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Introduction

with the introduction of the Common Core, 
considerable attention has been drawn to poli-
cies that establish uniform curricular standards. 
This article looks at one such policy, the 
Michigan Merit Curriculum (MMC), which 
established a college-preparatory curriculum for 
all students entering ninth grade in or after the 
2006–2007 school year. The MMC required all 
students to pass a core set of classes that included 
math up to Algebra 2, Chemistry, or Physics; 4 
years of English; and 2 years of a foreign  
language. In this regard, the MMC is not alone; 
by 2018, 28 states will have adopted similar 

requirements for math (Jacob, Dynarski, Frank, 
& Schneider, 2017).

Given the prevalence of such policies, one 
would expect a burgeoning literature examining 
their impact. However, despite the appeal of 
default curriculum policies, we actually know 
surprisingly little about whether changing course 
requirements will necessarily lead to improved 
outcomes for students (Mazzeo, 2010). while 
there is a lack of knowledge regarding their 
impact, theories suggest these kinds of policies 
may address two potential concerns in U.S. high 
schools. First, they are often implemented to 
update high school curricula to match the 
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increasingly rigorous expectations of colleges 
and employers (Gardner, Larsen, Baker, 
Campbell, & Crosby, 1983). Second, they aim to 
reduce inequality in course offerings (National 
Governors Association, 1990). Previous litera-
ture on course tracking has demonstrated that it 
often results in segregation of students by race 
and socioeconomic class, and the attempts to 
break such patterns by allowing students to 
choose courses freely often perpetuate previous 
patterns of tracking (Kao & Thompson, 2003; 
Kelly, 2009; Oakes, 1990). Requiring all students 
to take more advanced courses is one way to 
address this issue.

There is a growing body of research on the 
potential impacts of such policies, especially 
how they can improve academic and job market 
outcomes. However, additional research is 
needed to assess how this type of change may 
affect less-prepared students. In this study, using 
the uniquely detailed high school transcript data 
from the Michigan Transcript Study (MTS), we 
are able to investigate the mechanism through 
which the MMC may influence an important 
long-run outcome: course-taking behavior. The 
analysis in this article focuses on how and for 
whom course-taking behavior has changed, and 
whether students have passed the additional 
courses they took as a result of the policy. Our 
hypotheses center on how course-taking behav-
ior is expected to change. First, we expect stu-
dents in post-policy cohorts to take more math, 
and that these changes will be concentrated 
among low socioeconomic status (SES) schools 
where previous graduation requirements were 
not as strict as those imposed by the MMC. 
Second, we expect failure rates in math courses 
to increase: If unprepared students are pushed 
into more difficult courses, they are likely to fail 
these courses at a higher rate. Finally, we expect 
students to attempt higher level math courses, 
which should also raise the highest level of math 
completed. However, it is unclear whether stu-
dents will rise to the higher standards set out by 
the policy without additional preparation, or how 
school will help those students succeed.

Our findings mirror research on similar pro-
grams, like the one implemented in 1997 by 
Chicago Public Schools (CPS), which mandated 
that students take Algebra 1 and English 1 in 
ninth grade. In analyzing Chicago’s program, 

Mazzeo (2010) found that 90% of students met 
this requirement in the post-policy period. 
However, grades in those courses decreased, and 
no long-term increase in performance was 
observed. Our study finds that students in the 
post-policy period take almost one additional 
semester of math during high school and that stu-
dents are about 4% more likely to fail math 
courses post-policy. Further breakdown of this 
analysis shows that these changes are driven by 
students in low-SES schools catching up to their 
peers in higher-SES schools. while the increase 
in failure rates is an area of concern for practitioners 
considering similar policies, it is worth noting 
that the increased failure rate is smaller than the 
increased rate at which students take math 
courses, resulting in a net increase in math 
courses passed for the average student.

Jacob et al. (2017) used statewide administra-
tive data to examine the impact of the MMC on 
student achievement and high school graduation. 
Results found no evidence of an increase in ACT 
math score but a 0.04 standard deviation improve-
ment in science score. The impact of the MMC 
on high school graduation is sensitive to the 
choice of sample and specification, though some 
evidence suggests that the MMC reduced gradu-
ation rates for the least prepared students. This 
study explores the fidelity of policy implementa-
tion by studying how the MMC altered the high 
school math course-patterns of students and col-
lege attendance. The MMC requires students to 
take a full load of college preparatory courses, 
and this study provides valuable feedback on 
how well the MMC is being implemented in our 
random sample of schools. To do so, we addi-
tionally use transcript data from the representa-
tive sample of 129 high schools in Michigan that 
contain information on course-taking behavior 
from 300,000 students for 10 years, to cover both 
pre- and post-MMC periods.1 These data allow 
us to build sequences of courses that demonstrate 
whether or not there is a corresponding increase 
in the rigor of student course-taking that could be 
related to college enrollment.

Using these extensive data from 25 million 
course records and using a pre–post design, with 
respect to the implementation of the policy, we 
find that post-policy students took additional 
math and passed higher levels of math courses. 
In addition, post-MMC cohorts are more likely to 
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enroll in 4-year colleges. The rest of the article 
proceeds as follows: we first briefly review the 
background of the MMC and prior literature on 
similar policies, we then introduce the data and 
methods used in this study, and finally, we dis-
cuss the results and conclude with implications 
for policy makers and future research.

Background and Literature Review

Curricular Intensification on Achievement  
and Social Stratification

Historically, most American high schools 
placed students into overarching tracks, which 
resulted in only a small number of students in 
academically rigorous honors or college- 
preparatory tracks and a larger number of stu-
dents in less rigorous, applied general, or basic 
tracks (Lucas, 1999). while high schools across 
the country dismantled these tracks beginning in 
the 1960s and 1970s (Moore & Davenport, 
1988), most continued to stratify courses, allow-
ing students to place themselves into different 
levels in different subjects (Domina & Saldana, 
2012). However, existing research on stratifica-
tion in schools has shown that increasing stu-
dents’ exposure to the curriculum can lead to 
improvement in a variety of outcomes. For 
example, access to advanced courses is directly 
related to future opportunity to learn (Gamoran, 
1987; Stevenson, Schiller, & Schneider, 1994), 
performance on achievement tests such as col-
lege entrance exams (Pallas & Alexander, 1983), 
and college enrollment (Schneider, Swanson, & 
Riegle-Crumb, 1998) and success (Moreno & 
Muller, 1999). Critics argue that the current 
tracking system limits students’ opportunity and 
exposure to advanced courses and, thus, intensi-
fies inequality during adolescence. This creates a 
foundation that leads to social and occupational 
stratification in adulthood (Riegle-Crumb, 2006).

In response, state and local agencies have 
focused on curricular intensification as a part of 
the solution. For example, schools were asked to 
offer rigorous classes for all students, create 
incentives for all students to succeed in these 
classes, or establish higher graduation require-
ments (National Governors Association, 1990). 
The objective here is to equalize learning oppor-
tunities in American high schools and to improve 
students’ college and career readiness. In the 

decades that followed, states enacted an esti-
mated 700 new pieces of educational policy, 
many of which raised standards for grade promo-
tion and high school completion (Darling-
Hammond & Berry, 1988; Timar & Kirp, 1989; 
wilson & Rossman, 1993). By 2008, 25 states 
required students to satisfy the New Basics aca-
demic courses to earn a high school diploma,2 
and 24 states had implemented high school exit 
exams to certify that graduates have mastered 
basic academic skills (Zhang, 2009).

The MMC falls on this continuum of policies 
by requiring all high school students (starting 
with the ninth-grade cohort in the spring of 2008) 
to pass a set of 18 rigorous academic courses, 
including four credits each of mathematics and 
language arts, three credits each of science and 
social studies, two credits of foreign language 
(effective beginning with students graduating in 
2016), and one credit each of physical education, 
art, and online learning. Perhaps more impor-
tantly, the law specifies rigorous math and sci-
ence course requirements: Students must take 
courses covering the content traditionally taught 
in Algebra 1, Algebra 2, and Geometry, as well as 
Biology and Physics or Chemistry. To demon-
strate competency in the subject matter, students 
must complete an end-of-course assessment that 
measures understanding of the subject’s state-
defined content expectations. The state devel-
oped a new set of content standards, end-of-course 
exams, and a new statewide high school exam to 
ensure a high level of rigor in required classes.3 
while completion of these courses is common 
among students who attend 4-year colleges, most 
high school graduates (from 2003 to 2011) prior 
to the implementation of the policy experienced 
a diverse set of district-level requirements and 
school course-taking norms. For example, 
according to a state-administered survey, only 
about a third of school districts required 4 years 
of math before the MMC was put in place; a sim-
ilar proportion required 3 years of science.

Previous Research

As all students are required to take the man-
dated courses and students in low-performing and/
or low-income schools are taking fewer of the 
courses mandated at baseline, in theory, policies 
such as the MMC have the potential to (a) increase 
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enrollment in more advanced level courses and (b) 
act as a form of de-tracking and reduce the inequal-
ity in students’ opportunity to learn and, thus, 
reduce the gap in students’ achievement. However, 
recent evidence on the impacts of such reforms 
has been mixed (Allensworth & Lee, 2009). 
Studies using CPS data show that student enroll-
ment in college-preparatory courses increased 
overall when the mandatory curriculum policy 
was introduced. In addition, enrollment in courses 
such as college-preparatory Algebra 1 and English 
became much more equitable by race and ethnic-
ity (Mazzeo, 2010).

In recent work by Jacob et al. (2017), the 
authors examined the impacts of the MMC using 
all public-school students in Michigan and found 
that the MMC had little impact on student out-
comes. The results found no evidence of an 
increase in ACT math score and only an increase 
in science score, with the largest improvement 
among students that entered high school with the 
weakest academic preparation. However, the 
impact of the MMC on high school completion is 
sensitive to the sample and methodology used. 
while the intended consequence of the MMC is 
to expose and push all high school students into 
more advanced math courses, it is possible that 
some students may not be prepared for those 
more rigorous courses. This is especially salient 
when one considers the variation in a student’s 
motivation and preparation prior to high school. 
Thus, because some students are pushed into 
these courses unprepared, such policies could 
produce unintended consequences—such as 
higher dropout rates and higher failure rates, as 
suggested by Lillard and Decicca (2001). 
However, the evidence to-date is mixed. Some 
researchers have shown that increased course-
taking enhances a student’s performance and 
high school completion (Attewell & Domina, 
2008; Balfanz & west, 2008), while others have 
shown that lifting the bar for graduation can 
increase dropout rates and does not improve stu-
dent achievement (Dee & Jacob, 2006; Jacob, 
2001; warren, Jenkins, & Kulick, 2006).

Math Course-Taking as the Main Outcome

In this article, we study the impact of the MMC 
on students’ course-taking outcomes. while the 
MMC could affect many behavioral outcomes, 

we focus on students’ mathematics course-taking 
behavior as our main outcome for several rea-
sons. First, the hierarchical organization of high 
school math courses is a key mechanism of aca-
demic stratification (Riegle-Crumb & Grodsky, 
2010). Math’s hierarchical organization begins in 
middle school with Algebra or Pre-algebra and 
requires that students master the curriculum and 
meet teachers’ expectations consistently over a 
period of many years to participate in advanced 
math courses like precalculus and calculus 
(Burkam, Lee, & Smerdon, 1997; Dougherty, 
Mellor, & Shuling, 2006; Stevenson et al., 1994). 
Second, successful completion of advanced math 
courses has been associated with more short-term 
positive academic and social outcomes (Frank 
et al., 2008); increasing the likelihood of attend-
ing college (Adelman, 1999; Sadler & Tai, 2007; 
Sells, 1973; Simpkins, Davis-Kean, & Eccles, 
2006), particularly at 4-year institutions (Kim, 
2018a; Riegle-Crumb, 2006; Schneider et al., 
1998); and long-term labor market outcomes 
(Goodman, 2019; Levine & Zimmerman, 1995; 
Rose & Betts, 2004). Advanced math course-tak-
ing in high school is also a strong determinant of 
degree completion among those who attend col-
lege (Adelman, 1999). Third, the content of math 
courses tends to be more standardized across high 
schools than in many other subject areas 
(Archbald & Porter, 1994; Stodolsky & Grossman, 
1995), allowing us to connect transcript course 
labels to particular instructional content and, thus, 
to more readily identify curricular content 
changes in response to the MMC.4

Data

we use two datasets to analyze the impact of 
the MMC on course-taking: data from the MTS 
and the Michigan Consortium for Educational 
Research (MCER) data on school and demo-
graphic controls and exams.5 This section 
describes the two datasets and variables of 
interest.

we obtain information on high school stu-
dents’ course-taking, including enrollment his-
tory, credits, and grades from the MTS, which is 
a proprietary dataset collected as a part of an IES 
grant by MCER. The MTS attempted to collect 
transcript data from a representative sample of 
150 Michigan High Schools from the 2001–2002 
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school year through the 2013–2014 school year 
to investigate the impact of the MMC. For sim-
plicity, we refer to school year by the year in 
which the spring term occurs (e.g., the school 
year 2007–2008 is 2008).

Sample

To estimate the impact of the MMC on 
course-taking behaviors, high school transcripts 
between 2003 and 2012 were collected from a 
generalizable sample of 150 Michigan high 
schools that was drawn by an independent con-
tractor based on the following strata character-
istics: region/urbanicity, poverty, Detroit, LEP, 
school size, and percentage minority. Out of 
150 schools, 37 schools were replaced mainly 
due to nonparticipation. To select the replace-
ment schools, we found the schools within the 
same strata characteristics described earlier and 
selected the school that was most like the origi-
nal school.6 Out of 150 schools, we have tran-
scripts from 129 schools, which represents a 
response rate of 86%. One of the major causes 
of sample reduction is school closure.7 The 
sample of 129 schools represents the schools 
that were open during the entire period of study. 
The data include nearly 25 million student-
course records, which contain information on 
course title and course content, credits attempted 
and awarded, grades, and school where the tran-
script is collected from. In the analysis, the data 
are recoded to student year level, which con-
tains nearly 1 million observations from 300,000 
students.

Sample Restrictions. we make a series of 
restrictions to obtain our analytic sample. First, 
we start with the sample that covers the 
2002/2003–2008/2009 cohorts and exclude 
student-year observations that are not linked to 
either demographic or school datasets, which 
drops 2% of the sample. The pre-policy sample 
consists of the 2003 through 2007 cohorts, 
whereas the post-policy sample comprises the 
2008 and 2009 cohorts. Second, we exclude 
observations with unusual academic progress 
(3.4%), gender conflicts (0.8%), and birthdate 
conflicts (1.9%). The final student-year dataset 
contains 1,030,753 student-year observations 
from 293,749 students.8

Measures

A. MTS
Course information. Course title and content 

are assigned by School Courses for the Exchange 
of Data (SCED), which comes from the National 
Center for Education Statistics (NCES). In addi-
tion to identifying the course titles, we assigned 
SCED based on course description informa-
tion using school-specific catalog data,9 which 
enables us to measure the depth of the course. 
Each SCED course code contains five digits. The 
first two digits identify the main program area, 
and the next three digits identify the specific 
course. For example, regarding SCED 02052, the 
first two digits (02) define mathematics, and the 
three digits (052) define Algebra 1.

Course level. This study uses the SCED 
assigned to each course to construct course 
intensity level by employing the math pipeline 
measure introduced by Burkam, Lee, and Smer-
don (2003). This measure is intended to capture 
the highest level of math.10 For simplicity, we 
assign the course level equivalent to the pipeline 
values. For example, Algebra 1 is assigned the 
level of 3.

Credits. To consistently measure the num-
ber of math credits students obtain, we generate 
year-equivalent credit, which standardizes the 
number of math courses taken using the informa-
tion included in the data about the school’s term 
structure. For each course, we can observe if it 
was a semester-, trimester-, or year-long course. 
Using this information, we weight a semester-
long course as a half-year of math and a trimes-
ter-long as a third. Math courses with positive 
credits awarded are recorded as passed.

B. Administrative Data. we obtain information 
on school characteristics, demographic con-
trols, exams, and college enrollment from mul-
tiple administrative datasets from Michigan’s 
Center for Educational Performance and Infor-
mation (CEPI) and its Department of Educa-
tion, spanning 2003–2014. The records of 
school characteristics are linked to MTS using 
a school identifier. In all, around 94% of stu-
dent-year records are linked to administrative 
data.
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Demographics. The dataset contains informa-
tion on gender, ethnicity, economically disadvan-
taged status, receipt of special education, limited 
English proficiency (LEP) status, and graduation 
status from Michigan public schools. The dataset 
further contains information about whether a stu-
dent has an unusual grade progression—where a 
student jumps more than two grades (9th to 12th 
grade) or goes back a grade, and whether the data 
have gender and/or birthdate conflicts.

Exams. The dataset contains scores for math 
standardized exams. we use the Michigan Edu-
cational Assessment Program (MEAP), which 
is recorded at fourth and eighth grade to capture 
students’ math preparedness before taking high 
school math courses, and standardize scores 
across all cohorts relative to the 2005 cohort. we 
also use the first ACT math score.

College attendance. College attendance 
information comes from the National Student 
Clearinghouse (NSC) and is linked to MTS using 
student identifier. we construct college atten-
dance status in 2- and 4-year institutions in the 4 
to 6 years following ninth grade. Considering the 
sharp increase in the college enrollment coverage 
of the NSC between the fall of 2008 and the fall 
of 2009 (Dynarski, Hemelt, & Hyman, 2015), the 
sample employs the postsecondary enrollment 
information from colleges that joined the NSC 
prior to June 2008.

School controls. The school identifier indi-
cates the school that the transcripts are collected 
from, and the dataset includes the fraction of eco-
nomically disadvantaged students, per-pupil total 
expenditures, enrollment, magnet school indica-
tor, and the number of teachers.

Research Method

As the MMC was implemented statewide, we 
do not have a group of schools that we can use as 
a control group. To evaluate the policy impacts, 
we use a rich set of student and school character-
istics to control for any time-varying and time-
invariant factors. we also control for existing 
trends for all outcomes (i.e., course-taking, 
achievement, and college enrollment) to capture 
increases in outcomes that are not related to the 

policy. we conduct a within-school comparison, 
which attributes any deviations in the existing 
trend to the policy. we estimate the following 
regression model:

Y MMC Cohortisc c

s isc

= + +
+ + + +
β β β
β β µ
0 1 2

3 4X Zisc sc  ,

where Yisc  is outcomes for student i in school s in 
cohort c such as course-taking, achievement, and 
college enrollment. MMC is equal to 1 for post-
policy cohorts who were ninth graders in the 
spring of 2008 and 2009, and Cohortc  indicates 
the year a student started high school, capturing 
the change in trends across cohorts. The param-
eter of interest is β1 , which provides an estimate 
of changes in outcomes between post- and pre-
policy students attending the same school, con-
trolling for time trend and student characteristics. 
Thus, estimated coefficient represents a devia-
tion from the time trend for post-policy out-
comes, which are averages of both post-MMC 
cohorts. Xisc  is a vector of student characteris-
tics (such as gender, race, economically disad-
vantaged status, and test scores), Zsc  is a vector 
of time-varying school-level characteristics (like 
the number of teachers, per-pupil expenditures, 
and share of economically disadvantaged stu-
dents), and µS is school fixed effects.

The study first analyzes different course- 
taking outcomes, starting with how the policy 
affected the number of math credits a student 
attains in high school. Because the policy was 
implemented across the entire state at the same 
time, we need to control for outside factors that 
may have also influenced a student’s course-tak-
ing behavior at the same time as the policy. 
Controlling for school-level fixed effects, time-
trends, and student-level socioeconomic charac-
teristics goes a long way toward addressing 
alternative explanations for any change associ-
ated with the policy.

Second, we analyze if the pass rate changed as 
a result of the policy. If student preparation did 
not increase prior to implementing the MMC, we 
may expect failure rates in these courses to 
increase. To analyze this, we interact the policy 
dummy (MMC) with the number of credits a stu-
dent takes. The coefficient on this interaction 
then tells us the differential rate at which students 
pass math courses in the post-policy period. This 
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also allows comparison of the pass rates for stu-
dents taking the same number of courses pre- and 
post-policy.

Third, we focus on how course-taking pat-
terns vary with respect to three dimensions of 
heterogeneity: namely, grade level, SES of the 
school, and math preparedness of the students 
before entering high school. To do this, we run 
the same specifications as earlier but break the 
data into subsamples by grade, SES of the school, 
and math score in eighth grade. Analyzing in 
what grade the students experienced the greatest 
change post-policy provides a more complete 
picture of how course-taking patterns changed in 
response to the policy.

Finally, the analysis evaluates the policy effect 
on achievement, measured by ACT math score 
and college attendance. we use each student’s first 
ACT math score to avoid possible endogeneity of 
retaking, and we measure college attendance 4 to 
5 years after each student entered high school.

Summary Statistics

The final dataset links the MTS with adminis-
trative datasets and is recorded on the student-
year level. For each year, we calculate the number 
of year-equivalent math credits and the highest 
level of math. we report summary statistics of 
demographics and school characteristics in Table 1. 
Columns 1 to 3 show sample means for the 
cohort of students, before and after the policy 
implementation. Pre- and post-policy cohorts 
have similar demographic backgrounds, except 
for an economically disadvantaged status for 
cohorts in years 2008 and 2009.11

Figure 1 displays the time series of condi-
tional means for key outcomes (course-taking, 
achievement, and attainment) by cohort. The 
con ditional mean comparison in the Supple-
mental Table 3 (in the online version of the jour-
nal) shows that post-policy students take and 
pass more math courses and that the rigor levels 
of courses are higher. This suggests that the pol-
icy likely had an impact on the number and rigor 
of courses taken by students in the 2008 and 
2009 cohorts. Course-taking by each MMC-
required math course in Figure 1 further sup-
ports the hypothesis, as the fraction of students 
taking and passing those courses is higher for 
post-policy cohorts.

Post-policy students achieved 0.24 standard 
deviations higher in the standardized math test 
score in Grade 8 but achieved marginally higher 
test scores than the pre-policy cohorts.12 College 
enrollment rate measured at 4 to 6 years follow-
ing Grade 9 is about two percentage points higher 
for post-policy students.

Results

Course-Taking

Effects on the Number of Math Credits. we 
begin by analyzing the impact of the MMC on 
the number of math credits in high school.13 Col-
umn 1 of Table 2 estimates the effect of the 
MMC, controlling for grade level14 and demo-
graphic controls Xist , which include gender, 
race, and economically disadvantaged status. 
Analysis shows that post-policy cohorts took an 
average of 0.07 more year-equivalent credits per 
year. Column 2 replicates column 1 by adding 
school controls Zst . School controls Zst  consist 
of log-transformed number of teachers and real 
per-pupil expenditures and the share of economi-
cally disadvantaged students to capture the SES. 
The estimates in column 2 are quite similar to 
those in column 1. The addition of more school-
level covariates does not change the estimated 
impact of the policy. Column 3 looks only at 
within-school variations and the estimate is not 
statistically different from that in column 2; post-
policy students took on average 0.06 more year-
equivalent credits each year.

Columns 4 to 7 investigate the effect of the 
policy on the number of math credits passed. 
Column 4 uses the same specifications as column 
1 and shows that students post-policy passed on 
average 0.05 more credits than pre-policy cohorts. 
when school observables and fixed effects are 
controlled for, the estimate stays stable.15 As the 
policy requires students to pass certain math 
courses, one might be concerned about changes 
in the course pass rate. Jacob et al. (2017) found 
that the effects of the MMC on high school com-
pletion are sensitive to the choice of sample and 
specification. Column 7 explores the change in 
the pass rate by controlling for the number of 
math credits taken and interacting this with the 
policy variable. Note that the coefficient for the 
MMC, 0.03, is not comparable to other coeffi-
cients because of the interaction; instead, we are 
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interested in the interaction term and the coeffi-
cient on math credits taken. The estimates in col-
umn 7 show that, on average, 92% of math 
credits taken are passed for pre-policy cohorts, 
and the pass rate has decreased for post-policy 
students. In other words, students taking a math 
course post-policy are about four percentage 
points less likely to pass than their pre-policy 
counterparts.16

Note that the estimates in Table 2 are from the 
student-year-level sample. In additional analysis 
(results not shown here but are available  
from authors upon request) when we use a full 

description of all the math courses that a stu-
dent took in a high school and analyze the 
impact of the MMC on the total number of 
math credits, the results show that, on average, 
post-policy students are likely to take 0.16 
more credits and to pass 0.14 more credits than 
pre-policy cohorts.17

Next, we analyze whether the MMC’s impact 
on the number of math credits varies across grade 
levels, school characteristics, and previous math 
score quintiles. Estimates in each column are 
coefficients from a separate regression of math 
credits on demographic- and school-controls 

TABLE 1

Summary Statistics on Student and School Characteristics

Full sample Pre-policy Post-policy

 (1) (2) (3)

Demographics
 Female 49.5% 49.4% 49.7%
 white 66.7% 66.6% 66.8%
 Black 24.8% 25.2% 23.9%
 Hispanic 4.5% 4.3% 5.0%
 Asian 3.2% 3.1% 3.5%
 Economically disadvantaged 34.3% 32.2% 39.8%
 Limited English Proficiency 4.1% 4.0% 4.2%
Course-taking
 Total math credits taken 2.38 2.32 2.54
 Total math credits passed 2.86 2.79 3.05
 Highest level taken (title) 5.43 5.34 5.67
 Highest level passed (title) 5.11 5.00 5.41
 Highest level taken (content) 5.61 5.47 5.97
 Highest level passed (content) 5.41 5.26 5.76
School controls
 Enrollment 1,498 1,520 1,444
 Economically disadvantaged ratio 31.3% 29.3% 36.4%
 Number of teachers 73 73 71
 Per-pupil expenditures 6,072 6,173 5,815
 Magnet 9.1% 8.3% 11.0%
Observations
 Student-year 1,023,019 735,018 288,001
 Student 293,749 210,540 83,209

Note. All statistics reported are for the linked analysis dataset described in Section 3, which includes students entering high 
school between 2003 and 2009. The sample has one observation per student. All monetary values are expressed in real 2010 
US$. Course level is assigned as (1) No math; (2) Non Academic (e.g., General/Consumer Math); (3) Low Academic (Algebra 
1/plane, informal geometry); (4) Middle Academic (Algebra 1, Geometry); (5) Middle Academic 2 (Algebra 2); (6) Advanced 
1 (Algebra 3/Trigonometry/Analytic Geometry); (7) Advanced 2 (Precalculus); and (8) Advanced 3 (Calculus). Enrollment is 
the number of total enrollment. Per-pupil expenditures are per-pupil level total expenditures that include basic- and added-needs 
expenditures.
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controlling for between-school variation. 
Estimation specifications in Table 3 are analo-
gous to column 3 of Table 2 in each subgroup. 
Columns 1 to 4 consider heterogeneity by grade, 
and columns 5 to 9 present the heterogeneity by 
math score quintiles in Grade 8. To account for 
changes in scores across cohorts, these quintiles 
were generated by cohort, which makes the com-
parison of math preparation only meaningful 
within the cohort.

There are four points to note. First, high 
school students are, on average, taking more 
math courses, with a statistically significant 
increase for students in the 11th and 12th grade. 
Second, although students in higher grades pass 
more total math courses, 11th and 12th graders 
in the post-policy period do pass math courses 
at a similar rate. Third, the least-prepared stu-
dents, measured by math test score in Grade 8, 
have the largest increase in the number of math 
credits taken and passed, and the impact of the 

policy becomes smaller as students are better 
prepared. Fourth, at the school level, the biggest 
increase in math credits in the post-policy 
period occurs among the most disadvantaged 
schools (results not shown here). Schools with a 
lower share of economically disadvantaged stu-
dents are unaffected by the policy. As it is in 
schools with a higher share of economically dis-
advantaged students and those least-prepared 
that we see the most dramatic policy-related 
changes, it seems that the policy successfully 
provided an opportunity for disadvantaged and 
unprepared students to take more rigorous math 
courses, to better prepare them for college 
enrollment. This statement, however, requires 
additional investigation. Demonstrating that 
students took more math courses post-policy 
does not show they are more prepared for col-
lege until we look at changes in the level of 
math courses taken and passed. This is what we 
analyze next.

FIGURE 1. Impact of MMC on course-taking, achievement, and attainment
Note. Figures show time series of conditional means for key outcomes (total number of credits passed, highest level passed, ACT 
math, enroll in any college, enroll in 4-year college, and enroll in 2-year college) by cohort. Post-MMC periods include 2008 and 
2009 cohorts. MMC = Michigan Merit Curriculum.
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Effects on the Course Intensity. To gain a sense 
of the level of course difficulty, we use course 
title in the following analysis as specified in 
SCED.18 Course level is calculated by pipeline 
measures introduced by Burkam et al. (2003). 
Columns 1 to 3 of Panel A in Table 4 estimate the 
impact of the policy on highest level taken by 
including school controls and controlling for 
between-school variation. The specifications in 
Table 4 mirror columns 1 to 3 in Table 3, but the 
dependent variable is the course level passed. 
The estimates indicate that, on average, for each 
grade, high school students after the policy take 
the same level of math courses as students in pre-
policy periods once we control for observables. 
Columns 4 to 6 use the highest level of math 
passed as a dependent variable and indicate that 
post-policy students pass math courses that are 
slightly higher levels than their pre-policy coun-
terparts passed after we control for between-
school differences.

But some might say that title is not sufficient. 
we took this one step further by analyzing the 

course catalog (see Kim, Troutman, Minor, 
Schneider, & Frank, 2015). Here, we found that 
30% of math courses in the MTS have a course 
description that differs from what would be 
inferred by the course title. we, therefore, argue 
that the course description is better suited for 
analyzing course level, since course descriptions 
are often based on the content of textbooks and 
provide a closer link to what is taught in a class 
than the course’s title. we, therefore, turn to anal-
ysis using course description.

The dependent variable in Panel B is the 
course level, as measured by course description. 
After controlling for demographic and school 
characteristics and between-school variation, the 
estimates in column 3 imply that the highest level 
of math a post-policy student took increased by 
an average of 0.13 levels, whereas the highest 
level passed increased by 0.19 levels. The high-
est level of math passed for pre-policy cohorts 
lies between Geometry (Level 4) and Algebra 2 
(Level 5), and the highest level achieved is mov-
ing toward the Algebra 2 threshold set by the 

TABLE 2

Estimated Impacts of MMC on Math Credits

Math credits Math credits Math credits Math credits Math credits Math credits Math credits

 Taken Taken Taken Passed Passed Passed Passed

 (Units) (Units) (Units) (Units) (Units) (Units) (Units)

 (1) (2) (3) (4) (5) (6) (7)

MMC 0.068*** 0.081*** 0.063*** 0.054*** 0.072*** 0.054*** 0.030**

(0.015) (0.020) (0.014) (0.013) (0.019) (0.012) (0.009)

Cohort 0.005 −0.000 0.007 0.006 −0.001 0.006 0.001

(0.007) (0.013) (0.005) (0.007) (0.013) (0.005) (0.001)

Math credits 0.924***

 (0.022)

MMC × Credits −0.041***

 (0.010)

Mean of dependent 
variable

0.793 0.795 0.795 0.697 0.700 0.700 0.700

Demographic Yes Yes Yes Yes Yes Yes Yes

School controls Yes Yes Yes Yes Yes

School fixed effects Yes Yes Yes

Observations 1,013,782 1,007,448 1,007,448 959,990 953,682 953,682 953,682

Note. Each column reports coefficients from an OLS regression in student-year level with standard errors in parentheses, clustered by school. The 
dependent variable in columns 1 to 3 is the number of math credits taken. The dependent variable in columns 4 to 7 is the number of math credits 
passed. All columns include linear time trend, grade dummies, and demographic controls (including gender, race, migrant, age, age squared, and 
economically disadvantaged status). Columns 2 to 3 and 5 to 7 additionally control for school characteristics (including log of the number of 
teachers, log of real per-pupil expenditures, log of enrollment and enrollment squared, magnet school indicator, and the share of economically 
disadvantaged students). MMC = Michigan Merit Curriculum; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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policy, indicating that some students are still not 
meeting the graduation requirement.19 when we 
measure course level using course descriptions, 
we find larger increases in the highest level of 
math taken than when measured by the course 
title. This could imply that a course might teach 
students content that differs from that which can 
be inferred from the title. Furthermore, this may 
be the result of schools updating the contents of 
courses described in the catalog to meet the state 
requirements.

Next, we examine the heterogeneity in the 
impacts of the MMC on course level by the grade 
level and varying ability level of high school stu-
dents. Estimates in each column are coefficients 
from a separate regression of highest level of math 
on demographic and school controls, controlling 
for time-invariant between-school heterogeneity. 
Estimation specifications in Table 5 are analogous 
to column 3 of Table 4 in each subgroup.

Starting in column 1 through column 4, we find 
that 11th and 12th graders in the post-policy period 
take higher level courses than students in pre-pol-
icy periods. As the average level taken in 11th-
grade is 5.145, which is equivalent to Algebra 2, 
the increase in the level taken implies students 
who successfully take Algebra 1 and Geometry in 
the first 2 years in high school are taking Algebra 
2 in 11th grade and Algebra 3 in 12th grade. 
Similarly, post-policy cohorts are more likely to 
complete Geometry in 10th grade and Algebra 2 in 
11th grade—which are the intended outcomes of 
the policy—leading to a large increase in the level 
passed in the 12th grade. In this regard, the policy 
seems to have been successful.

Second, estimated effects in columns 5 to 9 
indicate that the largest increase in the level of 
math course taken and passed occurs among the 
least-prepared students, and the increase gets 
smaller as the proficiency level in Grade 8 

TABLE 3

Estimated Heterogeneous Impacts of MMC on Math Credits

9th grade 10th grade 11th grade 12th grade MEAP Q1 MEAP Q2 MEAP Q3 MEAP Q4 MEAP Q5

 (1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Number of credits taken

 MMC 0.025 0.032 0.073*** 0.134*** 0.140*** 0.098*** 0.058*** 0.034** 0.009

(0.026) (0.022) (0.018) (0.023) (0.021) (0.017) (0.015) (0.013) (0.012)

 Mean of dependent 

variable

0.869 0.889 0.787 0.585 0.823 0.790 0.787 0.793 0.798

Panel B: Number of credits passed

 MMC 0.009 0.017 0.067*** 0.137*** 0.120*** 0.084*** 0.058*** 0.033** 0.008

(0.022) (0.019) (0.016) (0.023) (0.018) (0.014) (0.014) (0.011) (0.011)

 Mean of dependent 

variable

0.729 0.787 0.708 0.539 0.654 0.676 0.707 0.741 0.766

Panel C: Number of credits passed with interaction

 Math credits 0.920*** 0.910*** 0.914*** 0.943*** 0.910*** 0.903*** 0.917*** 0.944*** 0.969***

(0.037) (0.029) (0.018) (0.012) (0.033) (0.026) (0.016) (0.008) (0.005)

 MMC × Credits −0.044*** −0.047*** −0.044** −0.039** −0.033* −0.053*** −0.044*** −0.020*** −0.011*

(0.010) (0.012) (0.015) (0.012) (0.013) (0.013) (0.007) (0.006) (0.005)

 Observations 273,084 256,228 229,636 194,734 182,087 170,825 168,753 166,240 163,040

Note. Each column reports coefficients from an OLS regression with standard errors in parenthesis clustered by school. The dependent variable 
in Panel A is the number of math credits taken. The dependent variable in Panels B and C is the number of math credits passed. Columns 1 to 4 
show the estimates by grade, and columns 5 to 9 by quintiles of eighth-grade MEAP math score. All columns include for linear time trend, grade 
dummies, demographic controls (including gender, race, migrant, age, age squared, and economically disadvantaged status), school characteristics 
(including log of the number of teachers, log of real per-pupil expenditures, log of enrollment, log of enrollment squared, magnet school indica-
tor, and the share of economically disadvantaged students), and school fixed effects. MMC = Michigan Merit Curriculum; MEAP = Michigan 
Educational Assessment Program; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.



175

increases. Combining this fact with the results in 
Table 2, which show that post-policy cohorts are 
taking more courses, suggests that those students 
might pass the required courses by retaking them. 
The estimated effects on the level passed by the 
school share of economically disadvantaged stu-
dents (results not shown here) indicate margin-
ally significant increases only from schools with 
a medium share of disadvantaged students.

This rather sudden and dramatic increase in the 
level of math attained by the low-SES students in 
post-policy cohorts leads us to speculate that the 

standards for passing these courses may have 
changed. Future research examining the grades 
attained, rather than simply the pass rates in these 
courses, would allow us to study in detail the 
changes in pass rates.

Effects on the Policy-Mandated Courses. we 
also examine the differences in the probability of 
passing MMC-required math courses separately 
by 9th, 10th, 11th, and 12th graders and Grade 8 
math score quintiles, between pre- and post-pol-
icy cohorts. with respect to changes in the 

TABLE 4

Estimated Impacts of MMC on Math Level

Highest 
level

Highest 
level

Highest 
level

Highest 
level

Highest 
level

Highest 
level

 Taken Taken Taken Passed Passed Passed

 (Level) (Level) (Level) (Level) (Level) (Level)

 (1) (2) (3) (4) (5) (6)

Panel A: Highest level (title)
 MMC 0.071** 0.029 0.014 0.102*** 0.086** 0.068*

(0.024) (0.029) (0.029) (0.025) (0.028) (0.029)
 Cohort 0.023* 0.031* 0.019† 0.039*** 0.048*** 0.032***

(0.011) (0.015) (0.011) (0.011) (0.014) (0.009)
 Mean of dependent variable 4.458 4.460 4.460 4.120 4.126 4.126
 Observations 886,232 880,346 880,346 838,111 832,240 832,240
Panel B: Highest level (description)
 MMC 0.164*** 0.163*** 0.130*** 0.196*** 0.202*** 0.186***

(0.037) (0.037) (0.038) (0.041) (0.041) (0.042)
 Cohort 0.066*** 0.061** 0.048*** 0.069*** 0.075** 0.065***

(0.011) (0.022) (0.011) (0.011) (0.022) (0.012)
 Mean of dependent variable 4.577 4.577 4.577 4.334 4.335 4.335
 Observations 621,040 619,017 619,017 584,458 582,450 582,450
Demographic Yes Yes Yes Yes Yes Yes
School controls Yes Yes Yes Yes
School fixed effects Yes Yes

Note. Each column reports coefficients from an OLS regression, with standard errors in parentheses, clustered by school. The 
dependent variable in columns 1 to 3 is the level of math taken measured by course title. The dependent variable in columns 4 
to 6 is the level of math passed measured by course title. Course level is calculated by pipeline measures. All columns include 
linear time trend, grade dummies, and demographic controls including gender, race, migrant, age, age squared, and economically 
disadvantaged status. Columns 2 to 3 and 5 to 6 additionally control for school characteristics (including log of the number of 
teachers, log of real per-pupil expenditures, log of enrollment and enrollment squared, magnet school indicator, and the share 
of economically disadvantaged students). Course level is assigned as (1) No math; (2) Non Academic (e.g., General/Consumer 
Math); (3) Low Academic (Algebra 1/plane, informal geometry); (4) Middle Academic (Algebra 1, Geometry); (5) Middle 
Academic 2 (Algebra 2); (6) Advanced 1 (Algebra 3/Trigonometry/Analytic Geometry); (7) Advanced 2 (Precalculus); and (8) 
Advanced 3 (Calculus). MMC = Michigan Merit Curriculum; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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probability of passing Algebra 1 (Supplemental 
Table 4, Panel A in the online version of the jour-
nal), we see that only the least-prepared students 
are 12 percentage points more likely to pass the 
course in ninth grade than pre-policy cohorts. 
Next, estimates in Panel B indicate that the 
majority of post-policy cohorts are more likely to 
pass Geometry in 9th grade, and the least- 
prepared students are 12 percentage points more 
likely to pass Geometry in 10th grade. The mag-
nitudes are almost identical to the increased 
probability of passing Algebra 1 in 9th grade for 
the least-prepared students, which suggests that 
those students are on track as the policy intended. 
As post-policy students are more likely to take 
Algebra 1 and Geometry in 9th and in 10th grade, 
the impact of the MMC on the likelihood of pass-
ing Algebra 2 is in effect in 11th and in 12th 
grade, as shown in Panel C. The impact is larger 
for less-prepared students: a 26-percentage-point 
increase for the least prepared-students and a 
6-percentage-point increase for the most-pre-
pared students in 11th grade. The impact on the 
probability of passing Algebra 2 in Grade 12 is at 
its largest for the least-prepared students and 

positive for students from higher quintiles. Over-
all, there is no statistically significant indication 
of increased probability of passing MMC-
required courses for the most-prepared students.

This analysis suggests that the MMC may 
have had positive impacts on a variety of course-
taking measures. Post-policy cohorts not only 
took more math courses but also took and passed 
higher level math courses than their pre-policy 
peers. Furthermore, the impacts are largest for 
the least-prepared students and students at the 
most disadvantaged schools. Perhaps most tell-
ing is the lack of impact among high-performing 
students and well-off schools where the policy is 
unlikely to have resulted in a change to the 
school’s graduation requirements. Furthermore, 
the math progression of who passed which 
courses also demonstrates that schools are push-
ing students along the more rigorous track man-
dated by the policy. Unfortunately, the policy is 
not without repercussions. Overall, students are 
slightly less likely to pass math courses, and 
when we examine the timing of those passing 
9th- and 10th-grade courses taken in 11th and 
12th grade, it suggests that, for the least-prepared 

TABLE 5

Estimated Heterogeneous Impacts of MMC on Math Level (Description)

9th 
grade

10th 
grade 11th grade 12th grade MEAP Q1 MEAP Q2 MEAP Q3

MEAP 
Q4

MEAP 
Q5

 (1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Highest level taken

 MMC 0.043 0.095 0.250*** 0.128* 0.317*** 0.224*** 0.118** 0.036 −0.072*

(0.074) (0.071) (0.058) (0.060) (0.063) (0.055) (0.041) (0.037) (0.035)

 Mean of dependent 
variable

3.439 4.215 5.145 6.004 3.581 3.999 4.371 4.860 5.721

 Observations 170,839 176,363 157,328 114,487 88,095 106,556 118,808 124,514 128,825

Panel B: Highest level passed

 MMC 0.077 0.106 0.317*** 0.239*** 0.423*** 0.291*** 0.180*** 0.105** −0.053

(0.072) (0.076) (0.059) (0.066) (0.071) (0.061) (0.043) (0.039) (0.038)

 Mean of dependent 
variable

3.169 3.999 4.924 5.735 3.023 3.667 4.155 4.734 5.670

 Observations 160,771 166,109 147,799 107,771 83,481 100,233 111,533 116,516 121,376

Note. Each column reports coefficients from an OLS regression with standard errors in parentheses, clustered by school. The dependent variable 
in Panel A is the level of math taken measured by course description. The dependent variable in Panel B is the level of math passed measured by 
course description. Course level is calculated by pipeline measures. Columns 1 to 4 show the estimates by grade and columns 5 to 9 by quintiles of 
eighth-grade MEAP math score. All columns include grade dummies and demographic controls (including gender, race, migrant, age, age squared, 
and economically disadvantaged status), school characteristics (including log of the number of teachers, log of real per-pupil expenditures, log 
of enrollment, log of enrollment squared, magnet school indicator, and the share of economically disadvantaged students), linear time trend, and 
school fixed effects. Course level is assigned as (1) No math; (2) Non Academic (e.g., General/Consumer Math); (3) Low Academic (Algebra 1/
plane, informal geometry); (4) Middle Academic (Algebra 1, Geometry); (5) Middle Academic 2 (Algebra 2); (6) Advanced 1 (Algebra 3/Trigo-
nometry/Analytic Geometry); (7) Advanced 2 (Precalculus); and (8) Advanced 3 (Calculus). MMC = Michigan Merit Curriculum; MEAP = 
Michigan Educational Assessment Program; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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students, pushing them into this more-rigorous 
track sets them on a path that is challenging for 
them to keep pace with.20

Achievement

Post-MMC students took more math courses 
and higher levels of math courses than their pre-
policy counterparts, and in this section, we exam-
ine how the improvement in math course-taking is 
reflected in achievement. As the ACT became 
mandatory beginning with the 2005 cohort, we 
focus on the ACT math scores for the 2005 through 
2009 cohorts, generally taken in 11th grade, and 
use each student’s first score on the exam. In addi-
tion to the sets of variables controlled for in the 
previous section, we add local unemployment 
rates in Grades 9 and 10 to control for any effects 
of the changes in labor market conditions across 
time—especially during the Great Recession—on 
achievement and standardized math score taken in 
Grade 8 (see Jacob et al., 2017, for this rationale).

Table 6 explores the impact of the MMC on 
math achievement, as measured by the first ACT 

math score. Columns 1 to 2 show that post-policy 
students are about 3 percentage points more likely 
to take the ACT math test, and the sample size 
decreases by 11% when previous math score is 
included. Columns 3 to 4 present the impact of the 
MMC on ACT math score. Post-policy students 
earn 0.119 points higher in ACT math than their 
pre-policy counterparts. Once we further control 
for the previous math test in Grade 8, the magni-
tude increases to 0.225, which is equivalent to 
0.05 standard deviations.21 In column 5, we esti-
mate the impact of the policy with an interrupted 
time series (ITS) design following Jacob et al. 
(2017).22 The estimated coefficient of −0.276 
(0.076), which is close to −0.333 (0.069) from 
Jacob et al. (2017), indicates that the estimated 
impact of the MMC on test score is negative.

The estimated impacts of the MMC on ACT 
math scores are very sensitive to specifications, 
and we do not find any persuasive evidence that 
there was any significant policy impact on over-
all achievement.23 On one hand, it might be natu-
ral to expect that the test score would increase for 
post-policy students, as they are taking more and 

TABLE 6

Estimated Impacts of MMC on Achievement

Took Took First First First

 ACT ACT ACT ACT ACT

 (1) (2) (3) (4) (5)

MMC 0.026*** 0.031*** 0.119† 0.225** −0.276**
(0.007) (0.006) (0.062) (0.072) (0.076)

Cohort −0.012*** −0.014*** 0.269*** 0.032 0.160***
(0.004) (0.004) (0.035) (0.030) (0.030)

Std. Math 8 0.026*** 3.603*** 3.623***
 (0.002) (0.056) (0.057)

Mean of dependent 
variable

0.830 0.863 19.314 19.403 19.403

Trend Linear Linear Linear Linear ITS
Observations 210,709 187,015 177,210 163,302 163,302

Note. Each column reports coefficients from an OLS regression with standard errors in parentheses, clustered by school. The 
dependent variable in columns 1 to 2 is took ACT. The dependent variable in columns 3 to 5 is the first ACT math score. All 
columns include demographic controls (including gender, race, migrant, age, age squared, and economically disadvantaged 
status), school characteristics (including log of the number of teachers, log of real per-pupil expenditures, log of enrollment and 
enrollment squared, magnet school indicator, and the share of economically disadvantaged students), local unemployment rates, 
and school fixed effects. Columns 2, 4, and 5 additionally control for standardized math test score in eighth grade. Columns 1 
to 5 use a linear time trend, and column 5 uses ITS. MMC = Michigan Merit Curriculum; ITS = interrupted time series design; 
OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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higher levels of math courses. On the other hand, 
the fact that students passed additional courses 
would not necessarily improve test scores. If the 
school did not receive enough resources from the 
state to accommodate the higher requirements—
hiring new teachers, for instance—then average 
input per student is likely to decrease. Or, if the 
newly hired teachers are less experienced than 
existing teachers and are teaching lower track 
students, then the policy impact on test scores 
could be unclear.

Table A2 provides the heterogeneous impact 
of the MMC on ACT math by school character-
istics and previous test score in Grade 8. we 
divide schools into three groups, with “Disadv 
Low” representing one third of the sample with 
the lowest share of economically disadvantaged 
students. Contrary to the results found in the het-
erogeneity of course-taking, the estimated 
impact is positive only for well-prepared stu-
dents and students from advantaged schools, 
which implies a widening achievement gap 
between the most prepared and the least pre-
pared students post-policy.24

College Enrollment

In the previous section, we have seen clear 
evidence that post-MMC students took more and 
higher levels of courses than pre-MMC students, 
but we could not find any consistent policy 
impact on achievement. Jacob et al. (2017) esti-
mated impacts of the MMC on ACT subjects and 
showed that the introduction of the MMC had a 
larger impact on ACT science and reading than in 
math or English, which could have a positive 
impact on college enrollment. we, therefore, 
obtained college enrollment information from 
the NSC, and in Table 7, we present the estimated 
impact of the MMC on college enrollment, addi-
tionally controlling for local unemployment rates 
in ninth, 10th, and 11th grade. we measure col-
lege enrollment status within 4 to 5 years from 
the 9th grade.

Seventy percent of students in our sample 
have college enrollment information from the 
NSC, from which we construct college enroll-
ment variables at 2- and 4-year institutions. we 
code students missing college enrollment infor-
mation from the NSC as not enrolled. Dynarski 

TABLE 7

Estimated Impacts of MMC on College Enrollment

Any 
college

4-year 
college

2-year 
college

Any 
college

4-year 
college

2-year 
college

 In 4 years In 4 years In 4 years In 5 years In 5 years In 5 years

 (1) (2) (3) (4) (5) (6)

MMC 0.017** 0.026*** −0.003 0.010† 0.022*** −0.009
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Cohort 0.011*** 0.001 0.011*** 0.006* 0.001 0.016***
(0.003) (0.002) (0.003) (0.003) (0.002) (0.003)

Std. Math 8 0.094*** 0.160*** −0.064*** 0.086*** 0.159*** −0.059***
(0.004) (0.004) (0.004) (0.005) (0.004) (0.005)

Mean of dependent 
variable

0.587 0.336 0.265 0.651 0.364 0.369

Observations 187,015 187,015 187,015 187,015 187,015 187,015

Note. Each column reports coefficients from an OLS regression with standard errors in parentheses, clustered by school. The 
dependent variable in columns 1 to 3 is enrollment in corresponding post-secondary institutions in 4 years from the year of ninth 
grade. The dependent variable in columns 4 to 6 is enrollment in corresponding postsecondary institutions in 5 years from the 
year of ninth grade. All columns include demographic controls (including gender, race, migrant, age, age squared, and economi-
cally disadvantaged status), school characteristics including log of the number of teachers, log of real per-pupil expenditures, 
log of enrollment and enrollment squared, magnet school indicator, and the share of economically disadvantaged students, local 
unemployment rates, school fixed effects, linear time trend, and standardized math score in Grade 8. MMC = Michigan Merit 
Curriculum; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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et al. (2015) showed that the NSC covers 84% of 
college enrollment for the 2004 cohort and more 
than 94% for the 2006 and 2008 cohorts, and pre-
sented the measurement errors as including 
enrollment coverage rates, matching errors, and 
suppressed student-level information. Given the 
misclassification of postsecondary enrollment 
status and poorer coverage among for-profit 
institutions, our approach categorizes students 
who are enrolled in for-profit private colleges as 
not attending college. If the misclassification is 
uncorrelated with the policy, our estimates will 
be attenuated toward zero (Bound, Brown, & 
Mathiowetz, 2001). Another potential source of 
bias is if the policy has induced students to attend 
for-profit institutions with poorer coverage, in 
which case we are underestimating the policy 
effects.25 Cellini and Turner (2016) stated that 
the vast majority of for-profit students work 
before attending college and showed that the 
average age when students completed a for-profit 
degree program is 28 years old for an associate 
degree and 30 years old for a bachelor’s degree. 
As our sample measures college attendance sta-
tus within 5 years of starting ninth grade, the low 
coverage for for-profit institutions is not likely to 
significantly bias the estimates.

In Table 7, we present estimated impacts of the 
MMC on college enrollment, where the depen-
dent variable is a measure of whether an individ-
ual is enrolled in a college within 4 years starting 
from ninth grade (columns 1–3) and/or 5 years 
(columns 4–6). Once observables and between-
school variations are controlled for, post-MMC 
students are three percentage points more likely 
to enroll in 4-year institutions, whereas there are 
no changes in 2-year college enrollment rates. 
Columns 4 to 6 present the impact on college 
enrollment at 5 years from ninth grade and the 
results are similar to those in columns 1 to 3.

Table 8 explores the heterogeneous policy 
impact on college enrollment by math test score 
quintile in Grade 8. we do not find any changes 
in 4-year college enrollment rates for less-pre-
pared students, but around a four- to six- percent-
age-point increase in enrollment rates for 
better-prepared students, which is consistent with 
the increase in ACT math scores in Panel A in 
Table A2. we do not find any changes in 2-year 
college enrollment rates for most subgroups. If it 
takes longer to graduate high school, the estimates 

with on-time high school graduates are likely to 
underestimate changes in college enrollment 
rates. However, the changes in college enroll-
ment rates 5 years from ninth grade in Panels D 
to F are very similar to those at 4 years.

Sensitivity Analyses

Because we do not have a comparison group, 
we conduct several sensitivity analyses to assess 
the robustness of the research design and estima-
tion assumptions. First, in an effort to determine 
how much bias would have been necessary to 
invalidate our inference, we adopt the approach 
outlined by Frank, Maroulis, Duong, and Kelcey 
(2013). we apply our analysis to the estimated 
effect of .063 and standard error of .014 from the 
third column of Table 2 for the number of math 
credits students have taken, controlling for 
covariates and school fixed effects. Using statis-
tical significance as a threshold for our sample of 
1,007,448 (df of 1,007,363), and standard error 
of .014, the threshold for statistical significance 
is δ# = se × tcritical,df=1.96, 1007363=.014 × 1.96 = 
.027. Given the estimated effect of .063, to inval-
idate the inference, bias must have accounted for 
1 − .027 / .063 = .56, or about 56% of the esti-
mated effect. Drawing on Rubin’s Causal Model, 
to invalidate our inference one would have to 
replace about 56% (about 564,123) of the cases, 
and assume the limiting condition of zero effect 
in the replacement counterfactual cases. For the 
estimate of 0.081 that does not account for the 
school fixed effects (column 2), the bias would 
have to be roughly 52% of the estimated effect. 
These levels of robustness are greater than half to 
two thirds of the EEPA studies reviewed by Frank 
et al. (2013). Thus, while we concede that there 
are limitations to our identification strategies in 
this case, we would argue that those limitations 
are likely not great enough to invalidate our 
inferences.

Second, we consider subgroups that may have 
been less affected by the policy as an additional 
sensitivity test. Communities that are near col-
lege areas might be less affected by the policy 
because most students in these communities 
were already meeting the new course require-
ments in the pre-policy period. Thus, we measure 
the distance by miles to the nearest college and 
compare schools that are close to the college 
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areas (high-SES/achievement communities) with 
communities further located from the colleges 
(distances divided by quintiles) and estimate the 
MMC impacts by using a difference-in-differ-
ences method. Results indicate that students who 
lived further away from college areas showed 

marginal improvement only in terms of highest 
level of math taken or passed compared with 
those students who attended schools in college 
areas, but no changes in predicted probability in 
college enrollment (see Supplemental Appendix 
Table 5 in the online version of the journal).

TABLE 8

Estimated Heterogeneous Impacts of MMC on College Enrollment

Disadv 
low

Disadv 
mid

Disadv 
high MEAP Q1 MEAP Q2 MEAP Q3 MEAP Q4 MEAP Q5

 (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Enroll in any college in 4 years
 MMC 0.022* 0.011 0.021† 0.010 −0.000 0.025* 0.031** −0.014

(0.010) (0.012) (0.011) (0.010) (0.013) (0.011) (0.012) (0.010)
 Mean of dependent 

variable
0.716 0.610 0.444 0.332 0.505 0.624 0.735 0.837

Panel B: Enroll in 4-year college in 4 years
 MMC 0.040*** 0.027** 0.010 0.008 −0.004 0.045*** 0.059*** 0.018

(0.010) (0.008) (0.009) (0.006) (0.011) (0.011) (0.013) (0.013)
 Mean of dependent 

variable
0.468 0.342 0.208 0.087 0.199 0.326 0.484 0.698

Panel C: Enroll in 2-year college in 4 years
 MMC −0.010 −0.011 0.012 0.002 0.004 −0.010 −0.019 −0.026**

(0.009) (0.012) (0.008) (0.008) (0.011) (0.011) (0.013) (0.009)
 Mean of dependent 

variable
0.266 0.284 0.248 0.252 0.319 0.317 0.273 0.156

Panel D: Enroll in any college in 5 years
 MMC 0.024* −0.003 0.008 −0.001 0.001 0.014 0.023* −0.019†

(0.010) (0.012) (0.010) (0.011) (0.013) (0.010) (0.011) (0.010)
 Mean of dependent 

variable
0.767 0.668 0.527 0.416 0.580 0.690 0.789 0.873

Panel E: Enroll in 4-year college in 5 years
 MMC 0.032** 0.026** 0.005 0.000 −0.005 0.040*** 0.055*** 0.013

(0.010) (0.009) (0.010) (0.007) (0.011) (0.011) (0.014) (0.013)
 Mean of dependent 

variable
0.501 0.371 0.231 0.108 0.227 0.358 0.518 0.726

Panel F: Enroll in 2-year college in 5 years
 MMC −0.001 −0.025* 0.007 −0.004 0.006 −0.018 −0.015 −0.054***

(0.011) (0.012) (0.009) (0.010) (0.011) (0.012) (0.014) (0.014)
 Mean of dependent 

variable
0.369 0.385 0.355 0.342 0.421 0.427 0.389 0.263

 Observations 48,253 66,123 72,639 45,744 37,664 37,283 34,453 31,871

Note. Each column reports coefficients from an OLS regression with standard errors in parentheses, clustered by school. Columns 1 to 3 show the 
estimates by school share of economically disadvantaged students, where low indicates the one third of schools with the lowest share of economi-
cally disadvantaged students, and columns 4 to 8 by quintiles of eighth-grade MEAP math score. Panels A to C estimate the impact of MMC on 
enrollment in corresponding postsecondary institutions in 4 years from the year of ninth grade, and Panels D to F estimate the impact on enrollment 
in corresponding postsecondary institutions in 5 years from the year of ninth grade. All columns include demographic controls (including gender, 
race, migrant, age, age squared, and economically disadvantaged status), school characteristics (including log of the number of teachers, log of 
real per-pupil expenditures, log of enrollment, log of enrollment squared, magnet school indicator, and the share of economically disadvantaged 
students), local unemployment rates, school fixed effects, linear time trend, and standardized math scores in Grade 8. MMC = Michigan Merit 
Curriculum; MEAP = Michigan Educational Assessment Program; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.
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Finally, given the finding that college enroll-
ment increased among more well-prepared stu-
dents, we examine whether these effects are driven 
by geographic regions in Michigan. we divide the 
sample into six geographic regions and examine 
whether high-achieving students, measured by 
eighth-grade state math test, from certain regions 
drove the improvement in college enrollment. 
Results indicate that the 4-year college enrollment 
rates from two regions—the Upper Peninsula 
region and the southwest region—showed that 
students from the third and fourth performance 
quintiles did not significantly improve after the 
intervention. However, the predicted probability 
of enrolling in 4-year colleges did improve for stu-
dents in the third or fourth quintiles in the other 
four regions after the intervention. Thus, the 
effects are not uniform across regions or pre-test 
quintiles (see Supplemental Appendix Table 6 in 
the online version of the journal).

Conclusion

Using this unique representative sample of 
high school student transcript data over time, we 
find positive and substantial impacts of the MMC 
on course-taking. Cohorts in the post-policy 
period are taking on average approximately 0.2 
additional years’ worth of math, and are passing 
the majority of these additional courses. However, 
we do find that students are four percentage points 
less likely to pass a math course in the post-policy 
period. we argue that this is in part due to the fact 
that the policy did not help prepare students for 
the more rigorous courses they were required to 
take. we also find that nearly all of these effects 
are driven by low-SES schools. In addition to tak-
ing more courses, we find students are complet-
ing higher-level courses in the post-policy period.

The estimated impact of the MMC on achieve-
ment is sensitive to the choice of specifications 
and sample. If we use the preferred specification, 
we find a 0.225 (0.05 standard deviation) increase 
in ACT math scores; if we use an ITS design, the 
estimate suggests a 0.276 decline in the scores; if 
we use the 2005 through 2008 cohorts, the esti-
mate is 0.185. Thus, we do not find any clear evi-
dence of policy impacts on ACT math scores.

we do, however, find an increase in college 
enrollment rates measured within 4 or 5 years of 
starting high school: The estimates suggest a 

three-percentage-point (8%) increase in 4-year 
college enrollment rates in 4 years and a two-
percentage-point (6%) increase in 5 years. The 
increase in college enrollment rates is mostly 
driven by well-prepared students and students 
from advantaged schools. As our data only 
include two post-policy cohorts, this potentially 
limits our capacity to reliably estimate the long-
term effects of the MMC. For example, we might 
expect to see more students that have mastered 
the math content required by the state and a larger 
increase in students’ ACT scores several years 
after the MMC’s initial implementation. One 
possible reason is that it usually takes extra time 
to hire more qualified math teachers to teach the 
new math courses and maintain class size, espe-
cially in the disadvantaged schools.

It is, however, interesting to note that the least-
prepared students have the largest increase in the 
number of courses and the highest levels passed, 
but they do not show any improvement in ACT 
math score and college enrollment. The obvious 
explanation is that, contrary to expectations, there 
is no link between course-taking, ACT perfor-
mance, and college attendance. This may be 
because college attendance continues to be based 
more on resources than ability, or perhaps that the 
ACT is not well-aligned with the new required 
courses. The mechanism of how the improvement 
in course-taking is translated to test scores or to 
college enrollment is left for future research.

without exogenous variation in the policy, we 
cannot make direct claims of causality; however, 
the evidence is quite consistent with the argument 
that changes are being driven by the policy itself. 
Most importantly, we see changes that are consis-
tent with what we would expect from the policy: a 
one-time change in course-taking behavior and no 
impact in schools for which the policy requirements 
were least likely to be binding. Finally, controlling 
for existing trends in course-taking behavior and 
looking only at within-school changes, we still see 
a strong impact of the policy. These techniques do 
not control for all alternative explanations, but 
taken as a whole, the evidence for a causal impact is 
convincing. This differential expected impact from 
the policy highlights some additional quasi-experi-
mental techniques that could be used to further 
explore the impact of policies like these—for 
example, comparing the impact across schools with 
different pre-policy graduation requirements.
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The results lead to mixed conclusions with 
regard to the success of the policy. On its face, 
the policy seems to have been quite successful. 
The average student takes nearly an additional 
semester’s worth of math and passes these addi-
tional courses at a rate of about 88%. This seems 
like a monumental short-term success story. 
However, as pointed out by Jacob et al. (2017), 
evidence has not yet been found suggesting that 
this has resulted in significant performance gains 
as measured by standardized exams. The answer 
to why we do not see gains in performance lies in 
achieving a better understanding of what was 
actually taught in these courses, and how the 
standards for these courses may have changed. 
we see strong evidence that the content that 
courses were supposed to cover has become 
more rigorous, as we see greater gains in achieve-
ment when course level is measured using course 
description rather than course title. However, this 
does not necessarily tell us what was actually 
taught in these courses. Analysis of a similar pol-
icy in Chicago suggested that teachers often low-
ered standards to accommodate students who 
may not have taken the more rigorous courses 
pre-policy (Mazzeo, 2010). Nonetheless, we can 
learn quite a bit from both the success and failure 
of this policy. If the increased failure rate in math 
courses is driven by unprepared students being 
pushed into more rigorous courses, the solution 
to ensuring the success of similar policies may lie 
in better preparation. This leads us to suggest that 

a staggered roll-out or longer time frame for 
implementation of such policies may help ensure 
their success, by allowing more time for schools 
to prepare students for the higher standards.26

Perhaps the greatest success of the policy, as 
evidenced by this data, is the increased parity in 
course-taking across SES status. when we look 
at the policy impact heterogeneously, we see 
that all of the changes are driven by students 
attending schools in the bottom two thirds, with 
regard to a fraction of the economically disad-
vantaged students. If, as suggested by a signifi-
cant body of research, inequality in access to 
courses drives some of the observed differences 
in academic performance among disadvantaged 
students, then this policy has successfully 
addressed this issue. Far more students in these 
schools are taking—and passing—these courses. 
This implies that if observed differences in out-
comes associated with participating in a more 
rigorous high school curriculum are not driven 
by selection into that curriculum, mandated cur-
riculum policies may be an important piece of 
an education policymaker’s toolkit. If, on the 
other hand, we do not see outcomes improve 
over time for students taking these courses, we 
should turn toward more rigorous analysis of 
both how course work is related to college  
and job-market success and how teaching in 
these courses changes in response to policies 
mandating standard curricula for diverse student 
population.

Appendix

TABLE A1

Balance Test for Key Covariates

Variable

Pre-policy Post-policy MMC coefficients

(1) (2) (3)

Female 49.4% 49.7% −0.000a

white 66.6% 66.8% 0.000a

Black 25.2% 23.9% −0.006†,a

Hispanic 4.3% 5.0% −0.001a

Asian 3.1% 3.5% 0.001a

Economically disadvantaged 32.2% 39.8% −0.002a

Limited English proficiency 4.0% 4.2% −0.001a

Magnet 8.4% 11.3% −0.004a

(continued)
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TABLE A2

Estimated Heterogeneous Impacts of MMC on Achievement

Disadv 
low

Disadv 
mid

Disadv 
high MEAP Q1 MEAP Q2 MEAP Q3 MEAP Q4 MEAP Q5

 (1) (2) (3) (4) (5) (6) (7) (8)

MMC 0.559*** 0.310** −0.115 −0.103* 0.092 0.303** 0.484*** 0.565***
(0.132) (0.110) (0.091) (0.047) (0.073) (0.093) (0.122) (0.163)

Cohort 0.083† −0.062 0.034 0.108*** 0.013 0.016 0.069 0.133
(0.046) (0.061) (0.042) (0.017) (0.027) (0.038) (0.050) (0.082)

Std. Math 8 3.932*** 3.862*** 2.857*** 0.751*** 2.733*** 3.733*** 4.337*** 2.808***
(0.055) (0.040) (0.107) (0.043) (0.102) (0.139) (0.112) (0.058)

Mean of dependent 
variable

21.110 19.788 17.030 14.891 16.424 18.384 21.256 26.197

Observations 44,597 61,345 57,360 33,267 32,423 34,121 32,685 30,806

Note. Each column reports coefficients from an OLS regression with standard errors in parentheses, clustered by school. Dependent variable is the 
first ACT math score. Columns 1 to 3 show the estimates by school share of economically disadvantaged students, where low indicates the one third 
of schools with the lowest share of economically disadvantaged students, and columns 4 to 8 by quintiles of eighth-grade MEAP math score. All 
columns include demographic controls (including gender, race, migrant, age, age squared, economically disadvantaged status), school characteris-
tics (including log of the number of teachers, log of real per-pupil expenditures, log of enrollment, log of enrollment squared, magnet school indica-
tor, and the share of economically disadvantaged students), local unemployment rates, school fixed effects, linear time trend, and standardized math 
scores in Grade 8. MMC = Michigan Merit Curriculum; MEAP = Michigan Educational Assessment Program; OLS = ordinary least squares.
†p < .10. *p < .05. **p < .01. ***p < .001.

Variable

Pre-policy Post-policy MMC coefficients

(1) (2) (3)

MEAP 8th −0.11 0.13 −0.038**,a

Enrollment 1,517 1,442 3b

Number of teachers 73 71 −0.7†,b

Per-pupil expenditures $6,173 $5,814 $22b

Note. Each column reports sample means during corresponding period. Pre-policy includes 2003–2007 cohorts and post-policy 
includes 2008–2009 cohorts. Column 3 presents p values for conditional differences that use each covariate factor as the outcome 
with the analysis models. MMC = Michigan Merit Curriculum; MEAP = Michigan Educational Assessment Program.
aIndividual covariates are estimated in student level. Sample size is 289,983.
bSchool covariates are estimated in school level. Sample size is 129.
†p < .10. *p < .05. **p < .01. ***p < .001.

TABLE A1 (CONTINUED)
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Notes

1. with respect to the results, the Jacob, Dynarski, 
Frank, and Schneider (2017) study found no evidence 
of ACT math score improvement. In the Jacob et al. 
(2017) study, the graduation rates were sensitive to 
various model specifications. with respect to the 
research design, the Jacob et al. (2017) article used an 
interrupted time series (ITS) design. we used pre–post 
design because we had only two post-policy cohorts (or 
an abbreviated ITS research design with a linear cohort 
trend but without a post-policy trend) and, thus, do not 
have enough time points to reliably estimate a post-
policy trend (Bernal, Cummins, & Gasparrini, 2017; 
Shadish, Cook, & Campbell, 2002). In addition, the 
2010 cohort sample of schools did not have completed 
transcript records to estimate course-taking behaviors 
and college enrollment. Both articles employed the lin-
ear cohort trend with school fixed effects specification 
to estimate the treatment effects. To validate the use 
of the representative sample of 129 schools, we esti-
mated the Michigan Merit Curriculum (MMC) effects 
on outcomes in Jacob et al.’s article (ACT math score) 
using our sample via an ITS design and found results 
consistent with theirs. with these data, we were able 
to study changes in student course-taking behaviors 
across cohorts and over multiple years.

2. Education Commission of the States (2010).
3. Michigan Merit Curriculum: High School 

Graduation Requirements (2006).
4. we used course descriptions from course cata-

logs and measured whether there is standardization 
with respect to course content after the MMC was 
announced. Results indicate that schools are more 
likely to use state standards in their math course 
descriptions after the MMC was announced, and that 
the increase in the probability of compliance with the 
state standards is greater for Algebra 1 and geometry 
courses (see Supplemental Appendix Table 7 in the 
online version of the journal).

5. This research uses data structured and maintained 
by the Michigan Consortium for Educational Research 
(MCER). MCER data are modified for analysis using 
rules governed by MCER and are not identical to data 
collected and maintained by Michigan Department 

of Education (MDE) and Michigan’s Center for 
Educational Performance and Information (CEPI).

6. Supplemental Appendix Table 1 (in the online 
version of the journal) presents summary statistics for 
key demographic and school covariates for 37 dropout 
schools. Of these 37 schools, we have a replacement 
of 21 dropout schools in terms of region/urbanicity, 
poverty, Detroit, LEP, school size, and percentage 
minority. For the other 16 schools, we collected tran-
scripts from relatively higher socioeconomic status 
(SES) schools than the original dropped schools. In 
particular, we could not find a good match of low-
SES schools with a high fraction of disadvantaged 
students. For example, the fraction of disadvantaged 
students at 16 nonreplaced schools is 34%, while at 
the 16 schools in the transcripts, it is 32%. we note that 
we have a large number of low-SES schools based on 
our sampling scheme, which forced us to include 12 
schools in Detroit. As a result, replaced schools have a 
smaller fraction of disadvantaged students than drop-
out schools. These schools, however, account for less 
than 10% of the sample and are not large enough to 
invalidate our inference assuming that there is no pol-
icy effect in those schools. Yet, we cannot rule out the 
possibility that replacing more low-SES schools could 
slightly reduce the estimated policy effects.

7. Twelve schools were closed, and one refused to 
participate. Eight schools had problematic data issues 
because of confidential information (social security 
numbers) and formatting problems. we do not gen-
eralize to schools that closed, although it is notewor-
thy that of the almost 10% of schools closed during 
our study, most were located in the Detroit area. See 
Brummet (2014) on the effect of school closings on 
student achievement.

8. The overall sample restriction drops 62,298 stu-
dents (5.74%). Our sensitivity analysis follows Frank, 
Maroulis, Duong, and Kelcey (2013), suggesting that 
one would need to replace at least 28% of the cases 
with null effects to invalidate our inference. This omis-
sion has minimal impact on key results. Also see the 
Supplemental Appendix Table 2 (in the online version 
of the journal) for the sensitivity of estimates with 
respect to the omission.

9. we have carefully evaluated the content of 
math courses based on the individual schools’ course 
catalogs to assign codes through a detailed and reli-
able coding process. For complete information about 
the coding process, refer to Kim, Troutman, Minor, 
Schneider, and Frank (2015).

10. Burkam, Lee, and Smerdon (2003) divided math 
courses by level into eight categories, moving from 
least to most advanced: (1) No math; (2) Non Academic 
(e.g., General/Consumer Math); (3) Low Academic 
(Algebra 1/plane, informal geometry); (4) Middle 
Academic (Algebra 1, Geometry); (5) Middle Academic 
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2 (Algebra 2); (6) Advanced 1 (Algebra 3/Trigonometry/
Analytic Geometry); (7) Advanced 2 (Precalculus); and 
(8) Advanced 3 (Calculus).

11. Table A1 presents a balance table for key indi-
vidual and school covariates across cohorts and tests 
for the imbalance of these covariates. The sample 
means are calculated at the student-level for individual 
covariates and at the school-level for school covari-
ates. Across 12 estimates, there are only three coef-
ficients marginally significant at the 10% level. The 
other nine estimates suggest that the baseline covari-
ates are balanced across samples and that pre- and 
post-intervention samples are largely the same on key 
variables affecting outcomes.

12. Jacob et al. (2017) noticed the large jump in 
eighth grade scores for the ninth-grade cohort of 
2009 but could not find any explanation for the jump, 
although the fact that the 2010 cohort mean is even 
larger suggests the post-policy cohort values are not 
an anomaly. The standardized math scores are 0.02 for 
the 2008 cohort and 0.25 for the 2009 cohort.

13. MMC requires the passing of Algebra 1, 
Geometry, and Algebra 2, and the passing of an addi-
tional math course in 12th grade. Thus, students can 
take math courses or outside credit courses that are 
counted as a math credit, such as accounting, engineer-
ing, and drafting, which differ by school. As such, our 
estimates on the impacts of the MMC on math credits 
are served as a lower bound.

14. By including grade dummies, we are control-
ling for systematic differences across grade levels 
and make direct comparisons within grade level. For 
instance, seniors are less likely to take math courses, 
but they are likely to take more advance courses than 
freshmen and sophomores.

15. when we add standardized math scores in eighth 
grade and in fourth grade in column 3, the estimates 
are 0.066 (0.013) and 0.066 (0.014), respectively.

16. Changes in dropout rates, or withdrawal from 
public schools, can change the composition of the 
treatment group at the time of the policy intervention. 
Jacob et al. (2017) showed that the estimates for high 
school completion are sensitive to the choice of sam-
ple and specification. In our sample, the conditional 
dropout and graduation rates are 4.9% and 77.4% in 
pre-MMC cohorts and 3.6% and 78.9% in post-MMC 
cohorts. The conditional differences are not large 
enough to change the composition in a meaningful 
way. we estimated whether the probability of dropping 
out is affected by the policy and could not find any 
statistically significant effects. we also estimated the 
policy impacts on dropout rates separately by Grade 8 
standardized math test quintiles. The marginal effects 
of the MMC on the probability of dropping out in 
high school are small (less than 1.5 percentage points 
across all quintiles).

17. For comparison, Kim (2018b) used ELS:2002 
to calculate the number of credits passed for high 
school graduates and showed that the national aver-
age of the number of math credits passed is 3.3. when 
we restrict our sample to high school graduates, the 
average number of math credits passed is 2.69, where 
post-policy cohorts passed 2.82 credits. Since we have 
limited information on course hours to accurately cal-
culate the standardized Carnegie units used in national 
studies, our estimates are not directly comparable. 
Also, around 16% of courses do not have term infor-
mation and were dropped in the analysis as we could 
not calculate year-equivalent credits, which contrib-
uted fewer number of credits passed compared with 
estimates from the national study.

18. Although similar studies of course-taking have 
used schools’ textbooks to assess the material and con-
tent that students are exposed to (Schiller, Schmidt, 
Muller, & Houang, 2010), our study relies on course 
catalogs, since course descriptions in these handbooks 
are often based on the content of textbooks.

19. Note that the sample includes high school 
nongraduates. when we restrict the sample to gradu-
ates, the estimates are of similar magnitude—0.128 
(0.036) for the highest level taken and 0.189 (0.040) 
for the highest level passed—although the means of 
the dependent variables are slightly higher (4.694 and 
4.548, respectively).

20. when we do not include linear time trend and 
estimate the impact on course-taking, the coefficients 
on the MMC are 0.077 (0.014) for number of credits 
taken, 0.067 (0.014) for number of credits passed, 0.054 
(0.040) for highest level taken measured by course title, 
0.138 (0.033) for highest level passed measured by 
course title, 0.213 (0.042) for highest level taken mea-
sured by course description, and 0.300 (0.044) for high-
est level passed measured by course description. The 
coefficients of the MMC on course level measures are 
larger than those controlling for the time trend variable.

21. Once previous math score in grade 8 is con-
trolled for, dropping a linear trend does not statistically 
change the estimate, which is 0.276 (0.062). when 
we further control for standardized math test score in 
Grade 4, the coefficient is similar, 0.266 (0.069), while 
we lose around an additional 15% of the sample.

22. Particularly, we estimate the following mode 
Y Cohort Cohort Cohortisc c c c isc sc= + + + + +α α α α α α0 1 2 3 4 52008 2009 X Z ++ +µs isc

Y Cohort Cohort Cohortisc c c c isc sc= + + + + +α α α α α α0 1 2 3 4 52008 2009 X Z ++ +µs isc , where Cohort c2008  and 
Cohort c2009  are equal to 1 for cohort 2008 and 
2009, respectively. Then we estimate the weighted 
average of two estimated coefficients as a summary 
measure of the policy impact.

23. As Jacob et al. (2017) suggested, the estimates 
are sensitive to the sample and methodology used. 
when we use the same specifications as in Jacob et al. 
(2017), we found similar results. However, if we change 
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the specifications, we have different results. For exam-
ple, if we drop the 2009 cohort and estimate with the 
ITS design, the estimated coefficient is 0.185 (0.076). 
Additional analyses results are available by authors.

24. when we estimate using an ITS design, the 
estimates are not statistically different from those in 
Table A2 except for the estimate for the least-prepared 
students. The least-prepared students do not benefit 
in terms of math test scores, which suggests that tak-
ing more math courses does not necessarily improve 
the understanding of the course content for low 
performers.

25. National Center for Education Statistics 
(2015) shows that the fall enrollment share for 
for-profit institutions stayed stable at around 10% 
between 2008 and 2014 (8% for 4-year colleges and 
2% for 2-year colleges), and the enrollment share for 
2-year for-profit colleges is so small that it is unlikely 
to change the estimates on the MMC to significant 
positive values. In addition, simple sensitivity analy-
sis, following Frank et al. (2013), suggests that one 
would have to replace about 27% of the cases to 
invalidate our inference.

26. The MMC’s theory is to improve student 
achievement and outcomes by mandating more 
advanced math and science courses. However, the 
underlying processes through which students’ achieve-
ment and postsecondary enrollment are affected by 
the statewide policy are complex. For example, the 
policy may have changed the classroom academic 
peer performance composition of math courses or, in 
response to the MMC requirements, schools may have 
had to adjust staffing to provide those courses, which 
may have changed teacher–student ability sorting. 
Although mandating certain advanced math courses 
helped improve student college outcomes among those 
who are in need (Kim, 2018a), recent efforts in Boston 
and other places (Cook et al., 2015; Fryer, 2014; Kraft, 
2015) suggest that additional pedagogical and instruc-
tional supports may be a necessary component to make 
this type of policy more successful.
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