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This article proposes a latent variable regression four-level hierarchical model

(LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-

cohort longitudinal data, for example, annual assessment scores over grades

for students who are nested within cohorts within schools, the LVR-HM4

attempts to simultaneously model two types of change, arising from individ-

ual student over grades, and successive cohorts in the same grade over years. In

addition, as an extension of Choi and Seltzer, the LVR coefficients, that is, gap-

in-time parameter, capturing the relationships between initial status and rates

of changes within each cohort and school, help bring to light the distribution of

student growth and differences in the distribution over different cohorts within

schools. Advantages associated with the LVR-HM4 can be highlighted in studies

on monitoring school performance or evaluations of policies and practices that

may target different aspects of student academic performance such as initial

status, growth, or gap over time in schools.

Keywords: hierarchical linear model; fully Bayesian approach; multiple cohort long-

itudinal data; monitoring school performance; distribution of student growth

Introduction

Data on academic performance have become more widely available and more

systematic over the last decade. Since the No Child Left Behind Act (NCLB,

2002) that mandated states to administer end-of-year assessments to all students

in Grades 3 through 8, statewide data on student achievement have been accu-

mulating and can be linked across years. Such abundant data combined with

innovative modeling techniques facilitate a more detailed examination of

changes over time in academic performance.

For example, Choi and Seltzer (2010) examine equity in academic perfor-

mance in addition to growth patterns in academic performance. They apply three-

level hierarchical models (HMs) with latent variable regressions (LVRs) in
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which the LVR coefficients—capturing the relationships between initial status

and rates of change within each school—are posited to vary across schools. In the

context of monitoring school performance, the technique can help bring to light

the within-school distribution of academic performance (see also Seltzer, Choi,

& Thum, 2003). In some schools, students with relatively high initial status may

progress rapidly; in these schools, initial gaps in achievement are magnified over

time. In other schools where students with lower initial status progress more

rapidly than students with higher initial status, initial gaps diminish over time.

The coefficients of LVR capture the extent to which initial gaps will magnify or

shrink over time. That is a useful framework for studying the equity issues in the

sense that the modeling framework puts equity in school performance on a time

dimension; the technique quantifies how equitable performances within schools

are over time (see also Choi, Seltzer, Herman, & Yamashiro, 2007, for applica-

tion of this technique).

Drawing on these recent advances in growth modeling, this article pre-

sents four-level HMs with LVRs (LVR-HM4) that use a fully Bayesian

approach. This technique underscores the state’s annual assessment data

cumulated over time that consist of four levels: annual assessment scores

over grades nested within students, who are in turn nested within cohorts,

which are in turn nested within schools. As compared to the three-level HMs

previously discussed, the LVR-HM4 can be very useful in studies of student

achievement by focusing on, and incorporating, the cohort level in the nest-

ing structure. First, the four-level data structure makes it possible to jointly

model two types of change. By introducing the cohort level in the model, this

technique creates a time series for each school, which consists of successive

cohorts in schools. Thus, the model simultaneously examines changes in the

academic performance of individual students over grades and changes of

successive cohorts over academic years.

As will be seen, monitoring systems or evaluation studies based on this

approach can benefit from advantages associated with joint modeling. Moni-

toring school performance or evaluation of policies and practices may target

multiple aspects such as status, growth, and equity over time. The multiple

target dimensions would often be strongly correlated. Simultaneous estimation

assuming the joint distribution of these outcomes of interest helps draw sound

inferences concerning each of the outcomes representing multiple target

dimensions. Although estimating parameters of such models can be extremely

complex, a fully Bayesian approach using the Gibbs sampler would make such

estimations possible.

In the following, we introduce two key areas in which this technique can

provide novel approaches, school monitoring, and evaluation studies. We pro-

vide brief background information on research in these areas and potential con-

tributions of our proposed framework to these areas.
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School Monitoring

In studying changes over time in the academic performance of schools (Gold-

schmidt & Choi, 2007), one can track the same group of students as they progress

through grade levels or alternatively one can track successive cohorts in the same

grade over academic years. Tracking the same group of students across grades is

the comparison of the current grade score to the prior grade score of individual

students. Thus, it is concerned with changes of individual students, which are

averaged at the school level for the purpose of monitoring school performance.

Tracking successive cohorts in the same grade over years is the comparison of

scores of the current year cohort to the scores of the previous year cohort. Haertel

(2005; also see Thum, 2006) refers to tracking the same group of students over

grades as “an individual growth design” (an IG design; p. 5) and tracking suc-

cessive cohorts in the same grade over years as “a successive cohort design” (an

SC design; p. 4).

Many research studies and monitoring systems in education are explicitly

or implicitly based on the IG design. To evaluate or identify different types

of instructional programs or educational practices, most often the key interest

lies in how much or how rapidly students would progress during the imple-

mentation period. This is because, as Willet (1989) writes, “the very notion

of learning implies growth and change” (p. 346). Value-added models that

have been a prevailing measure of teacher and/or school effectiveness

(McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Ponisciak &

Bryk, 2005; Sanders, Saxton, & Horn, 1997) can also be viewed as being

based on the IG design. By analyzing individual students’ time-series data

using regression-based models (e.g., multilevel or mixed models), value-

added models are fundamentally concerned with individual students’ prog-

ress over time, which are estimated at the teacher or school level to represent

teachers’ or schools’ value-added scores.

The SC design is often used when a key interest lies in the change in schools

(see also Leckie & Goldstein, 2009). Because the SC design often examines how

well schools perform regardless of the entry and exit of their students, it is at the

heart of the monitoring of school performance over time. As Haertel (2005)

notes, if some low-performing schools do not improve or even worsen over years,

states or districts may determine that those schools may be in great need of

intervention or support.

Simultaneously modeling both types of change arising from both the IG and

the SC designs may take advantage of HM4s that incorporate the cohort level.

Standard HM4 allows us to estimate both changes of individual students corre-

sponding to the IG design and changes of cohorts in successive years correspond-

ing to the SC design. In addition to this, the LVR features of the LVR-HM4 offer

additional performance indicators of equity in academic achievement for school

monitoring systems.
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Evaluation Studies

In evaluation studies in which an event of interest (e.g., implementation of

new educational policies or programs) occurs during a time series and is hypothe-

sized to affect academic achievement upon or after the event in the time series,

the interrupted time series (ITS) design has been increasingly used. It is partic-

ularly useful in assessing the influence of major educational policy initiatives

that are implemented without manipulations such as random assignment. In such

studies, the ITS designs are often based on the SC design that tracks successive

cohorts. They examine whether there is a sudden change in the academic per-

formance of cohorts that corresponds to the onset of a policy implementation

relative to the baseline trends of the previous cohorts, while typically adjusting

for various characteristics of cohorts.

In the framework of LVR-HM4, a time series at the cohort level (i.e., a time

series that consists of successive cohorts) includes latent variables measuring

various dimensions of performance such as status, learning over time, and

equity over time. Thus, for example, instead of simple measures, LVR-HM4

estimates whether the onset of policies or practices of interest would be asso-

ciated with the significant boost or interruption in trends in terms of schools’

value added (rate of progression of students in each cohort over consecutive

years) and schools’ equity (distribution of progression of students in each

cohort over consecutive years).

In the rest of this article, we aim to elucidate how the important features

of this modeling technique, such as regressions among growth parameters

(i.e., latent variables), enable us to measure various equity parameters of

school performance, by presenting standard HM4s and their extensions

embedded in an illustration of analysis of multisite, multiple-cohort long-

itudinal data. The illustration uses multisite multiple-cohort longitudinal data

drawing from annual assessment systems in a large urban school district

located in a northwestern state and assesses the influence of NCLB on

student achievement in the district. Based on the ITS design, we use an

LVR-HM4 in order to compare pre-NCLB cohorts and post-NCLB cohorts

on three different dimensions of student growth: initial status, learning over

time, and equity over time. This illustration uses the reading scale scores of

the Iowa Tests of Basic Skills (ITBS), which was not a particularly high-

stakes test but was administered annually. Note that our illustration focuses

more on the application of LVR-HM4s in evaluation studies, instead of

drawing conclusive inferences regarding the impact of NCLB.

Specifically, we first present the descriptive statistics of the data and thereby

explain the structure of data that are consistent with the modeling approach of

this article. Then, we introduce a useful preliminary analysis of an HM4, fol-

lowed by two LVR-HM4s. Note that all analyses of the LVR-HM4 presented in

this article are conducted using the software WinBUGS (Version 1.4.3; Windows
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version of Bayesian analysis using the Gibbs sampler: Spiegelhalter, Thomas,

Best, & Lunn, 2003).

Model 1, unconditional HM4, estimates student initial status (performance

status at Grade 3) and gain (growth rate from Grade 3 to Grade 5) and examines

the extent of variability associated at each level (across students within cohorts

within schools, across cohorts within schools, and across schools). Model 2,

unconditional LVR-HM4, incorporates LVRs into Model 1 and estimates the

gap-in-time indicator within cohorts within schools as well as the relationships

both across cohorts and across schools in the district. The gap-in-time indicator is

estimated also depending on the initial status of cohorts and on the initial status of

schools. Building upon Model 2, Model 3 examines cohort-to-cohort changes in

terms of initial status, gain, and the gap-in-time indicator. Model 3 also examines

whether the installment of NCLB relates to any changes in cohort-to-cohort

performances in these elementary schools by adding time-metric variables at the

cohort level. We include an observed student characteristic (student free/

reduced-price lunch [FRL] status) as well as an observed school characteristic

(school’s adequate yearly progress [AYP] status) to increase the precision of

inferences concerning NCLB effects. We conclude with discussions of potential

value, challenges, and extensions of the modeling strategies, as well as findings

from an analysis of the illustrative example.

Application of LVR-HM4s

Data

Table 1 shows the data structure that serves as an example of the structure of

the multisite multiple-cohort longitudinal data required for the HM4s with LVRs.

The columns of Table 1 show the academic years that correspond to the study

data. Each row shows one cohort, while the cells show corresponding years of

data for each cohort. The first cohort in the sample comprises students who

entered Grade 3 in the 1998–1999 school year, and the remaining four successive

cohorts are students who entered the same grade for the 4 following years. Thus,

the last (the fifth) cohort consists of students who entered Grade 3 in 2002–2003.

As for the longitudinal aspect of the data, for all five cohorts in all 74 schools,

assessments were completed at two longitudinal time points, third grade and fifth

TABLE 1.

Data Structure: Cohort, Grade, and Year

1998 1999 2000 2001 2002 2003 2004

Cohort 1

Cohort/Year

Grade 3 Grade 5

Cohort 2 Grade 3 Grade 5

Cohort 3 Grade 3 Grade 5

Cohort 4 Grade 3 Grade 5

Cohort 5 Grade 3 Grade 5
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grade. The outcomes of interest are the ITBS reading scale scores that are

vertically equated developmental scores. Most of the 74 elementary schools have

data available for five successive cohorts. However, for 5 of the 74 schools, data

are available for four cohorts, and for 1 of the 74 schools, data were available for

three cohorts. On average, about 13% of students transitioned to different schools

in the district between Grades 3 and 5, and an additional 2% of students did not

have a test score either in Grade 3 or 5. The analysis thus included only students

who had test scores at both Grades 3 and 5 and remained in the same school.

In Table 1, the arrows that go to the right (by row) show changes of individual

students across grades (the growth of individual students, IG design), while the

arrows that go down or diagonally down show cohort-to-cohort changes over

years (the change in successive cohorts, SC design). The vertical line in Table 1

displays the beginning of the implementation of the NCLB Act. We have mul-

tiple years of data for the pre-NCLB era (1998–2001 academic years) and for the

post-NCLB era (2002–2004 academic years). Regarding the implementation of

NCLB, Hanushek and Raymond (2003) identify states that had implemented

strong accountability systems for schools prior to the initiation of NCLB (see

also Carnoy & Loeb, 2002, for statewide implementation levels). The district in

this study belonged to a state that was not an early adopter state; therefore,

academic years 2002–2003 and after were used as the timing of the intervention

in this article. Based on the 2002–2003 initiation, note that while Cohorts 1 and 2

of this study are entirely pre-NCLB cohorts with Cohort 5 being entirely a post-

NCLB cohort, for Cohorts 3 and 4, NCLB went into effect while their growth/

gain is being studied. As will be seen in the model section, this feature will

require multiple time-metric variables indicating the NCLB era in the cohort-

to-cohort part of the analysis.

Table 2 presents the descriptive statistics for the sample. The total number of

students in the sample is 11,530, and the average number of students per cohort is

TABLE 2.

Cohort-by-Cohort Descriptive Statistics of Observed Initial Status, Gain, and Percentage

of Students Eligible for Free/Reduced-Price Lunch

Status at Grade 3

Gain (Grade 3 to

Grade 5)

% Free/Reduced-Price

Lunch

Cohort N Mean SD Mean SD Mean SD

1 (1998–2000) 2,501 188.4 23.5 30.5 16.1 41.6 4.9

2 (1999–2001) 2,324 191.9 21.6 29.7 14.1 37.9 4.9

3 (2000–2002) 2,054 191.7 23.6 28.7 14.4 40.2 4.9

4 (2001–2003) 2,548 191.2 21.8 29.8 13.8 36.1 4.8

5 (2002–2004) 2,103 191.8 23.3 29.0 14.0 40.1 4.9
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2,306. For the five cohorts, the mean ITBS reading score at Grade 3 is around

191, and its standard deviation (SD) is approximately 22. The minimum and

maximum scores of the ITBS reading scores from the study sample (not shown

in Table 2) are 139 and 307. The observed mean change/gain between Grades 3

and 5 is around 29.5 points, of which the magnitude is about 1.3 SDs. In addition,

the percentage of students eligible for FRL is approximately 39.5. Thus, based on

the sample means and SDs, the five cohorts in the sample appear similar in all

three measures.

Although the by-cohort statistics indicate that the sample means are similar

across cohorts, it is important to note that cohort means may vary within schools.

If cohort means vary in different directions across schools, the average values

over all schools (as shown in Table 2) will cancel out and mask the variation

across cohorts within schools. Similarly, the relationship between initial status

and gain might vary across cohorts and schools although the SDs of status and

gain of the cohorts in Table 2 are similar.

Under the assumption that NCLB might affect students’ performance in

different cohorts, we first examined whether and how much cohorts’ mean

scores and gain scores would vary across cohorts within a school. Although

modeling with the sample means may be problematic due to the different

sample sizes of cohort–school combinations, this preliminary analysis shows

different variations in between cohorts within a school and between schools in

the cohort’s mean scores and gain scores. Thus, three quantities were exam-

ined: cohorts’ mean scores at Grade 3, cohorts’ mean gain scores (mean of the

Grade 5 score minus mean of the Grade 3 score), and cohorts’ percentages of

students eligible for FRL.

To obtain variance components of cohorts and schools, we fitted an

unconditional two-level HM separately to each of the sample means of those

three quantities for each cohort within schools. Note that the relative ratios of

the between-cohort variability to the between-school variability are of inter-

est in this two-level approach since the unconditional four-level model pre-

sented in the following section would have correctly portioned off level 1

and level 2 variability. As for the mean scores at Grade 3, the intraclass

correlation is .87, which means that the between-cohort, within school varia-

bility is 13%, whereas the between-school variability is 87%. That is, the

between-school variability of ITBS mean scores greatly exceeds the between-

cohort, within-school variability. In contrast, mean gain scores show greater

variability between cohorts than between schools. The intraclass correlation

based on a two-level HM is .31, which indicates that the between-cohort

variability is more than twice the between-school variability (69% vs. 31%).

As for the percentage of FRL students, the intraclass correlation is .83; that

is, the between-cohort variability is approximately 17%, and the between-

school variability is 83% (see Figure 1).
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Figures 1 through 3 present a graphical display of the intraclass correlation

results, which help translate the results to the actual scales for this particular

study. In these figures, a circle represents a cohort’s mean score, while a triangle

represents a school’s overall mean across cohorts. In Figure 2 (mean score at

Grade 3), the difference between the lowest and highest mean score by school is

55 points (170–225). However, the largest difference between cohorts within a

school did not exceed 25 points (School 40). In Figure 3, school mean gains of

the 74 elementary schools in the sample range from approximately 17 to 35,

while the variability between cohorts in some schools is very large, as much as 30

to 40 points in Schools 48 and 40.

In summary, for mean scores at Grade 3 and percentage of students eligible for

FRL, there is far greater variability across schools than across cohorts within

schools, whereas there is a great deal of variability across cohorts within schools

in mean gain scores. The substantial variability across cohorts suggest that HM4s

including a cohort as a unit of analysis is necessary to model cohorts’ change over

time instead of more conventional three-level HMs ignoring cohorts’ variability.

Model 1: HM4s Estimating Initial Status and Gains of Individual Students

To examine the extent of the variability in both student initial status and

student growth rate at each level (student, cohort, and school levels), an uncondi-

tional HM4 is posed.

FIGURE 1. Percentage of students eligible for free/reduced-price lunch by cohort and

school.
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FIGURE 2. Observed initial Iowa Tests of Basic Skills reading mean scores by cohort and

school.

FIGURE 3. Observed mean gain scores by cohort and school.
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Ytijk ¼ p0ijk þ p1ijk Timetijk þ etijk etijk*Nð0;s2Þ: ð1� 1aÞ

Ytijk is the outcome score at measurement occasion or grade t (t ¼ 3, 5), for

student i (i ¼ 1; 2; : : : ; Njk), in cohort j ðj ¼ 1; 2; : : : ; JkÞ, in school

k ðk ¼ 1; 2; : : : ;KÞ. The time-metric variable, Timetijk, takes a value of 0 for

the outcome test score at Grade 3 and 1 for the test score at Grade 5. Thus, the two

growth parameters, p0ijk and p1ijk, represent initial status and gain, respectively,

for student i in cohort j, in school k. Note that those two parameters are latent

variables and treated as random variables at level 2.

Note that we use standard errors (SEs) of students’ ITBS scores to estimate

individual student growth rate/gain with ITBS reading scores measured at two

time points. Specifically, the left and right sides of Equation 1 – 1a are scaled by

the inverse of conditional SEs of measurement of ITBS reading score for time t,

student i, cohort j in school k.

Y �tijk ¼ p0ijk þ p1ijk Time� tijk þ e� tijk e�tijk*Nð0; 1Þ: ð1� 1bÞ

By this rescaling, the level 1 residuals become e�
3ijk

* (0,1) and e�
5ijk

* (0,1)

(See more details in Bryk, Thum, Easton, & Luppescu, 1998, p. 135; Choi &

Seltzer, 2010, p. 80; Choi et al., 2007, p. 23). Due to the rescaling, the level 1

model in Equation 1 – 1b becomes a just-identifiable model with two time-point

measures and two estimands (p0ijk and p1ijk).

Equations 1 – 2a and 1 – 2b specify the level 2 (between-student) model. b00jk

and b10jk represent cohort j in school k’s mean initial status and mean gain,

respectively. In Equations 1 – 3a and 1 – 3b, g000k and g100k are mean initial

status and mean gain for school k. Lastly, in Equations 1 – 4a and 1 – 4b, y0000

and y1,000 are grand mean initial status and grand mean gain, respectively.

p0ijk ¼ b00jk þ rp0ijk rp0ijk
*Nð0; tp 0

Þ ð1� 2aÞ

p1ijk ¼ b10jk þ rp1ijk rp1ijk*Nð0; tp1
Þ ð1� 2bÞ

b00jk ¼ g000k þ Ub00jk Ub00jk*Nð0; tb00Þ ð1� 3aÞ

b10jk ¼ g100k þ Ub10jk Ub10jk*Nð0; tb10Þ ð1� 3bÞ

g000k ¼ y0000 þ Vg000k Vg000k*Nð0; tg000Þ ð1� 4aÞ

g100k ¼ y1000 þ Vg100k Vg100k*Nð0; tg100Þ ð1� 4bÞ

Random effects at each level are assumed normally distributed with mean 0

and a level-specific variance. Covariances at levels 2, 3, and 4 are, respectively,

tp0;p1
, tb00;b10

, and tg000 ;g100
.

Table 3 presents the results for Model 1 posterior means, medians, SDs, and the

95% intervals of the marginal posterior distributions of each parameter. Note that
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the 95% interval is constructed based on .025 and .975 quantiles of marginal

posterior distribution.1 The grand mean initial status is approximately 189.1 and

the grand mean gain is 30.3. As for the variability in initial status, the percentages

of between-student, between-cohort within-school, and between-school variances

over the total variance are, respectively, 61.5, 2.8, and 35.7. In the gain parameter,

the percentages of those three variances over the total variance are, respectively,

75.4, 11.6, and 13.0. As such, the initial status is rather homogeneous across

cohorts but fairly heterogeneous across schools. However, the gains from Grades

3 through 5 appear to be substantially heterogeneous across cohorts within schools.

These results are consistent with the findings in the preliminary analysis.

Model 2: LVR-HM4 Estimating the Gap-in-Time Indicator

Model 2 is motivated to address the following substantive questions: (a) To

what extent is the initial gap at Grade 3 magnified or diminished at Grade 5?

(b) To what extent is the cohort’s initial status associated with the cohort’s gain?

In other words, are cohorts with higher initial status gaining more than cohorts

with lower initial status? (c) To what extent is the cohort’s initial status

TABLE 3.

Model 1: Unconditional Four-Level Hierarchical Model

Estimate SE 95% Interval Median

Fixed effects

Grand mean initial status (y0000) 189.1 1.46 [186.2, 192.0] 189.1

Grand mean gain (y1000) 30.32 0.50 [29.34, 31.29] 30.32

Variance components

1. Level 2 variance: Between-student

Initial status (tp00)a 61.5% 264.1 4.40 [255.6, 272.9] 264.1

Gain (tp10)b 75.4% 81.28 2.46 [76.51, 86.16] 81.26

Cov (rp0, rp1);c Corr (rp0, rp1) ¼ 0.17 25.23 2.40 [20.46, 29.86] 25.26

2. Level 3 variance: Between-cohort

Initial status (tb00)a 2.8% 11.75 1.77 [8.55, 15.49] 11.65

Gain (tb10)b 11.6% 12.56 1.60 [9.68, 15.95] 12.47

Cov (ub00, ub10);
c Corr (ub00, ub10)¼�0.31 �3.82 1.24 [�6.37, �1.48] �3.79

3. Level 4 variance: Between-school

Initial status (tg000)a 35.7% 153.2 26.4 [109.6, 212.8] 150.4

Gain (tg100)b 13.0% 14.01 3.00 [9.10, 20.8] 13.68

Cov (Vg000, Vg100);c Corr (Vg000, Vg100) ¼
0.66

30.57 7.21 [18.43, 46.78] 29.89

aInitial status variance percentage for each of the three levels (between-student, between-cohort,

between-school). bGain variance percentage for each of the three levels (between-student, between-

cohort, between-school). cCorrelations between random effects for each of the three levels (between-

student, between-cohort, between-school).
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associated with the gap-in-time indicator? In other words, is the gap diminished

or magnified more in cohorts with higher initial status than in cohorts with lower

initial status? (d) To what extent is the school’s initial status associated with the

school’s gain and the gap-in-time indicator? In other words, does a school with a

higher mean initial status gain more and is the gap reduced more in comparison to

a school with a lower mean initial status?

By employing LVRs at levels 2, 3, and 4 in Model 2, we examine the extent to

which initial status is consequential to the amount of gain in three different

levels: student, cohort, and school. In addition, we examine whether initial status

at the beginning grade is consequential to the amount of gap-in-time in cohort

and school levels. Based on the specification in Model 1, Model 2 will add LVRs

at levels 2, 3, and 4, while the level 1 specification will remain identical. What

follows in this Model 2 section will show the LVR extension in equation forms.

Before presenting specifications of LVRs, there is an important consideration of

whether LVR coefficients are treated as fixed or random variables. For example,

the school-level relationship is viewed as a between-cluster relationship and a

fixed effect. In contrast, because the student-level relationship can be assumed to

vary across cluster levels (i.e., cohorts and schools), it can be modeled with

random effects. In other words, the student-level relationship can be estimated

by each cohort within a school and by each school. In doing that, the variances of

two latent variables (i.e., initial status and gain) are allowed to vary across

cohorts and schools; otherwise, the LVR coefficients would be the same across

cohorts and schools. Likewise, the cohort-level relationship can also be treated as

random variables assuming to vary across schools. However, treating the cohort-

level relationship as a fixed effect is a reasonable choice in this data set since only

a limited number of cohorts (J ¼ 5) is available to estimate separate variance–

covariance matrix within each school.

The level 1 (within-student) model in Model 2 is the same as the one in

Model 1:

Y �tijk ¼ p0ijk þ p1ijk Time�tijk þ e�tijk e�tijk*Nð0; 1Þ ð2� 1Þ

At the level 2 (between-student; within-cohort) model, we estimate three key

latent variables (i.e., growth parameters) for cohort j in school k: initial status,

growth rate, and the relationships of initial status to growth rate.

p0ijk ¼ b00jk þ rp0ijk rp0ijk*Nð0; tp0jkÞ ð2� 2aÞ

p1ijk ¼ b10jk þ Bw jkðp0ijk � b00jkÞ þ rp1ijk ;Covðrp0ijk ; rp1ijkÞ ¼ 0 rp1ijk*Nð0; tp1jkÞ
ð2� 2bÞ

Equation 2 – 2b presents LVR at level 2, where the student growth rate is

modeled as a function of student initial status. Note that the student’s initial status

is centered on his or her cohort’s mean initial status in school k. By virtue of this

centering, b10jk represents the mean growth rate for cohort j in school k.
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The LVR coefficient, Bw_jk, captures the relationship between student’s initial

status and growth rate in cohort j in school k. Choi and Seltzer (2010) show that

by treating this within-group LVR coefficient as random (i.e., varying across

schools), it addresses an important question concerning how the student growth is

distributed within each school. Similar to Choi and Seltzer (2010), we refer to

this LVR coefficient (Bw_jk) as a within-cohort, within-school initial status/rate of

change slope, or gap-in-time indicator. The gap-in-time indicator tells us the

extent to which the initial gap (i.e., achievement gap at Grade 3) between stu-

dents, say 30 points initially, becomes magnified or diminished over grades (at

Grade 5) for each cohort of students in each school. The gap-in-time indicator is a

practical interpretation of this LVR coefficient. For the LVR coefficients of this

type in this article, B followed by w, b, or c denotes within-cohort, between-

school, or between-cohort relationships, respectively (B followed by b and c will

be presented in equations below). The within-cohort LVR coefficient, Bw, is

assumed to vary across cohorts nested within schools. Random effects (rp0ijk

and rp1ijk) are assumed to be normally distributed with mean 0 and their respec-

tive variances tp0jk and tp1jk. As noted earlier, these variances differ across

cohorts and schools, which is a necessary assumption for within-cohort LVR

coefficient to be treated as a random variable (see also Leckie, French, Charlton,

& Browne, 2014, for heterogeneous variances in a cluster level in two-level

models). Since the growth rate is conditional on the initial status, the covariance

between these two random effects is equal to 0, which is required to be an

identifiable model in the setting of LVRs.

In the level 3 (between-cohort, within-school) model, the three growth para-

meters—cohort mean initial status (b00jk), cohort mean growth rate (b10jk), and

the within-cohort initial status/rate of change slope (Bw_jk)—are treated as

outcomes.

b00jk ¼ g000k þ Ub00jk Ub00jk*Nð0; tb00Þ ð2� 3aÞ

b10jk ¼ g100k þ Bc1ðb00jk � g000kÞ þ Ub10jk Ub10jk*Nð0; tb10Þ ð2� 3bÞ

Bw jk ¼ Bw 0k þ Bc2ðb00jk � g000kÞ þ UBw jk UBw jk *Nð0; tBwÞ ð2� 3cÞ

TU ¼
tb00

0 0

0 tb10
tb10;Bw

0 tBw; b10
tBw

0
@

1
A: ð2� 3dÞ

In Equations 2 – 3a, 2 – 3b, and 2 – 3c, the coefficients, g000k and g100k,

represent the mean initial status and the mean growth rate, respectively, for

school k. Likewise, Bw_0k is the mean within-cohort initial status/rate of change

slope across cohorts for school k. TU is the variance–covariance matrix of the

three random effects (Ub00jk, Ub10jk, UBw_jk), and we also define the submatrix,
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TUð2;3Þ , as the variance–covariance matrix of the latter two random effects (i.e.,

Ub10jk, UBw_jk).
2

There are two LVR coefficients in the level 3 model. First, the LVR coeffi-

cient, Bc1, represents the expected relationship between cohort mean initial status

and cohort mean growth rate. In contrast to the within-group LVR coefficient

(Bw_jk), this coefficient is termed as the between-cohort initial status/rate of

change slope and addresses a question concerning the extent to which cohort

initial status is associated with cohort growth. Another LVR coefficient, Bc2,

captures the relationship between cohort initial status and within-cohort, within-

school initial status/rate of change slopes, and it allows us to examine whether the

relationship between students’ initial status and their rate of change slopes are

associated with their cohort initial status. The random effects, Ub00jk, Ub10jk, and

UBw_jk, are assumed to be multivariate normally distributed with mean 0 and

variance–covariance matrix of TU as shown in Equation 2 – 3d.

It is important to note that each of the three growth parameters for cohort j in

school k can comprise a time series of cohorts within schools over subsequent

academic years. Thus, the between-cohort model presented above in Equations

2 – 3a through 2 – 3c can be readily extended by including any time-varying

cohort characteristics in the model. A time-metric variable can be included as a

predictor for examining how each cohort’s growth parameters change over suc-

cessive cohorts in subsequent academic years. To illustrate this point, Equations

2 – 3a through 2 – 3c are shown again with a time-metric variable included in the

following. By presenting this specification, we aim to reinforce the idea that one

can simultaneously estimate changes of subsequent cohorts over academic years

as well as changes/growth of individual students over grades.

b00jk ¼ g000k þ f ðYearjkÞ þ Ub00jk Ub00jk*Nð0; tb00Þ
ð2� 3a0Þ

b10jk ¼ g100k þ Bc1ðb00jk � g000kÞ þ f ðYearjkÞ þ Ub10jk Ub10jk*Nð0; tb10Þ
ð2� 3b0Þ

Bw jk ¼ Bw 0k þ Bc2ðb00jk � g000kÞ þ f ðYearjkÞ þ UBw jk UBw jk *Nð0; tBw
Þ

ð2� 3c0Þ

In Equations 2 – 3a0, 2 – 3b0, and 2 – 3c0, the time-metric variable, Yearjk, can

take various forms such as linear, quadratic, a piecewise (i.e., discontinuous), or a

general saturated form.

This reflects our assumption that the three growth parameters that capture

individual growth within cohorts in schools would not necessarily show a similar

pattern from cohort to cohort. For example, in some schools or in schools under

certain interventions, the initial status of successive cohorts may increase, while

the cohort mean rate of growth tends to remain at the same level, yet the
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within-cohort initial status/growth rate relationships decrease over cohorts. This

means that, though the schools might enroll a student body that consists of

increasingly high-achieving students over years, how much or how rapidly they

learn does not change much in these schools. However, by adding the last

dimension (i.e., the within-cohort initial status/growth rate relationships), one

can find that the successive cohorts that initially consist of increasingly high-

achieving students exhibit a greater tendency of narrowing initial gaps in

achievement over grades in these schools.

As noted earlier, the time series that is examined at the cohort level can be

used for monitoring schools; in evaluation studies, this provides a basis for an

ITS design. For example, this approach can be readily adapted to examine

whether the onset of an intervention changes achievement patterns of schools

in terms of the three parameters. A time-metric variable can be coded to indicate

the onset of an intervention of interest and included as shown in the above three

equations. At this juncture, we would like to point out that, both in school

monitoring and in ITS evaluation studies, this simultaneous estimation frame-

work is very advantageous in that the estimation takes into account correlations

among three growth parameters, that inferences are based on latent variables, and

that accurate SE associated with parameters are naturally incorporated in the

analysis.

Lastly, the following level 4 (between-school) model estimates grand means

of all three growth parameters and specifies two LVRs at the school level.

g000k ¼ y0000 þ Vg000k Vg000k*Nð0; tg000Þ ð2� 4aÞ

g100k ¼ y1000 þ Bbðg000k � y0000Þ þ Vg100k Vg100k*Nð0; tg100Þ ð2� 4bÞ

Bw 0k ¼ Bw 00 þ Bw 01ðg000k � y0000Þ þ VBw 0k VBw 0k*Nð0; tBw 0
Þ ð2� 4cÞ

y0000 is the grand mean initial status, and y1000 is the grand mean rate of

change across cohorts and schools. In Equation 2 – 4b, the LVR coefficient,

Bb, captures the relationship between school mean initial status and school mean

growth rate. In Equation 2 – 4c, Bw_01 is an LVR coefficient capturing the extent

to which differences in school mean initial status relates to differences in the

within-school relationship between a student’s initial status and his or her rate of

growth.

The random effects, Vg000k,Vg100k, and VBw_0k, are assumed to be multivariate

and normally distributed with mean 0 and the following variance–covariance

matrix:

TV ¼
tg000

0 0

0 tg100
tg100 ; Bw 0

0 tBw 0; g100
tBw 0

0
@

1
A: ð2� 4dÞ
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With respect to the off-diagonal elements of Tv, we assume that

Cov(Vg000k,Vg100k) ¼ 0 and Cov(Vg000k,VBw_0k) ¼ 0 since the initial status

for school k (g000k) is employed as a predictor in Equations 2 – 4b and 2 – 4c.

As in Equation 2 – 3d, we also define the submatrix, TV ð2;3Þ as the variance–

covariance matrix of the latter two random effects (i.e., Vg100k, VBw_0k).

We present the results for Model 2 in Table 4. Figure 4 is a graphical

representation of the results shown in Table 4, displaying the expected

growth parameters for each cohort in three different schools with mean initial

status values that are, respectively, approximately 26 points below the mean

(i.e., approximately 2 SDs), close to the mean, and 26 points above the mean.

The district average values denoted in triangles are also shown for reference

points. Note that all the growth parameters for these three schools are esti-

mated within a Gibbs sampler and that the point estimate (posterior mean

TABLE 4.

Model 2: LVR-HM4—Estimating Within-School Initial Status/Gain Slopes (Bw_ jk),

Cohort Initial Status/Gain Slope (Bc1), Cohort Initial Status/Bw_ jk Slope, and Between-

School Initial Status/Gain Slope (Bb)

Estimate SE 95% Interval Median

Fixed effects

Grand mean initial status (y0000) 189.3 1.48 [186.4, 192.3] 189.3

Grand mean gain (y1000) 30.2 0.47 [29.3, 31.2] 30.2

Between-school initial status/gain

slope (Bb)

0.194 0.033 [0.13, 0.26] 0.194

Mean within-school initial status/gain

slope (Bw_00)

0.022 0.017 [�0.011, 0.055] 0.022

School mean initial status/Bw_jk

slope(Bw_01)

�0.005 0.001 [�0.008, �0.003] �0.005

Cohort initial status/gain slope (Bc1) �0.321 0.131 [�0.59, �0.07] �0.319

Cohort initial status /Bw_jk slope (Bc2) �0.001 0.006 [�0.012, 0.010] �0.001

Variance components

1. Level 3 variance: Between-cohort (Tu)

Initial status (tb00) 8.19 1.70 [5.17, 11.82] 8.09

Gain (tb10) 6.35 1.24 [4.21, 9.01] 6.26

Initial/gain slope (tBw
) 0.003 0.001 [0.002, 0.006] 0.003

Cov (tb10;Bw
) �0.008 0.031 [�0.070, 0.053] �0.008

2. Level 4 variance: Between-school (Tv)

Initial status(tg000) 158.4 28.19 [112.3, 222.1] 155.4

Gain (tg100) 7.01 1.789 [4.076, 11.05] 6.82

Initial/gain slope (tBw 0
) 0.007 0.002 [0.000, 0.012] 0.007

Cov (tg100; Bw 0
) 0.058 0.046 [�0.026, 0.155] 0.056

Note. LVR-HM4 ¼ latent variable regression four-level hierarchical model.
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shown with circles) and its 95% interval for each growth parameter are

plotted.

The grand mean initial status is 189.3 and the grand mean gain is 30.2, which

is similar to the results from Model 1, as would be expected. As to the LVR

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

cohort

Gap at Grade 5
Gap Set at Grade 3

Gap Indicator

cohort

At 2sd below IS At the mean At 2sd above IS

cohort initial status
district initial status Initial Status Change

cohort
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FIGURE 4. Estimated school’s three growth performance indicators: Cohort initial status

(b00jk), cohort gain (b10jk), and cohort gap indicator (Bw_ jk ) using the latent variable

regression four-level hierarchical model.
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coefficients, the estimated between-school initial status/gain slope (Bb) is .194,

and its 95% interval is between .13 and .26. This indicates that on average,

schools with higher initial status gain more than schools with lower initial status.

In the middle panel of Figure 4, as you move from left to right (from schools with

low initial status to middle initial status and to high initial status), the school

average gain increases regardless of cohorts (the lines indicating school esti-

mates—connecting circles—move up from left to right).

The between-cohort initial status/gain slope (Bc1) is –.321, and its 95% inter-

val does not contain 0, which indicates the higher the initial status of cohorts, the

lower the gain. Comparison of the top panel (initial status) and the middle panel

(gain) of Figure 4 shows that high initial status cohorts tend to go with lower

gain, whereas low initial status cohorts tend to go with higher gain. If we flip the

cohort gain plot upside down, then the patterns over successive cohorts become

extremely similar to those of the cohort initial status. The aforementioned sig-

nificant negative between-cohort initial status/gain slope (i.e., Bc1) captures this

strong relationship.

As for the gap-in-time parameter, although the overall student’s initial sta-

tus/gain slope (Bw_00) is not appreciably different from 0, the significant neg-

ative estimate of Bw_01, capturing the relationship between school mean initial

status and the within-school initial status/gain slope, indicates that low initial

status students tend to gain more than high initial status students when they are

in a high mean initial status school. In other words, the initial gap in achieve-

ment tends to decrease more in a high mean initial status school than in a low

mean initial status school.

The bottom panel of Figure 4 represents this result by addressing a question:

What is the achievement gap at Grade 5 between two students initially 30 points

apart at Grade 3 (i.e., 15 points above and 15 points below the school mean

initial status; the 30-point gaps at Grade 3 appear in the horizontal reference

line and are labeled as “gap set at Grade 3”) in these three different schools?

Note that these three schools are hypothetical schools simulated from the fitted

model. To estimate the expected gap at Grade 5, the gains for two students in

cohort j in school k who are, respectively, 15 points above and 15 points below

the school mean initial status are estimated based on estimated parameters, and

we also estimate the final status to each cohort. The results are plotted in the

circle line.

As can be seen in the resulting circle line, the 30-point initial gap becomes

larger by as much as approximately 5 points in the low mean initial status school

(left panel). In the school with its mean initial status similar to the district average

(middle panel), the initial gap remains similar between Grades 3 and 5. Finally, in

the high mean initial status school, the initial 30-point gap is reduced by up to 5

points (right panel). The bottom panel also shows that the gap indicators fluctuate

minimally across cohorts as one can see from almost straight lines connecting

different cohorts. These results are also shown by the LVR coefficient, capturing
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the relationship between cohort mean initial status and within-cohort and within-

school initial status/gain slope (Bc2 ¼ �0.001) that is negligible. In addition, the

variance of the gap-in-time parameter, that is, initial status/gain slope, in cohort

level (tBw
) is 0.003, while the variance of initial status/gain slope in school level

0.007. Thus, the intraclass correlation of the gap-in-time parameter is .7, which

indicates that the gap-in-time parameter varies far more between schools than

between cohorts within schools.

Model 3: LVR-HM4 Estimating Differences Between NCLB and Non-NCLB

Cohorts

With the level 1 model being the same as that of Model 2, a student charac-

teristic variable flagging eligibility of FRL status (students with FRL status

coded 1; otherwise coded 0) is included in the following level 2 model (Equations

3 – 2a and 3 – 2b). This variable is centered on its grand mean, so that the growth

parameters (student initial status and student gain) retain the same meanings as

previous models.

p0ijk ¼ b00jk þ b01ðFRLijk � FRL::Þ þ rp0ijk rp0ijk*Nð0; tp0jkÞ
ð3� 2aÞ

p1ijk ¼ b10jk þ Bw jkðp0ijk � b00jkÞ þ b11ðFRLijk � FRL::Þ þ rp1ijk rp1ijk*Nð0; tp1jkÞ
ð3� 2bÞ

The level 3 model (i.e., the between-cohort, within-school model) is a key

model in that cohort-to-cohort changes are compared between pre-NCLB and

post-NCLB cohorts. The indicators for NCLB cohorts, NCLB1jk, and

NCLB2jk are included in Equations 3 – 3a, 3 – 3b, and 3 – 3c. NCLB1jk

takes a value of 0 for the first four cohorts and 1 for the last cohort in

Equation 3 – 3a where we can contrast initial status of third-grade students

who entered Grade 3 in the pre- or post-NCLB era. However, we code the

NCLB2jk variable 0 for the first two cohorts and 1 for the last three cohorts

in Equations 3 – 3b and 3 – 3c. In using this variable, we consider cohorts

that were Grade 4 or Grade 5 in the beginning year of NCLB as the cohort in

the post-NCLB era, as well as the last cohort that were was in Grade 3 in the

beginning year of NCLB. For the cohorts where NCLB was implemented in

the middle of the study period (students who were Grade 4 or Grade 5), if

there is an effect of NCLB, we would expect a negligible difference between

pre-NCLB and post-NCLB cohorts in the initial status but significant differ-

ences in growth rates or the gap-in-time parameters.

b00jk ¼ g000k þ g001k NCLB1jk þ Ub00jk Ub00jk*Nð0; tb00Þ
ð3� 3aÞ
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b10jk ¼ g100k þ g101k NCLB2jk þ Bc1ðb00jk � g000kÞ þ Ub10jk Ub10jk*Nð0; tb10Þ
ð3� 3bÞ

Bw jk ¼ Bw 0k þ Bw 1k NCLB2jk þ Bc2ðb00jk � g000kÞ þ UBw jk UBw jk *Nð0; tBw
Þ

ð3� 3cÞ

Note, however, that both NCLB1jk and NCLB2jk are centered on their respec-

tive group means. Thus, the meaning of intercepts remains the same as in Model

2. For example, g000k represents mean initial status for school k, while g100k

represents mean growth rate for school k. The other three coefficients, g001k,

g101k, and Bw_1k, capture the differences between pre- and post-NCLB cohorts,

respectively, in the mean initial status, mean gain, and mean within-cohort initial

status/gain slope for school k. These three coefficients are assumed to be random,

so the differences can vary across schools.

The school-level model below (Equations 3 – 4a through 3 – 4f) includes a

variable that flags whether a school met AYP criteria or not. Note that AYP

decision for an individual school was based on the percentage of fourth graders

scoring proficient on the state’s standards-based assessment not based on the

outcome, ITBS score. AYP status is potentially a time-varying covariate; how-

ever, in our data, we used the AYP variable as a time-invariant variable because

the AYP status was based on the 2002–2003 school year, when the sampled

Cohort 5 students were in the fourth grade. Only six schools in the sample did

not meet AYP. Thus, we coded NonAYPk 0 for AYP schools and 1 for non-AYP

schools, so that intercepts estimated in this level would represent a majority of

schools (i.e., schools meeting AYP) in this study sample. In addition, this vari-

able is centered on its mean which results in intercepts in the equations below

representing the overall mean of the sample.

g000k ¼ y0000 þ y0001NonAYPk þ Vg000k Vg000k*Nð0; tg000Þ
ð3� 4aÞ

g001k ¼ y0010 þ Bb1ðg000k � y0000Þ þ y0011NonAYPk þ Vg001k Vg001k*Nð0; tg001Þ
ð3� 4bÞ

g100k ¼ y1000 þ Bb2ðg000k � y0000Þ þ y1001NonAYPk þ Vg100k Vg100k*Nð0; tg100Þ
ð3� 4cÞ

g101k ¼ y1010 þ Bb3ðg000k � y0000Þ þ y1011NonAYPk þ Vg101k Vg101k*Nð0; tg101Þ
ð3� 4dÞ

Bw 0k ¼ Bw 00 þ Bw 01ðg000k � y0000Þ þ Bw 02NonAYPk þ VBw 0k VBw 0k*Nð0; tBw 0
Þ

ð3� 4eÞ
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Bw 1k ¼ Bw 10 þ Bw 11ðg000k � y0000Þ þ Bw 12NonAYPk þ VBw 1k VBw 1k*Nð0; tBw 1
Þ

ð3� 4fÞ

As can be seen in Table 5, the post-NCLB cohort has significantly higher

mean initial status than the pre-NCLB cohorts by approximately 1.96. However,

the estimate of the difference in cohort mean gain between pre- and post-NCLB

is 0.27, and its 95% interval includes the value of 0, which indicates that there is

no statistical difference between the two groups (pre-NCLB cohorts vs. post-

NCLB cohorts). Likewise, there is no statistical difference (Bw_10¼ 0.024) in the

gap-in-time indicator between pre- and post-NCLB cohorts.

Between AYP and non-AYP schools, although the coefficients indicating the

differences are in the expected direction with AYP schools on average outper-

forming non-AYP schools, they are not significant partly due to the low statis-

tical precision associated with the small sample size (as noted earlier there were

only six non-AYP schools). For example, AYP schools have higher school mean

initial status than non-AYP schools by 6.66, but the 95% interval for y0001 does

include the value of 0. Likewise, the difference in the school mean gain between

AYP and non-AYP schools is negligible.

In addition, the estimates and 95% intervals of all the LVR coefficients are

very similar to those from Model 2. The LVR coefficient of school mean initial

status on school mean gain (Bb2 ¼ 0.19) indicates that schools with higher mean

initial status tend to gain more than those with lower mean initial status. Further-

more, the LVR coefficient of within-school, cohort mean initial status is nega-

tively associated with within-school, cohort gain with the magnitude greater in

the same direction (Bc1 ¼ –0.50). This suggests that cohorts with lower mean

initial status tend to gain more that cohorts with higher mean initial status,

resulting in smaller gaps in reading proficiency between cohorts within schools

over years.

Discussion

Longitudinal tracking of educational effectiveness or accountability indica-

tors and comparison of such trends have become a significant part of educational

research. In schools’ academic performance, tracking individual students over

time is always of great interest, in that how students learn as they progress across

grades is one of the key outcomes in schooling. At the same time, tracking

cohorts over time can be of special interest as well, as how, for example, suc-

cessive cohorts of third graders perform can carry important implications: If a

certain intervention was in place for third graders, one would not only be inter-

ested in seeing whether the first cohort of third graders were doing better as they

progress to upper grades but also whether the effects would persist over succes-

sive cohorts (and whether the intervention had sustained effects on student

achievement regardless of student entry).
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TABLE 5.

Model 3: LVR-HM4—Comparing Performance Between the Pre- and Post-NCLB Era

Cohorts and AYP School Versus Non-AYP School

Estimate SE 95% Interval Median

Fixed effects

Grand mean initial status (IS) (y0000) 189.3 1.08 [187.1, 191] 189.3

IS difference: AYP vs. non-AYP

school (y0001)

�6.66 3.98 [�14.45, 1.22] �6.66

IS difference: pre- vs. post-NCLB

(y0010)

1.96 0.658 [0.646, 3.24] 1.95

IS difference in pre- vs. post-NCLB:

AYP vs. non-AYP schools in

(y0011)

�2.42 2.51 [�7.36, 2.51] �2.42

Effect of school mean IS on IS diff in

pre- vs. post-NCLB (Bb1)

0.17 0.08 [0.01, 0.33] 0.17

Grand mean gain (y1000) 30.4 0.43 [29.5, 31.2] 30.4

Gain difference: AYP vs. non-AYP

school (y1001)

�1.48 1.50 [�4.39, 1.47] �1.48

Effect of school IS on school mean

gain (Bb2)

0.193 0.047 [0.102, 0.286] 0.192

Gain difference: pre- vs. post-NCLB

(y1010)

0.270 0.75 [�1.16, 1.79] 0.255

Gain difference in pre- vs. post-

NCLB: AYP vs. non-AYP schools

(y1011)

0.100 2.64 [�5.17, 5.17] 0.151

Effect of school mean IS on gain diff.

in pre- vs. post-NCLB (Bb3)

0.03 0.09 [�0.15, 0.21] 0.03

Grand mean within-school initial

status/gain slope (Bw_00)

0.000 0.017 [�0.033, 0.031] 0.000

Bwjk slope difference: AYP vs. non-

AYP school (Bw_02)

�0.046 0.058 [�0.160, 0.068] �0.046

Effect of school mean IS on Bwjk

slope (Bw_01)

�0.007 0.002 [�0.010, �0.004] �0.007

Bwjk slope difference: pre- vs. post-

NCLB (Bw_10)

0.024 0.033 [�0.04, 0.088] 0.024

Bwjk slope difference in pre- vs. post-

NCLB: AYP vs. non-AYP schools

(Bw_12)

�0.09 0.13 [�0.34, 0.16] �0.09

Effect of school mean IS on Bwjk

slope difference in pre- vs. post-

NCLB (Bw_11)

0.01 0.004 [�0.001, 0.02] 0.01

Cohort initial status/gain slope (Bc1) �0.50 0.176 [�0.853, �0.161] �0.498

Cohort initial status/Bwjk slope (Bc2) �0.004 .007 [�0.018, 0.009] �0.004

Effect of Free lunch status on IS (b01) �13.88 0.41 [�14.7, �13.1] �13.9

(continued)
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In evaluation contexts, tracking of trends is readily associated with the study

design of ITS, which can be used in settings where the intervention of interest has

been rolled out without intentional assignment, and there were extant data that

can be linked from before and after the initiation of the intervention. The ITS

design often tracks successive cohorts over years in terms of the outcomes of

interest. In this article, this approach was applied to an ITS evaluation of the influ-

ence of NCLB in elementary schools in a large urban school district. As NCLB put a

special emphasis on all students gaining proficiency as well as on reducing

achievement gaps among students, the dimensions of student growth that we wish

to examine are highly relevant to and aligned with the purposes of NCLB (see Choi

et al., 2007). Whether students tend to gain academic proficiency is represented

by student initial status and gain parameters, and whether initial gaps among stu-

dents tend to decrease over time is represented by gap-in-time parameters.

TABLE 5. (continued)

Estimate SE 95% Interval Median

Effect of Free lunch status on gain

(b11)

�2.35 0.37 [�3.08, �1.61] �2.35

Variance components

1. Level 3 variance: between-cohort

Initial status (tb00) 5.10 1.4 [2.6, 8.09] 5.02

Gain (tb10) 5.23 1.17 [3.21, 7.77] 5.14

Initial/gain slope (tBw
) 0.003 0.001 [0.002, 0.006] 0.003

Cov (ub10, uBw) �0.019 0.027 [�0.075, 0.033] �0.019

2. Level 4 variance: between-school

Initial status (tg000) 81.9 15.1 [57.1, 115.9] 80.2

Initial status diff. (tg001) 4.91 2.57 [1.64, 11.4] 4.34

Gain (tg100) 7.07 1.82 [4.13, 11.2] 6.87

Gain difference (tg101) 7.67 4.03 [2.51, 17.8] 6.80

Initial/gain slope (tBw 0
) 0.006 0.002 [0.003, 0.010] 0.006

Initial/gain slope diff. (tBw 1
) 0.004 0.002 [0.001, 0.010] 0.003

Cov (Vg001, Vg100) 0.746 1.61 [�2.37, 4.11] 0.70

Cov (Vg001, Vg101) 2.70 2.64 [�1.06, 9.18] 2.21

Cov (Vg001, VBw_0) 0.005 0.040 [�0.074, 0.088] 0.005

Cov (Vg001, VBw_1) �0.013 0.056 [�0.138, .096] �0.009

Cov (Vg100, Vg101) 1.74 1.85 [�1.70, 5.70] 1.64

Cov (Vg100, VBw_0) 0.030 0.042 [�0.050, 0.118] 0.029

Cov (Vg100, VBw_1) �0.021 0.055 [�0.136, 0.086] �0.018

Cov (Vg101, VBw_0) �0.011 0.049 [�0.114, 0.084] �0.010

Cov (Vg101, VBw_1) �0.017 0.072 [�0.175, 0.122] �0.012

Cov (VBw_0, VBw_1) 0.000 0.001 [�0.003, 0.002] 0.000

Note. LVR-HM4 ¼ latent variable regression four-level hierarchical model; NCLB ¼ No Child Left

Behind; AYP ¼ adequate yearly progress.
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Many studies examining the impact of NCLB have assessed outcomes by

percentage proficient or change in percentage proficient and by the same

parameters by subgroups such as race or English language learners. This is

partly because available data (e.g., National Assessment of Educational Prog-

ress [NAEP]) were based on aggregate data (e.g., state mean percentage

proficient by subgroup of interest) and also because percentage proficient

is often better communicated to the public. In contrast, this article fully takes

into account the extant data structure drawing on the district’s annual assess-

ment systems over multiple academic years and estimates latent variables

that address the same issues but from a slightly different perspective. The

proficiency issue is addressed by where students are at Grade 3 and how

much students gain for upper elementary grades (from Grade 3 to Grade 5) in

a low-stakes reading assessment instead of percentage proficient in end-of-

year state assessments.

The findings of this study indicate that for reading achievement, there was

no statistical difference between pre-NCLB and post-NCLB cohorts in terms of

gain from Grade 3 to Grade 5. There is evidence of significant increase in the

initial status at Grade 3, but this is a relatively small amount of gain (approx-

imately 1.3–1.8 points), which is less than 0.1 SDs of the outcome. Also, there

is no evidence of significant narrowing of achievement gaps among students as

they progress from Grades 3 to 5. Speaking of the gap-in-time parameter, there

is evidence of magnifying achievement gaps over grades between students and

between schools alike. In contrast, there is evidence that exhibit the direction of

narrowing achievement gaps over years between cohorts, within schools. In

summary, even as early as the upper elementary school grades, there is the

tendency of students who already perform well and learn increasingly more

rapidly. This is shown both at the student and at the school levels. Thus,

similarly elementary schools who already perform well on average show their

students learning increasingly more rapidly. This in a sense indicates that the

proficiency distributions of students or schools become more inequitable over

time but also may suggest that this may be a natural course of learning across

students and schools in a number of core subject areas including the reading

subject in this article.

However, we consistently find evidence of narrowing proficiency gaps

between cohorts within schools. This, we believe, is promising news because

this indicates that there are schools that bring their students to more similar

proficiency levels despite initially disparate proficiency levels across cohorts.

Our approach with LVR-HM4 pays attention to not only the gain but also the

gap-in-time parameter. By attending to this additional dimension, we were able

to suggest that there exist a number of effective schools in our sample of 74

schools. Some schools that begin with higher initial status also produce more

equitable distributions of student proficiency levels regardless of student entry

(to be exact, different proficiency levels at Grade 3 in this study) and also
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facilitate above-average rates of student learning. In these schools, students not

only perform higher; even when incoming cohorts have heterogeneous reading

proficiency, by the end of Grade 5, the distribution of their proficiency becomes

more equitable.

We hope to have demonstrated the value and the motivation of the LVR-

HM4 with the ITS evaluation of NCLB in a large urban district. It entails

treating the coefficients of time-metric variables in the cohort level to be

random (i.e., to vary across schools) instead of treating them to be fixed.

As shown in the cohort level of the final model in this article (shown in

Equations 3 – 3a through 3 – 3c), the coefficients of NCLB indicators were

treated as random. Such models can examine whether the effect of NCLB or,

in general, the effect of an intervention in ITS evaluations would vary across

schools. Also, in the presence of detailed data measuring school-level imple-

mentation and/or characteristics, such models can address questions as to the

extent to which the implementation of key intervention components is asso-

ciated with the ITS treatment effect on various dimensions of student growth

and/or as to the settings where the ITS treatment effect is magnified or

diminished.

In school effect research based on students’ academic progress, some stu-

dents change schools during the period in which we measure student progress.

While a detailed examination of student mobility is beyond the scope of this

article, we would like to lay out building blocks for extending LVM-HMs with

multiple-cohort data to account for student mobility existing in the data. For

students who change schools, alternative data structure arises because those

students are no longer nested within one school; rather, they have multiple

memberships in different schools. Multiple membership multilevel models

(Browne, Goldstein, & Rasbash, 2001; Cafri, Hedeker, & Aarons, 2015; Grady

& Beretvas, 2010; Leckie, 2009; Luo & Kwok, 2012) can appropriately model a

cross-classified structure of data, that is, students in multiple schools, by using

weights that represent the degree of membership of a student in different

schools. For example, in a 4-year study of school effects, if a student stayed

in one school for 2 years and then transferred to another school in which he or

she stayed for the subsequent 2 years, then the weights of the student would be

0.5 for the former school and 0.5 for the latter school. In applying this approach

to LVR-HMs with multiple-cohort data, LVR-HMs use a weight matrix that

expands to each student in each cohort, with fractions corresponding to the

length of stay for those who have membership in different schools, and with 1s

for those who have not changed schools. Although a large weight matrix with

multiple-cohort data may become computationally cumbersome, a fully Baye-

sian approach using Gibbs sampler is a viable option for estimating such

models.
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Notes

1. To assess the convergence of the Gibbs sampler, we examined trace plots,

autocorrelation function plots, and Gelman–Rubin statistics (Gelman &

Rubin, 1992). For all models, we ran two chains using different starting values

with a burn-in period of 2,000 iterations, with an additional 30,000 iterations

saved for posterior calculation. The results based on the two chains (e.g.,

posterior means and 95% intervals) are extremely similar for all models. All

results presented in Tables 3 through 5 were based on the pooled two chains,

sample of 60,000 deviates. Code for estimating the models is available from

the authors upon request.

2. In specifying priors, we used diffuse priors for all the fixed effects and var-

iance components, such that data dominate our inferences. Specifically, for

the fixed effects, we specified normal priors with a mean 0 and extremely low

precision, N * (0, 1.0E-5), which are functionally equivalent to uniform

priors. We placed uniform priors on all scalar variances (presented a few,

e.g., tp0jk and tp1jk in Equations 2 – 2a and 2 – 2b; tb00 in Equation 2 – 3a; tb10

in Equation 2 – 4b). As placing uniform priors on scalar variances translates to

placing particular Pareto priors on scalar precisions in models in WinBUGS

(Spiegelhalter et al., 2003), thus we used Pareto priors, Pareto(1, .0001).

Finally, in specifying priors for a random effects variance–covariance matrix

(see, e.g., TU (2,3) in Equation 2 – 3d and TVð2;3Þ in Equation 2 – 4d), we used

inverse Wishart priors with small degrees of freedom (n) and scale matrix S

and followed the method to specify the degrees of freedom and scale matrix,

as described in Choi and Seltzer (2010, pp. 85–86).
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