statistics measured using the NMTEACH summative scores, rather
than ratings, do not change. This is consistent with the fact that changing
or removing cut-points does not affect the amount of measurement error
in the underlying summative scores, only the risk of being inconsistently
classified. While the overall consistency rates for both the tail-heavy
(Parametric: 68%) and center-heavy (90%) three category ratings are
improvements from the consistency of the original five category ratings
(60%), cut-point location clearly matters for rating consistency. Consistent
with our ‘‘single cut-point’’ analysis presented in Figure 5, steps with ratings
closer to the densest regions of the underlying score distribution (the tail-
heavy system) will be more prone to inconsistency than those with cut-
points in the fringes (the center-heavy system).

Discussion

This analysis estimates the consistency of composite ratings of teacher
effectiveness issued from an at-scale high-stakes teacher evaluation system
in New Mexico. Using two methods to simulate a reevaluation of teachers
during the 2015–2016 academic year, we find that between 25% (nonpara-
metric) and 40% (parametric) New Mexico teachers would be expected to

Table 9

Three Category Parametric Results (Tail-Heavy)

Step Exact, % 61, % 62, % Corr. SEM

Overall 68 98 100 0.79 11.29

Step 1 79 100 100 0.88 6.48

Step 2 66 100 100 0.80 9.27

Step 3 59 95 100 0.69 15.97

Note. This table presents estimates of rating consistency for a hypothetical ‘‘tail-heavy’’
three category rating system using the parametric simulation method. Tail-heavy catego-
ries were created from the original 5 categories ratings by combining Levels 1 and 2, leav-
ing Level 3 intact, and combining Levels 4 and 5. Consistency compares ratings calculated
from observations’ replicate score 1 and replicate score 2. ‘‘Exact,’’ ‘‘61,’’ and ‘‘62’’ show
the percentage of cases whose ratings match exactly within 1 level, and within 2 level,
respectively. ‘‘Corr’’ is the correlation between the observations’ underlying summative
scores. SEM is the implied standard error of measurement, calculated as
SEM5SD*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corrð Þ

p
, where SD is the observed standard deviation of replicate score

1 and Corr is used as an estimate of measure reliability.
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receive a different rating if they were reevaluated. Teachers whose compos-
ite scores rely more heavily on VASs are more likely to be rated differently
according to our findings from both simulation methods. Consistency among
Step 1 teachers, whose composite scores do not incorporate VAS, is roughly
30 percentage points higher than consistency rates for Step 3 teachers,
whose composite scores are 50% determined by VAS.

Perhaps our most striking finding is the decreases in rating consistency
associated with increases in VAS weight. However, policymakers looking to
act on our estimates should consider a number of important caveats. First, while
the design of NMTEACH certainly shares many features with other multiple
measure evaluation systems that have emerged in the Race to the Top era,
the New Mexico system is distinct in several ways, including its use of teacher
attendance and survey measures and the roughly normal distribution of its final
summative ratings. Additionally, even for commonly used measures, such as
observation scores and value-added, the consistency estimates we obtain in
this article are specific to the properties of these measures (e.g., reliabilities, cor-
relations with other measures) as implemented in NMTEACH. Our finding that
rating consistency is improved when shifting weight away from VAS and toward
observation scores is dependent on the fact that, using the NMTEACH data, we
estimate that non-VAS components are relatively more reliable than VAS. In sys-
tems where observation scores are substantially less reliable than VASs, giving
more weight to observation score components, intuitively, may have a negative
effect on rating consistency.

Taken on their own, the consistency estimates that we obtain in this
study offer a cautionary tale that recommends against using composite

Table 10

Three Category Parametric Results (Center-Heavy)

Step Exact 61 62 Corr. SEM

Overall 90% 100% 100% 0.79 11.29

Step 1 94% 100% 100% 0.88 6.48

Step 2 95% 100% 100% 0.80 9.27

Step 3 82% 100% 100% 0.69 15.97

Note. This table presents estimates of rating consistency for a hypothetical ‘‘center-heavy’’
three category rating system using the parametric simulation method. Center-heavy cate-
gories were created from the original 5 categories ratings by leaving Level 1 intact, com-
bining Levels 2, 3, and 4 and leaving Level 5 intact. Consistency compares ratings
calculated from observations’ replicate score 1 and replicate score 2. ‘‘Exact,’’ ‘‘61,’’ and
‘‘62’’ show the percentage of cases whose ratings match exactly within 1 level, and within
2 level, respectively. ‘‘Corr’’ is the correlation between the observations’ underlying sum-
mative scores. SEM is the implied standard error of measurement, calculated as
SEM5SD*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Corrð Þ

p
, where SD is the observed standard deviation of replicate score

1 and Corr is used as an estimate of measure reliability.
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ratings, derived from systems with properties similar to NMTEACH, to make
high-stakes inferences regarding the effectiveness of individual teachers.
However, it is important to remember that these results should not be con-
sidered in isolation. The analyses presented here focus exclusively on con-
sistency and do not address other important properties of a valid and
useful evaluation system, including (most important) accuracy, cost, and
coverage. For example, prior teacher evaluation systems where virtually
all teachers were deemed ‘‘satisfactory’’ on the basis of informal observations
produced remarkably consistent but highly inaccurate evaluation scores for
most teachers. Scores produced by NMTEACH and other multiple measure
systems are almost certain to be less consistent than scores produced under
these prior systems. However, this reduction in consistency comes from the
incorporation of measures that are more accurate and provide more action-
able feedback based on measures that are more closely aligned to student
outcomes (Chetty et al., 2014; T. J. Kane et al., 2011).

In many ways, this is similar to what statisticians refer to as a ‘‘bias-variance
tradeoff’’: policy changes that improve rating consistency may also adversely
affect these other desirable properties. We demonstrate that by shifting weight
away from less reliable measures, such as value-added in the context of
NMTEACH, the consistency of summative ratings will increase. However, poli-
cymakers will ultimately need to consider evidence of score consistency in com-
bination with evidence of score accuracy as well other sources of evidence
about score validity, and with cost and feasibility considerations.

Evidence regarding the predictive power of observation scores for long-
run student outcomes are not yet available given the recent adoption of for-
mal observations. However, recent studies finding evidence of principal-
driven (Grissom & Loeb, 2017) and student characteristic-driven (Steinberg
& Garrett, 2016) bias raise concerns about the quality of information cap-
tured by observational measures. Shifting more weight toward classroom
observation scores will generally produce a more consistent signal, but
this signal may not be an accurate indication of the teachers who are suc-
cessful at promoting student success.

Based on our ‘‘policy simulations,’’ one clear implication of our results is
that if consistency in teacher ratings is valued, efforts should be made to
examine and improve the reliability of constituent measures, including
both the observation-based measures and value-added measures used in
teacher evaluation systems without changing the underlying model used
to combine measures. This may include conducting more frequent teacher
observations, having observations conducted by multiple raters, or increase
the number of years of VASs averaged to form composites. In particular, any
systems using 1- or 2-year averages of VAS should consider requiring teach-
ers to have at least 3 years of estimates prior to using these scores for
accountability. While such a policy precludes early career teachers from hav-
ing value-added included in their evaluation score, this may be a tradeoff
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that policymakers are willing to make. Similarly, increasing the number of
minimum student test scores or survey responses will subsequently result
in increases to the reliability of the VAS and survey components, respec-
tively, but will come at the cost of reducing the coverage of teachers with
valid measures. Additionally, we demonstrate how reducing the number
of categories or shifting the rating cut-points out toward the tails of the sum-
mative score distribution can improve the consistency of their ratings. Since
additional categories increase the risk of rating inconsistency, policymakers
should consider keeping only categories that are attached to specific inter-
ventions and of summative or formative importance.

The weight given to each measure and the number and location of the
cut-points should depend on how policymakers and practitioners balance
the need for validity with the tolerance for misclassification. The need for
increased consistency, given trade-offs to other properties, will differ by sys-
tem, varying according to how composite scores and ratings are used
(Messick, 1995). In general, as the penalties for poor performance increase,
stakeholders’ tolerance for misclassification should decrease. Our analysis
does not provide guidance as to whether systems should pursue the various
mechanisms we outline. Rather, we offer our estimates of NMTEACH consis-
tency as a ‘‘business-as-usual’’ baseline for policymakers operating high-
stakes teacher evaluation systems. If policymakers opt to modify evaluation
systems, our various policy simulations demonstrate the potential effects of
these changes on rating consistency. Ultimately, the structure of these sys-
tems and any changes to them based on our analysis should depend on
the aims of a teacher evaluation system as identified by its stakeholders.
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1Readers interested in a more comprehensive synopsis of the value-added literature
are encouraged to refer to Braun (2005), Koedel et al. (2015), and McCaffrey, Lockwood,
Koretz, and Hamilton (2004).

2The standard error of measurement for any given measure is calculated as
SD*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rð Þ

p
, which is the measure’s sample standard deviation multiplied by the square

root of one minus the estimate of reliability for that measure.
3Existing estimates of value-added reliability generally range from .2 to .7 (McCaffrey,

Sass, Lockwood, & Mihaly, 2009), with our estimate of VAS reliability on the higher end of
this range. However, the published estimates range widely with regard to both (1) model
specification and (2) the method used to estimate reliability. Estimates in the lower end of
this range tend to be estimated using the adjacent-year correlations of single-year, single-
subject value-added estimates. As a multiyear, multisubject average, it is reasonable that
the reliability of the ‘‘overall’’ VAS used in NMTEACH is on the higher end of this spectrum.

4We are unable to estimate Domain 1 and 4 reliability in the same way as Domain 2
and 3 due to the extremely small sample (N ~20) of teachers receiving Domain 1 and 4
scores from different raters.
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5The ‘‘filling down’’ used in the nonparametric simulation, in essence, assumes that
these components have perfect reliability and is a source of positive bias in our consis-
tency estimates. However, the size of this bias is very small, given that the filled down
components already have relatively high-estimated reliabilities and/or are assigned
a very small component weight.
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