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This study used participant observation to explore students’ thinking when learning the 
concept of factorial functions. First-year university students undertaking a mathematics 
methodology course were asked to find the number of ways in which five people could 
sit around a circular table with five seats. Using grounded theory as a qualitative research 
strategy, we analysed student responses and written reflections according to the sequence of 
their experiential realities: practical and textual experiences. This was followed by an analysis 
of their reflections on both experiences in a pedagogical context. We found that the way basic 
mathematics operations are learned impacts on the student’s ability to experience components 
of new problems as familiar. Consequently, they encounter these problems as new and 
unfamiliar. At the same time we found that engagement with practical experience does 
allow for the emergence of representations that have the potential to be used as foundations 
for learning new and unfamiliar concepts. The blending of practical, textual and teaching 
experiences provoked students’ thinking and ultimately their understanding of a given new 
and unfamiliar mathematics concept.
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Introduction and research questions
This article reports on an exploration of first-year university students’ (pre-service teachers) 
thinking in solving a factorial function problem. The role of the teacher in the activity was limited 
to presenting the situation and introducing some resources at different stages of the process. 
The reason for this was twofold: to introduce students to a different teaching approach in 
which learning is at the foreground and to introduce them to ‘pedagogical content knowledge’ 
(Shulman, 1986, p. 9). Two research questions emerged during the study, namely:

• What are the challenges associated with engaging in a self-directed learning activity of a new 
and unfamiliar mathematics concept?

• In what ways do pedagogical attributes affect learning of a new and unfamiliar mathematics 
concept?

The concept of the factorial function is associated with permutations, combinations, Stirling 
numbers and number theory (Bhargava, 2000). The factorial of a positive integer n , denoted by 
n! , is the product of all positive integers less than or equal to n . Symbolically, the function is 
defined by:
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In the context of mathematics the definition and symbolic representations appear simplistic. 
Learners know how to multiply integers and rules of permutations and combinations can 
be easily followed. When the situation manifests itself in a real-world context, learners often 
encounter challenges, in particular with how one perceives continuous multiplication in a real-
world context.

Malisani and Spagnolo (2009) attribute some of these challenges to the introduction of the concept 
of variables in the teaching of mathematics. They argue that ‘the concept of variable is used with 
different meanings in different situations’ (p. 21) and often unconsciously. This is a core problem in 
the growth of mathematics concepts. Skemp (1978) vividly demonstrates this in his conception of 
instrumental and relational understanding. Pirie and Kieren (1994) explore the same idea in their 
notion of growth in mathematical understanding. The phenomenon is adequately addressed by 
Tall (2008) in his characterisation of cognitive development through three worlds of mathematics. 
Lack of systematic development from one area of concept development and representation to 
another, as discussed by these three authors, often results in learning problems.
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Elia and Spyrou (2006, p. 257) explicitly state that ‘the 
understanding of functions does not appear to be easy’. 
This is particularly so with the concept of factorial 
function as it requires the blending of different knowledge 
structures. Functions, especially in their symbolic form, are 
generalisations of relationships. Some studies, such as ones 
by Amit and Neria (2008) and Tarlow (2008), have reported 
that the ability to generalise and represent relationships 
requires higher order thinking skills, such as visualisation, 
holistic thinking, flexibility, reasoning and abstraction. Pure 
mathematics at university level tends to be taught within a 
formal framework of axiomatic systems and mathematical 
proof (Tall, 2008). Development of an understanding of 
mathematics concepts requires students to link ideas together 
for themselves and to take some responsibility for their own 
learning (Maoto & Wallace, 2006). Thus, the role of a teacher 
shifts to a facilitative one to allow students time to develop 
mathematical ideas rather than to impose those ideas onto 
them.

Most research in relation to the teaching and learning of 
the factorial function is covered in comprehensive studies 
that focus on combinatorics (Halani, 2013; Lockwood, 
2011). Complex thinking processes are involved in learning 
combinatorics, including factorial functions. Lockwood 
(2011) presents two perspectives of thinking that underpin 
learning combinatorics: the process-oriented perspective 
and the set-oriented perspective. Meanwhile, Halani (2013) 
classifies the thinking that is involved in learning the 
factorial function into eight different categories: addition, 
union, standard odometer, wacky odometer, generalised odometer, 
deletion, equivalence classes and ratio.

Other researchers (Bintz & Moore, 2003; Braithwaite & 
Goldstone, 2013) focus on the teaching approaches that 

facilitate the learning of factorial functions. Bintz and 
Moore (2003) use specifically constructed stories that they 
read to their middle school learners to introduce factorials. 
In the context of university students, Braithwaite and 
Goldstone (2013) support an approach where what 
they term grounded representations precede formal 
representations.

The purpose of this literature review was not to identify gaps 
with respect to locating the study in literature. That would 
have defeated the grounded theory approach that we have 
adopted (Bitsch, 2005). Instead, we highlighted literature 
within which we could explain our emergent understandings 
of students’ learning of factorial function.

Theoretical and conceptual 
framework
Our emerging conceptualisation of the framework that 
best accounts for how the study unfolded and was 
processed and reported upon is informed by three theories: 
constructivism as a referent for teaching (Tobin & Tippins, 
1993), theory of reflective practice (Schön, 1983) and 
grounded theory (Glaser & Strauss, 1967). Constructivism, 
when used as a referent (Tobin & Tippins, 1993), demands 
that students’ experiential reality provides a foundation 
upon which their knowing is constructed. Growth with 
regard to understanding of concepts is facilitated through 
a scaffolding process (Vygotsky, 1962). Schön’s (1983) idea 
of reflection-in-action is helpful with regard to how and 
when the knowledgeable other (Vygotsky, 1962) can provide 
timeous scaffolding.

The origins of grounded theory lie in Glaser and Strauss’s 
(1967) response to the dominant role theoretical frameworks 

FIGURE 1: The emergent conceptual framework.
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have played in research, especially in the context of qualitative 
studies. According to Charmaz (2008), grounded theory 
‘takes a systematic inductive, comparative, and interactive 
approach to inquiry’ (p. 156). Through this process ‘not 
only are the surprising data emergent, but the researcher’s 
theoretical treatment of them is also emergent’ (p. 157).

Our conceptualisation of the interrelationships of the three 
theories is captured in Figure 1.

In this model, the teaching and learning process unfolds 
first. The emerging data are analysed with the purpose of 
facilitating and supporting learning. The process is enriched 
by reflection-in-action. Where necessary, intervention in 
the process comes in the form of scaffolding. The interplay 
between emerging data, the results of reflection-in-action 
and scaffolding activities continues until the outcomes of 
learning are achieved.

Subsequently, grounded theory allows us to process 
the whole learning experience anew. The process is 
now guided by the need to understand what happened, 
focusing on the research outcomes. Research questions 
emerge and are pursued, guided by reflection-on-action 
(Schön, 1983). The process allows for the interrogation 
of the value of the questions that emerged during the 
facilitation of learning. Theoretical sampling, constant 
comparative analysis and emergence of categories or 
themes become realisable.

Research methodology and 
methods
This study was situated within the first author‘s own 
classroom, which consisted of 89 first-year university students 
who were registered for a mathematics methodology module. 
Data gathered in a setting where one could actually talk 
directly to participants, and see them behave and act within 
their context and ultimately reflect on their own learning, is 
a major characteristic of qualitative research (Creswell, 2007). 
Following the qualitative research strategy of grounded 
theory, data collection, analysis and interpretation proceeded 
interdependently and iteratively and was not influenced by 
the literature (Bitsch, 2005).

Data were mainly collected through submission of written 
responses, while participant observation during normal 
classroom interactions provided insights into the students’ 
responses. All 89 students worked in self-selected groups 
with a minimum of five members. The question given to 
them was: ‘In how many ways can five people sit around 
a circular table? Investigate and thereafter explain how 
you will teach this to Grade 9 learners’. Through the 
provision of scaffolding (Vygotsky, 1962), the students 
were expected to outline the key elements required to 
bring about an understanding of the activity and to clearly 
explain and justify their responses. On completion of their 
written responses, the students had to reflect on their use 
of mathematical strategies, mathematical processes and 

mathematical content, as well as reflect on the low and high 
moments they experienced. A day after their first submission 
they were given reference material which highlighted, in 
limited detail, linear and circular permutations, indicating 
symbolic generalisations of the two related functions. The 
intention was to scaffold the understanding and offer them 
an opportunity to attach meaning to, and to improve on, 
their initial explanations and justifications. It was also 
intended for the reference material to provoke their thinking 
towards generating functions for their different emerging 
sequence of numbers.

The written responses of the groups were submitted in 
three stages. The first set of responses were submitted 
immediately after practical experiences, the second set was 
submitted immediately after textual experiences and the last 
set came after students’ reflections on both experiences in a 
pedagogical context. During whole-class discussions, guided 
by their submitted responses at each stage, individual groups 
were asked to confirm the different interpretations that 
existed within and across the groups. It was this alternating 
between data collection and analysis that influenced how we 
organised and interpreted their findings. The back and forth 
experiences and reflective interpretations by both students 
and us provided a rich platform to trace students’ thinking 
towards an understanding of the problem. To back up the 
findings and discussions we used the exact final responses 
of the students without disclosing their identities, as agreed 
upon. In between the students’ quotes, we highlighted 
emerging lines of investigations and ideas that influenced 
students’ conclusions.

Ethical considerations
This qualitative study complied with all ethical requirements 
of the university. Approval was obtained from the department 
in which the study was located, the students and the relevant 
university structures beyond the department. The nature and 
purpose of the study were declared, inclusive of potential 
audiences and substantive foci. Erickson (1998, p. 1161) writes: 
‘consent that is genuinely informed and without coercion 
reduces the risk of social harm because it affirms the dignity 
and respects the agency of those who will be involved in the 
study’. We agreed on anonymity of the participants, hence 
no individual identities were divulged during this study. 
The students themselves were beneficiaries of the results of 
this study. They were inducted into the dynamics of what it 
means to learn mathematics with a view to teaching young 
learners.

Quality criteria
The prolonged engagement (semester), persistent observation, 
ongoing probing during a number of whole-class discussions, 
peer debriefing and member checks provided enough 
opportunity to hear the students’ voices, which contributed 
to establishing credibility of this study (Bitsch, 2005; Guba & 
Lincoln, 1989). Recursive submissions from the students and 
sufficient descriptive data added to both confirmability and 
transferability of this study (Guba & Lincoln, 1989).
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Findings and discussion
The practical interaction by the students with the task 
presented them with a unique learning experience, including 
counting of actual seating positions, engagement with some 
of the theories of counting presented in the handouts and the 
need to approach the task from the perspective of a teacher.

Each of these stages provided us with a glimpse into the 
thinking that students applied as they learned mathematics 
in the context of becoming teachers. In order to preserve the 
order through which the experiences unfolded, this section 
is presented in the three stages as they emerged: (1) practical 
experiences, representations and counting or enumeration 
strategies, (2) textual experiences, interpretations and 
applications and (3) reflections on both practical and textual 
experiences in a pedagogical context.

Practical experiences, representations and 
counting or enumeration strategies
The students’ engagement with the task involved talking 
about the task and using sketches on paper to determine 
the solution. Some students created the actual space in 
which seating would take place and exchanged seats, while 
other students recorded or counted the number of possible 
seating permutations. Lack of systematisation by students on 
how the activity was unfolding was apparent in the initial 
stage. However, over time, strategies became evident. Four 
different answers emerged, namely (1) 5 ways, (2) 20 ways, 
(3) 23 ways and (4) 25 ways in which five people could sit 
around a circular table. In almost all instances it was evident 
that the students considered the representation to be linear 
rather than circular. Each of these four different responses is 
examined in order of complexity.

Response 1: 5 ways
Two groups of students gave an answer of five possible 
permutations, with the following explanations:

Explanation 1:
Firstly, each occupies a seat around the table. Then each moves 
to the next chair while the other one from right hand side moves 
to the chair left by the other. The one on the right hand side 
moves to make space for the other. At the end all five people 
would have occupied five chairs in different positions around 
that circular table.

Explanation 2:
There are 5 ways:

V V W X Y Z

W W X Y Z V

X X Y Z V W

Y Y Z V W X

Z Z V W X Y

→

→

→

→

→

Letters of the alphabets represent names of people

The two strategies are clearly distinct and yet similar. In 
explanation 1 the focus is on each of the five people having 

an opportunity to occupy each of the five seats. The order 
in which they are seated remained static. However, it is still 
important that all of them are seated at the same time, though 
in different seats. Practical observations were used to arrive 
at the number of times this was possible.

Explanation 2 reflected a different strategy, where the 
students used the last five letters of the alphabet to represent 
people. This offered some systematisation of the process 
which was then used to visualise how five people could 
change their seating arrangements. The first and the last 
letters of the alphabet were systematically exchanged, 
leading to a total of five possible permutations of the seating 
arrangement. The relative positions of letters remained the 
same. V would always be next to and to the left of W, except 
when one of them is the last and the other is the first letter in 
the sequence. In the context of a circular table, the order of 
these letters remained the same. This makes the explanation 
similar to the first.

The difference between the two strategies is with regard 
to their potential in scaffolding towards the concept of 
factorial. The use of letters in explanation 2 allows for better 
manipulation.

Response 2: 20 ways
The explanation of one group that arrived at this conclusion 
was:

If the first person occupied a position, the others can sit 
around 4 remaining positions. We say 4 ways for 1 person if 
stationary, therefore 5 people each with 4 ways: 5 × 4 to get 
20 ways.

The strategy was to fix the first of the five positions while 
varying the remaining four; Halani (2013) calls that standard 
odometer thinking. This seating permutation could be achieved 
in exactly five different ways as there were five people. Once 
that was done, the remaining four positions produced four 
possible alternatives. While not explained by the students, 
this strategy of fixing of positions is similar to and enriches 
explanation 2 in response 1. This new thinking is an 
important aspect of the concept of factorial. Furthermore, the 
idea of expressing the numerical representation of fixing and 
varying seating positions through multiplication makes this 
an invaluable development in working towards the concept 
of factorial.

Response 3: 23 ways
This response showed a two pronged strategy in which 
two different representations were used to arrive at 23 
combinations. However, a closer review of the processes 
followed indicated that this group made an error and, 
in fact, the calculation leads to a total of 20 instead of 23 
permutations. The explanation was:

1st position 5 candidates; 2nd position 4 candidates; 3rd position 
3 candidates; 4th position 2 candidates; 5th position 1 candidate; 
added to the sequential positioning of 5 equals to 23 ways. Let’s 
say the candidates are named A; B; C; D; E

http://www.pythagoras.org.za
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A B C D E

B C D E A

C D E A B

D E A B C

E A B C D
 

Sequential positioning equals 5 ways

The 1st is now last and so on

1st position: 7 ways; 2nd position: 5 ways; 3rd position: 3 ways; 
4th position: 2 ways; 5th position: 1 way

Therefore 5 + 7 + 5 + 3 + 2 + 1 = 23 ways

The first strategy used considers the possibilities for each 
of the five seating positions. While this is still a feature 
of Halani’s (2013) odometer thinking, these positions were 
counted independently. The students did not consider 
the strings of seating arrangements that could arise from 
the approach. The subsequent possibilities of occupying a 
seat were not taken as linked to the previous possibilities. 
It is the absence of this connection that, we believe, makes 
the strategy ineffective. The second strategy was to use 
letters of the alphabet to represent different strings of 
seating arrangements. The sequence of the letters was 
maintained, unless subsequent letters were at the opposite 
ends of the string. The two strategies yielded 15 and 5 ways 
respectively leading to a total of 20 permutations. The 7 
ways for the first position and the 5 for the second appear 
to be mistakes in the students’ work. Initially, the numbers 
were correctly given as 5 and 4. In terms of the ultimate 
purpose of engaging with the concept of factorial, the two 
strategies can be scaffolded for a successful count. The first 
strategy was, however, closer to the numerical and symbolic 
representation of the concept of factorial than the pictorial 
representation.

Response 4: 25 ways
Two groups arrived at this conclusion using two distinct 
processes.

Explanation 1:
Each person shifted 5 times; 5 × 5 = 25. By changing positions of 5 
people until the first one occupies the first position again.
Learner A sits in 5 times
Learner B sits in 5 times
Learner C sits in 5 times
Learner D sits in 5 times
Learner E sits in 5 times
5 + 5 + 5 + 5 + 5 = 25

Explanation 2:

According to statistics there is only one way 5 people can sit 
around a circular table. The first person can occupy any of the 
five positions. The same could happen to the remaining four 
people. In this manner all five people will occupy 5 different 
positions, which means 5 people, 5 positions each. We multiply 
5 by 5 to obtain 25 (5 × 5 = 25) ways.

Explanation 1 suggests that the learners were counted 
separately and not in their strings of seating arrangements. 

Each of the five learners had an opportunity to occupy any of 
the five seats, translating into a total of 25 possibilities. The 
potential to scaffold this into the concept of factorial is very 
low as there are numerous issues (structure, permutations) 
that need to be addressed.

Explanation 2 deploys an external tool: statistics. The 
explanation did not make it clear whether all the seats were 
occupied simultaneously or one at a time.

Reflecting on the students’ challenges in working  
from practical engagement
The students’ responses to the assigned task reveal two 
key challenges associated with dealing with mathematical 
concepts encountered in real-life situations. The first challenge 
is that students struggle with representing the problem in a 
way that makes it accessible mathematically. Each group had 
no problem in realising that they were dealing with a counting 
activity as reflected in the four conclusions presented. 
Initially they thought that role-playing the situation would 
enable them to observe and better understand the given 
factorial function problem. Lack of systematisation made 
this option less feasible, leading to its abandonment. Acting 
out as a form of direct representation proved ineffective as 
people proved hard to manipulate (as learning aids). This led 
to the use of letters of alphabet as symbolic representations 
of people. Letters proved easier to manipulate, as evident 
in almost all the responses. However, the choice of letters 
imposed yet another restriction. In all the cases, either the 
first or the last five subsequent letters were chosen and the 
order was rigidly adhered to and maintained. The order of 
taking the first letter to the last resulted in a different seating 
arrangement only if one deals with linear arrangement. In 
a circular arrangement, one ends up with the same seating 
arrangement. The second challenge was the problem of how 
multiplication manifests itself in real-life situations. In real 
life, multiplication is encountered as repeated addition of the 
same quantity. Thus we do not look for multiplication per se 
but for the same quantity added a number of times.

Textual experiences, interpretations  
and applications
At this stage, students were given a handout explaining 
the factorial concept and differences between linear and 
circular arrangements. Furthermore, they were advised 
to make use of Internet and library services to find more 
information. This exposure alerted students to a different 
way of learning mathematics – the use of literature (Bintz & 
Moore, 2003) rather than a prescribed textbook. This offered 
students an opportunity to review their earlier submissions. 
The second set of students’ written responses followed this 
intervention. Two different answers were arrived at: 120 and 
24 permutations.

Response 1: 120 ways
Seven groups arrived at 120 seating permutations. Their 
procedures, interpretations and justifications fall into three 
different categories.

http://www.pythagoras.org.za
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The first category comprises students who used colours.

Explanation 1: Use of colours to represent the five people.

It is a probability problem, which needs possible outcomes. … 
We first took 2 people and sit them opposite to each other 
and not allowing them to change positions. For example 
we name our 5 people, green, blue, red, yellow and white 
then sit them such that red is opposite green. Make green 
and red not moving and let the others change positions. For  
example:
Red, Green, Blue, White, Yellow
Red, Green, Blue, Yellow, White
Red, Green, Yellow, Blue, White

…

There are six possible arrangements. If we fix the position of 
red and replace green, we also find another six possibilities. If 
we continue by not altering the positions of red and changing 
the ones that sit opposite red, we found 24 outcomes (6 × 4). If 
we change the position of red and replace it by each of the other 
colours at a time, we will have another 24 arrangements different 
to each colour and we multiply the 24 different arrangement 
by the number of colours we found a total of 120 arrangement  
(5 × 24).

Initially, the students classified the activity as a probability 
problem. However, that did not influence what followed. 
Instead, the students developed a systematic way of 
representing the different arrangements. The technique 
involved fixing some positions while exchanging the others. 
This improved the clarity of their observations and they thus 
appeared to have extended standard odometer thinking to wacky 
odometer thinking (Halani, 2013). Ultimately, they arrived at 
24 arrangements for each colour occupying the first position 
resulting in 5 × 24 = 120 different possible combinations. The 
use of colours resolved the rigidity of linearisation inherent 
in the use of letters.

The second category comprised students who used the 
factorial formula without justifying its link to the problem at 
hand. The distinction between linearity and circularity was 
not addressed.

Explanation 2:

Say that people are seated as person A; B; C; D and E. Such an 
order can be represented in a linear list as ABCDE. With the use 
of this notation, we can count the number of possible lists. There 
are:

5 possible choices for the first spot (A, B, C, D or E)
4 choices for the second
3 choices for the third
2 choices for the fourth
1 choice for the fifth spot.

That is, there 5 4 3 2 1 120× × × × =  ways. The list can be written 
as:

ABCDE; ABCED; ABECD; ABDEC; EBDCA; EDBCA; etc. 
Therefore, there are 120 ways. 

The five people keep changing seats one at a time in such a way 
that none of them repeats to have the same neighbour.

A string of five letters was used as a way of representing 
people. However, the rigidity of the order of the letters was 
rescinded. Having explored the possibilities of occupying 
each of the positions, the group then used multiplication 
to arrive at 120. The transition from choices for each seat 
to multiplication is not clear. This transition makes their 
explanation similar to those in which a formula was  
used.

The third category comprised explanations that provided 
some link between representation using letters and 
factorial function. The students first made use of formulae 
to calculate the number of permutations, they then use 
actual seating, represented by letters, to confirm their  
findings.

Explanation 3:

5
5 120P =

5 5 4 3 2 1 120! = × × × × =
Therefore, there are 120 ways

Since these people are to sit in different ways, this implies 
repetition is not allowed and the order at which these people 
are arranged is important. The number of permutations of 
’ ’n  different people taken at a time is as follows: First mark 
the sitting positions as 1; 2; 3; 4; 5. Note that the positions 
must be at equal distance from each other to avoid conflict. 
Name the five people as A; B; C; D and E. Sit one person at 
a time. Since there are five people, the first person, suppose 
is ‘A’ can sit in 5 ways. The second person ‘B’ from the four 
remaining can sit in ‘4’ ways as the fifth position is occupied 
by ‘A’. The third person ‘C’ will sit in 3 ways and the fourth 
will sit in 2 ways. Finally the fifth person ‘E’ will sit in only one  
way. …

This can be:

ABCDE ABECD ABDCE ACEDB AEBDC
ACDEB ACDBE ABEDC ADBEC AECDB
ADEBC ADBCE ACBDE ADCBE AEDBC
AEBCD AEBCD ACBED ADCEB AEDCB
ABDEC ABCED ACEBD ADECB

This arrangement gives 24 positions if A is fixed in the 1st 
position. Another 24 when A is fixed in the 2nd position and so 
on resulting in 24 24 24 24 24 120+ + + + =  ways

Explanation 4:

There are 120 ways

1 1
2 2 1 2
3 3 2 1 6
4 4 3 2 1 24
5 5 4 3 2 1 120

!
!
!
!
!

=
= × =
= × × =
= × × × =
= × × × × =

For 5 people we have

5 5 4 3 2 1 120
120
! = × × × × =

∴ ways

We indicated person number 1 as A; 2 as B; 3 as C; 4 as D and 
5 as E

http://www.pythagoras.org.za
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No. 1 2 3 4 5
1 ABCDE BACDE CABDE DABCE EABCD
2 ABCED BACED CABED DABEC EABDC
3 ABDCE BADCE CADBE DACBE EACBD… … … … … …

24 AEDCB BEDCA CEDBA DECBA EDCBA

Each person can sit in 24 ways and there are 5 people. 

∴ × =24 5 120

In explanation 3, the permutation strategy is used. The strategy 
was confirmed by showing what all arrangements that begin 
with letter A would look like. The point was made by the 
students that, since there are five different letters, a conclusion 
of 5 × 24 = 120 makes sense. In explanation 4, the notion of the 
factorial function is extrapolated from a simple situation to 
the one where there are five people. This was followed by the 
actual representation of those ways using letters.

While conclusions are simultaneously drawn from two 
contexts, the link between those contexts remains obscure. 
The notion of a factorial as a product of all positive integers 
equal to and less than the given number is not matched by 
the representations that students used. Two systems that are 
not necessarily aligned have now taken hold in students’ 
engagement with the task.

Response 2: 24 ways
In this case groups resorted to strong algorithmic procedures 
where numbers were processed without any justification 
given for the action taken. In all instances, the first part 
of the strategy was to calculate the number of possible 
arrangements, assuming that they were in a linear form. A 
total of 120 permutations was arrived at. The second part 
involved division by 5, arguing that the circular arrangement 
warranted division. The rationale for division by 5 was not 
explained. However, two different categories could still 
be observed: (1) abrupt transition without justifying the 
transition from linear to circular and (2) a fairly appropriate 
justification that showed only language as a challenge, not 
the understanding of the concept.

In the first category, students resorted to strict adherence to 
the formula found in the text. The linear arrangement was 
used to find the total number of possible outcomes. Division 
was then used to arrive at the arrangements for a circular 
setting. A typical response is seen in explanation 1.

Explanation 1:

Five people have 5 factorials in a linear permutation. The linear 
permutation is found when multiplying the factorials of five: 
5 4 3 2 1 120× × × × = . To convert it to circular permutation you 
have to divide the linear permutation by the number of people, 
120 5 24÷ = . The formula can be defined as n

n

!

The rationale for division by the number of seats as they 
convert from the linear to circular permutations was not 
given. The way the information was presented suggests 

that the action was undertaken because the formula 
suggested it.

In the second category, students started the same way as 
in the first. However, the impact of a circular arrangement 
on the distinction of these arrangements is recognised and 
acknowledged.

Explanation 2:

A round table differs with a normal table in that it has no ends. 
Therefore, you can arbitrarily select seat #1.

You can fix one person in place (or, equivalently, rotate the table 
like a carousel so that that person always winds up in the same 
place). This will avoid multiple equivalent scenarios in which the 
people are seated in the same order, but have just shuffled a seat 
or two over (these don’t count as different arrangements). Then 
you have free rein to arrange the other four people, so that’s 
4 24! =  arrangements. Alternatively, you can figure out that 
there are 5 120! =  arrangements overall. However, each unique 
arrangement is actually repeated five times because there are 
five seats around the table, there are 5 different versions of every 
possible seating arrangement. (For instance, ABCDE, BCDEA, 
CDEAB, DEABC, EABCD are all equivalent). So this means you 
must divide by 5: 120

5
24= .

The case for repeating arrangements was adequately made 
and demonstrated in the response. The conclusion that ‘each 
different representation is actually represented 5 times’ is 
critical to the ultimate formula for calculating the circular 
arrangement. The only uncertainty was the connection 
between the repeating arrangements and the use of division 
to address that. Can one say that the students had consciously 
used the division by 5 to counter the five repetitions? More 
explanation would have provided a better perspective in this 
regard. Later on in this article we show how these kinds of 
gaps translate into challenges when the solutions are to be 
explained in a pedagogic situation.

Reflecting on textual experiences, interpretations and 
applications
The students’ engagement with text reveals two insights into 
their learning, especially in mathematics: the authoritative 
role that text plays and the gap between real life and 
mathematical representations.

Authoritative role of text in students’ learning: Upon receiving  
the text, the students focused on how a number of 
arrangements could be calculated given the number of 
objects. Since the text first addressed arrangements in a linear 
setting and later those in a circular setting, students used 
exactly the same approach in responding to their assigned 
task. In particular, the focus was on the formulae given in 
the text. This appeared to have obstructed their ‘mental 
flexibility in switching from one solution method to another’ 
(Amit & Neria, 2008, p. 124). For the majority of students, 
identification of the formula was an end in itself. We saw this 
in students who arrived at the response of 120. Immediately 
after identifying the formula for n! they plugged it in and 
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stopped. Nothing much was done in terms of how well the 
formula represented the task at hand. The same challenge 
was observed with those students who arrived at an answer 
of 24.

While this group could clearly differentiate between linear 
and circular arrangements, it is the transition between the 

two that reflects the authoritative power of the text. The 

formula n
n
!  was simply accepted as appropriate for circular 

arrangements without much effort to justify it. The problem 
with this approach is that it relinquishes the responsibility 
for learning to the text and, by implication, to the author. It 
is the author’s responsibility to explain why a particular idea 
works and how it works in reality.

The gap between real life and mathematical representations: How 
does division manifest itself in the real world and can it 
be observed? This seems to be a major obstacle in how the 
students moved from linear to circular arrangements. What 
is 120

5
 in the real world? Saying the statement is about 120 

divided by 5 does not say much more than how the statement 
reads. However, if one sees 120 divided into fives (groups  
of 5) or 120 divided into five groups, or repeated subtraction 
of 5 from 120, then one has more chance of observing the 
phenomenon in reality. Limited use of varied verbal 
representations, among other things, denies our students 
the richness of observing and engaging with mathematical 
objects in real life. As argued by Elia and Spyrou (2006), 
mathematics teaching in schools focuses on the use of 
algebraic representations of functions, thus hindering 
the application of functions in other representational  
modes.

Reflections on both practical and textual 
experiences in a pedagogical context
This section analyses students’ responses to the question 
of how they would teach the factorial function to Grade 9 
learners. The students were asked to reflect on their own 
experiences in solving the problem at hand. This new 
perspective prompted varied responses that (1) gave us 
insights into the depth and quality of students’ understanding 
of their solutions and (2) revealed complex nature of pre-
service teachers’ learning.

Insights into the depth and quality of students’ 
understanding of their solutions
The students’ struggles with the problem evolved from 
managing their observations and making sense of text 
or seeing connections with real life, to expressing their 
newly constructed knowledge at a basic level that would 
make Grade 9 learners understand the problem. Almost 
all the groups encountered a challenge regarding how to 
systematically observe and record the different seating 
arrangements, for example:

We decided to do it practically by sitting in a group of five people 
whereby we were changing our sitting positions. But along the 
practical route, we got confused and dropped it.

Our frustration is that we are failing to arrange those five people 
around the table and how will they circulate on that particular 
table. We find it difficult to determine whether those five people 
will exchange their seats or just move from one seat to another 
because that table is circular.

It is this basic challenge of systematisation that later translated 
into a bigger problem when students were asked to think 
about how they would teach the concept to a Grade 9 class. 
The enactment, as they exchanged seats, was disorderly, 
making it difficult to keep track of which arrangement had 
been enacted and which had not. The reflections suggest 
that, at that stage, the students had limited understanding 
of the problem. However, the introduction of symbolic 
representation of people through the use of letters and 
colours allowed the arrangements to be manipulated on 
paper. Still, the power of the manipulation on paper was not 
utilised to understand the actual arrangements in reality. 
Instead, the students were satisfied to arrive at the required 
number of arrangements.

The continuous interaction between mathematical and 
real-life representations plays a pivotal role in deepening 
knowledge construction. It allows one to value the emerging 
constructs and its absence often leads to frustrations as is 
evident in the following reflections:

We were frustrated more when someone had the answer but 
couldn’t explain to us how it could be done by illustrating 
practically so, by seating on a circular table and changing our 
seating positions now and again until we get the suitable answer 
that we had by using the permutation formula.

My frustration is that I didn’t understand the formula of 
permutations which I have obtained from Internet because if I 
use this formula to calculate I get 120 ways but if I try to do it 
practically it becomes impossible. I don’t understand where the 
formula comes from and how they derived it.

Knowledge, by its nature, enriches one’s sense of seeing. If 
new knowledge does not enhance one’s broadened vision then 
there is a challenge. The students’ discovery of the formula 
in this instance led to frustration instead of a sigh of relief – 
the ‘aha’ moment. Their inability to relate the textual and the 
practical experiences was apparent. Crusius (1991, p. 38), using 
Gadamer’s fusion of horizon, would regard this as a failure of 
‘an event of truth, a revealing-concealing that goes beyond the 
spontaneous, unscrutinized projections of preunderstanding’.

The problem provides insights into the students’ enculturation 
(Bishop, 1991) in problem-solving. We argue that the 
challenges encountered are not necessarily limited to the 
current task but reflect general challenges the students face in 
dealing with authentic problems in mathematics. It is more of 
a skill problem than a knowledge one. The way mathematics 
is traditionally taught in schools does not encourage the 
‘seeing’:

I don’t know why we were multiplying instead of adding. … 
We didn’t know whether we had to add or multiply, but the 
formula illustrated that we should multiply but still we were 
more confused because we could not find a suitable answer.
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In real-life situations, multiplication manifests itself as 
repeated addition of the same quantity. In the students’ 
eyes it is addition that is observed. How that translates 
into multiplication frustrated them. In the absence of 
reciprocal translation skills between the two contexts, 
concepts could be playing themselves out without students  
noticing.

Complex nature of pre-service teachers’ learning
Learning for the sake of solving a mathematical problem 
for oneself is different from learning with the purpose 
of explaining the concept to others. In a context where 
that ‘other’ involves learners with varying mathematical 
needs, the demand becomes one where one has to think of 
a multiplicity of representations at that elementary level. 
Learning mathematics for others is aligned to Shulman’s 
(1986, p. 9) pedagogical content knowledge, which includes 
‘the ways of representing and formulating the subject that 
make it comprehensible to others’. For this to happen one 
must be fairly grounded in the concept.

The students’ reflections in explaining how they would 
teach factorial function to Grade 9 learners revealed varying 
degrees of discomfort with their own understanding. From 
the first set of reflections it was clear that their understanding 
of the concept lacked depth, for example:

We could not find a suitable answer and we would not know 
how to explain it to Grade 9s as we don’t know how to explain it 
between each other.

We were not happy the time when we were not able to find the 
solution … and we were still confused on what to … teach to 
Grade 9 learners. It was difficult to reach the answer because we 
were applying many ways in fact it was really confusing.

With pre-service teacher’s learning, it is important not just 
to find a solution, but to explain it to oneself or peers, even 
before thinking of explaining it to others. While in two 
instances it was obvious that students still had to attend 
to their own needs, in the next set of reflections it became 
evident that resolving the problem at their own level was not 
enough, for example:

We used the formula which is n!. Then we used our calculators 
to find the answer which is 120. We then tried to make it easy 
to a Grade 9 learner to understand it. After we had submitted 
our assignment, the lecturer gave us pamphlets that explain 
permutation better and they made us to understand better than 
before. But still the challenge was how we are going to teach that 
to the Grade 9 learners.

Initially, students went about the task using their own 
shallow understanding of the problem. The latter part of 
their reflections was more revealing. The pamphlets helped 
them understand the problem better than before. However, 
the challenge of teaching Grade 9 learners became more 
evident. This means that, while the students were now in 
a position to deal with the problem at their own level, they 
could not visualise how the same could be done at a lower 
level.

Conclusion
In this article we pursued first-year university students’ 
thinking in solving a real-world problem in a context of 
minimal teacher interference. Students were exposed to 
three interactive phases, namely practical experience, 
textual experience and reflection-on-teaching experience. 
During practical experience, which Braithwaite and 
Goldstone (2013) call grounded representations, students 
were offered an opportunity to see more, to independently 
manipulate, interpret, reflect in and on action, and to 
construct visual representations of the problem at hand. 
During textual experiences, called formal representations 
by Braithwaite and Goldstone, they engaged with new 
symbols, calculations and representations. During 
reflection-on-teaching experience the students were 
forced to rethink what their new knowledge meant at 
a conceptually lower level. Drawing from these three 
interactive phases, we organise our conclusion guided by 
our research questions.

Challenges associated with engaging in a  
self-directed learning activity
All the groups experienced varying needs for systematisation 
in engaging with the problem at hand. This is in line 
with the findings of English (2005) and Melusova and 
Sunderlík (2014). Having failed to act out different seating 
arrangements, symbols were employed, resulting in 
improved representations. The inherent order of the symbols 
unfortunately added limitations to representing different 
arrangements. While manipulatives do facilitate learning 
(Abramovich & Pieper, 1995), we observed that their inherent 
features sometimes limit their benefits.

The nature of prior learning also plays a significant role 
in engaging with combinatorics thinking (Lockwood, 
2011; Melusova & Vidermanov, 2015) and we have similar 
findings. While in real life the students could observe that 
they were expected to add, the textual experience was 
encountered in the form of multiplication and division. 
The two experiential domains could not be reconciled. The 
students’ prior learning of multiplication and addition was 
not always reconciliatory especially in the context of real-
life experience. We thus conclude that the nature of prior 
learning, its richness with respect to its representations, 
is necessary in learning new and unfamiliar mathematics 
concepts. In this way prior learning facilitates folding back 
(Pirie & Kieren, 1994).

All the responses, no matter how inconceivable they 
might have been, offered opportunities for construction 
of the concept of a factorial function. The mathematical 
representations used, the struggles with counting different 
seating arrangements and so on gave us primitive forms of 
the concept to work with. That is, no matter how unfamiliar 
the concept is, there is always an opportunity to find a 
possible baseline to work from, especially when a real-life 
experience forms part of the engagement.
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Ways in which pedagogical attributes affect 
learning
The question that asked students to reflect on how they 
would teach the factorial function to Grade 9 learners evoked 
different orientations to those they used when engaging with 
the problem. The solutions that were considered adequate 
no longer held when subjected to the intensity of rethinking 
them in the context of Grade 9 learners’ capacity to learn. 
Eventually, it is the viability of their newly found knowledge 
that is questioned. We observed that the textual experience 
allowed the students to adopt a formal representation of the 
factorial function without establishing images of the concept 
as it manifests itself in the experiential practical world. The 
knowledge that learners need seems to reside in this gap and 
the students have limited access to it. Knowledge for teaching 
requires co-evolution along with content knowledge. It is hard 
to learn mathematics content first and only thereafter think of 
how to teach that content at lower levels, or at the same level 
for that matter. The rich, meaningful and conscious evolution 
of concept formation allows students multiple perspectives 
from which they can engage with learners at various stages 
of learning. Any struggle a student encounters in figuring out 
how to help learners learn a particular concept is a sign that 
there are gaps in the student’s learning of the concept itself.

Mathematics content knowledge that is approached 
from a pedagogical context is process-rich and multi-
representational, and so poised to serve learning of new 
and unfamiliar concepts. In this orientation, pre-service 
teachers’ learning is more engaging than is traditional 
mainstream mathematics content learning. Melusova and 
Sunderlík (2014) arrived at the same conclusion when they 
investigated pre-service teachers’ problem-solving processes 
in combinatorics. We observed that when the students had to 
solve the problem for themselves, they hurried through some 
aspects of their learning, focusing more on the actual solution. 
They were more product-driven than process-focused. That 
way, learning outcomes were limited in their usefulness. We 
are, therefore, persuaded that pedagogical attributes, when 
meaningfully incorporated into the learning of new and 
unfamiliar mathematics concepts, enrich learning and orient 
knowledge to productively service future learning. 
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