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With the increased use of standardised mathematics assessments at the classroom level, 
teachers are encouraged, and sometimes required, to use data from these assessments to 
inform their practice. As a consequence, teacher educators and researchers are starting to 
focus on the development of analytical tools that will help them determine how teachers 
interpret learners’ work, in particular learners’ errors in the context of standardised and 
other assessments. To detect variation and associations between and within the different 
aspects of teacher knowledge related to mathematical error analysis, we developed an 
instrument with six criteria based on aspects of teachers’ knowledge related to explaining 
and diagnosing learners’ errors. In this study we provide evidence of the usability of the 
criteria by coding 572 explanations given by groups of mathematics educators (teachers 
and district officials) in a professional development context. The findings consist of 
observable trends and associations between the different criteria that describe the nature 
of teachers’ explanations of learners’ errors.

Introduction
Reporting on data from standardised mathematics assessments that provide information about 
what learners can or can’t do is becoming a common practice in many countries. The reports set 
out to provide managers and teachers with reliable data, in the form of statistical averages, to be 
used to inform broad policy and classroom teaching. The Elementary and Secondary Education Act 
in the United States specifies that standardised assessment allows teachers ‘to get meaningful 
information about their practice, and support them in using this information to ensure that all 
students are getting the effective teaching they deserve’ (U.S. Department of Education, Office of 
Planning, Evaluation and Policy Development, 2010, p. 15). In South Africa, teachers are required 
‘to interpret their own learners’ performance in national (and other) assessments’ (Departments 
of Basic Education & Higher Education and Training, 2011, p. 2) and develop better lessons on 
the basis of these interpretations. This requirement implies that teachers are expected to use 
learner data diagnostically and therefore, we argue, teachers’ involvement in error analysis of 
standardised and classroom assessment is no longer a professional right but a responsibility, 
an integral aspect of teacher knowledge. Research has only recently begun to engage with the 
question of how to use learner data beyond that of a statistical indicator of quality, that is, 
beyond benchmarking for external accountability (Boudett, City & Murnane, 2005; Cohen & Hill, 
2001; Katz, Earl & Ben Jaafar, 2009; Katz, Sutherland & Earl, 2005). Some attempts to examine 
a more balanced way between external and internal performance include Shavelson, Li, Ruiz-
Primo and Ayala (2002), Black and Wiliam (2006) and Nichols, Meyers and Burling (2009). In 
South Africa, Reddy (2006), Dempster (2006), Long (2007) and Dempster and Zuma (2010) have 
each conducted small case studies on test-item profiling, arguing that this can provide useful 
data that can be used by teachers for formative and diagnostic purposes. Notwithstanding these 
important contributions, there is very little research on how to analyse teacher knowledge of 
errors, analysis or what criteria can be used to assess teachers’ explanations of learners’ errors 
in standardised mathematical assessments. We hope that by analysing teachers’ explanations of 
learners’ errors, and through this their knowledge of error analysis, this article will advance this 
area of research and will also contribute to Black and Wiliam’s (1998) well-established argument 
of the positive potential impact of formative assessment.

To analyse teacher knowledge of error analysis we developed an instrument with six criteria 
and compiled evidence of its usability as an analytical tool. This we did as part of our 
work with 62 mathematics teachers over a three-year period in the Data Informed Practice 
Improvement Project (DIPIP, see more below). Our central aim in developing the instrument 
was to detect variation and associations between and within the different aspects of teacher 
knowledge related to mathematical error analysis. With this in mind, we investigated the 
following research questions:

Page 1 of 11

Scan this QR 
code with your 
smart phone or 
mobile device 
to read online.

Read online:

mailto:ingrid.sapire@wits.ac.za
http://dx.doi.org/10.4102/pythagoras.v35i1.254
http://dx.doi.org/10.4102/pythagoras.v35i1.254
http://dx.doi.org/10.4102/pythagoras.v35i1.254


Original Research

doi:10.4102/pythagoras.v35i1.254http://www.pythagoras.org.za

1. What is the nature of the teachers’ explanations 
of learners’ errors on standardised mathematical 
assessments?

2. What variability in the quality of the teachers’ 
explanations of learners’ errors can be identified using 
the criteria?

3. What relationship between aspects that inform the 
teachers’ explanations of learners’ errors are the criteria 
descriptors able to detect?

The article proceeds as follows: in the first section we examine 
the idea of error analysis within the literature of teacher 
knowledge, focusing on its value for mathematics teaching. 
The next section describes the conceptual background 
on which we drew to develop the six criteria with a view 
to studying teachers’ explanations of learners’ errors. 
More specifically, we examine the aspects of error analysis 
included in three ‘domains of teacher knowledge’ (Ball, 
Hill & Bass, 2005) and list the relevant criteria for studying 
teachers’ explanations of learners’ errors on an international 
standardised assessment test. In the third section we provide 
detail about the DIPIP project, explain the methodology we 
used to operationalise the criteria for our study of teachers’ 
explanations of learners’ errors and present exemplars of 
coding. In the last two sections, we assess the extent to which 
the criteria capture key error analysis aspects and use this to 
draw inferences about the nature of teachers’ explanations, 
their quality and the relationship amongst the different 
aspects that make up the six criteria.

Teachers’ knowledge of learners’ errors
Research in mathematics education has shown that a focus 
on errors, as evidence of mathematical thinking on the part 
of learners, helps teachers to understand learner thinking, to 
adjust the ways they engage with learners in the classroom 
situation, as well as to revise their teaching approach 
(Adler, 2005; Borasi, 1994; Brodie, 2014; Nesher, 1987; Smith, 
DiSessa & Roschelle, 1993; Venkat & Adler, 2012). Some 
work has begun on developing broad classifications of 
learners’ errors (Brodie & Berger, 2010; Radatz, 1979). Studies 
on teaching dealing with learners’ errors show that teachers’ 
interpretive stance is essential for the process of remediation 
of error, without which teachers simply re-teach without 
engaging with the mathematical source of the error, or with 
its metacognitive structure (Gagatsis & Kyriakides, 2000; 
Peng, 2010; Peng & Luo, 2009, Prediger, 2010). Nevertheless, 
there is hardly any literature that analytically examines the 
different aspects that make up teacher knowledge of error 
analysis and its relation to subject matter knowledge (SMK) 
and to knowledge about teaching.

Knowledge of errors can be shown to incorporate both the 
substantive and syntactic dimensions of teacher subject 
matter knowledge. Following the famous work of Schwab 
(1978) and Shulman (1986), Rowland and Turner (2008) 
propose the following definition of the substantive and 
syntactic dimensions of teacher subject matter knowledge:

Substantive knowledge encompasses the key facts, concepts, 
principles, structures and explanatory frameworks in a 
discipline, whereas syntactic knowledge concerns the rules 
of evidence and warrants of truth within that discipline, the 
nature of enquiry in the field, and how new knowledge is 
introduced and accepted in that community – in short, how to 
find out. (p. 92)

This distinction is important. It suggests that subject matter 
knowledge includes the explanations of facts and concepts 
central to the discipline but also the rules of proof and 
evidence that a discipline community considers legitimate 
to use when making knowledge claims. Both of these refer 
to aspects of teacher knowledge of error analysis. The 
substantive dimension foregrounds teachers’ explanations 
of what is erroneous and why, taking into account what 
a learner is expected to know, given the learner’s age and 
level of cognitive development. The syntactic dimension 
foregrounds teachers’ explanations of the process that needs 
to be followed to construct a truth claim, resolve a problem, 
get a correct solution, and so on. Error analysis is an integral 
part of teacher knowledge, and the specific aspects informing 
teachers’ explanations of learners’ errors are the subject of 
this article.

Particular to the field of mathematics education, Hill and 
Ball (2009) see analysing learners’ errors as one of the four 
mathematical tasks of teaching ‘that recur across different 
curriculum materials or approaches to instruction’ 
(p. 70). Peng and Luo (2009) and Peng (2010) argue that the 
process of error analysis includes four steps: identifying, 
addressing, diagnosing and correcting errors. In South 
Africa, Adler (2005) sees teachers’ knowledge of error 
analysis as a component of what she calls mathematics for 
teaching. She asks:

What do teachers need to know and know how to do 
(mathematical problem solving) in order to deal with ranging 
learner responses (and so some error analysis), and in ways 
that produce what is usefully referred to as ‘mathematical 
proficiency’, a blend of conceptual understanding, procedural 
fluency and mathematical reasoning and problem solving skills? 
(Adler 2005, p. 3)

In this study we take up Ball et al.’s (2005) idea of six 
domains of teacher knowledge and show the specific aspects 
of error analysis included in the first three domains (see 
next section). It is important to emphasise that underlying 
the attempts to classify the tasks involved in error 
analysis is an understanding that error analysis requires 
professional judgement to recognise exactly what learners 
do not understand, their reasoning behind the error, how 
that may affect their learning and which instructional 
practices could provide affordances (or constrain them) to 
address learner difficulties (Shepard, 2009, p. 37). We offer 
the idea of ‘diagnostic reasoning’, to point to the delicate 
work of judgement involved in error analysis. Appropriate 
judgement of how close or far a learner is from what 
is correct is core to teachers implementing appropriate 
assessment and feedback to learners. Prediger (2010, p. 76) 
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uses the notion of ‘diagnostic competence’ to distinguish 
reasoning about learners’ errors from merely grading their 
answers. His view is consistent with Shepard’s (p. 34) 
work on formative assessment, in particular with the idea 
of using insights from learners’ work formatively to adjust 
instruction.

Making sound judgments, then, is key to formative 
assessment. The formative aspect lies in teachers’ 
explanations of learners’ errors, particularly when they are 
faced with misunderstandings exhibited by a large group of 
learners or when they need to scaffold further explanations 
in order to enable learners to cope with the complexity of a 
given task (City, Elmore, Fiarman & Teitel, 2009).

Studying teachers’ explanations of learners’ 
errors in standardised mathematics assessment
For the purpose of studying teachers’ explanations of 
learners’ mathematical errors we used Ball’s classification 
of knowledge domains. We used this analysis to develop 
six criteria of teachers’ explanations of learners’ errors in 
standardised mathematics assessments within three of the 
domains of knowledge that define mathematics knowledge for 
teaching (Ball et al., 2005; Ball, Thames & Phelps, 2008; Hill, 
Ball & Schilling, 2008). Ball et al. (2008) explain that the 
first two domains elaborate the specialisation of subject-
matter knowledge (common content knowledge and specialised 
content knowledge). The second two domains elaborate the 
specialisation involved in teaching mathematics from the 
perspective of learners, curriculum and pedagogy. These 
domains (knowledge of content and learners and knowledge of 
content and teaching) elaborate Shulman’s (1986) notion of 
pedagogical content knowledge (PCK). Hill et al. (2008) 
argue that the first two domains are framed, primarily, by 
subject matter knowledge. This is very important from the 
perspective of examining teachers’ explanations of errors. 
As Peng and Luo (2009) argue, if teachers identify learners’ 
errors but interpret them with wrong mathematical 
knowledge, their assessment of learner performance and 
their plan for a teaching intervention are both meaningless. 
In other words, the tasks that teachers engage with in 
error analysis, such as sizing up the error or interpreting 
the source of its production, are possible because of the 
mathematical reasoning with which these domains of 
teacher knowledge equip them.

In what follows we foreground key aspects of teachers’ 
explanations of learners’ errors relevant to each of the three 

domains we drew on specifically for the purpose of this 
analysis1.

Under the first domain, common content knowledge, we map 
aspects related to the recognition of whether a learner’s 
answer is correct or not. Teachers need to recognise and be 
able to explain the crucial steps needed to get to the correct 
answer, the sequence of the steps and their conceptual links. 
Because this knowledge underlies recognition of error, we 
include it under content knowledge. This analysis gives rise 
to two criteria in this domain:

Criterion 1: Procedural understanding of the correct 
answer
The emphasis of the criterion is on the quality of the teachers’ 
procedural explanations when discussing the solution to a 
mathematical problem. Teaching mathematics involves a 
great deal of procedural explanation, which should be done 
fully and accurately for the learners to grasp and become 
competent in working with the procedures themselves.

Criterion 2: Conceptual understanding of the correct 
answer
The emphasis of the criterion is on the quality of the 
teachers’ conceptual links made in their explanations when 
discussing the solution to a mathematical problem. Teaching 
mathematics involves conceptual explanations, which should 
be done with as many links as possible and in such a way that 
concepts can be generalised by learners and applied.

The difference between procedural and conceptual 
understanding of the correct answer used in this study 
is similar to that of the categorisation of conceptual 
understanding and procedural fluency in the context of the 
strands of mathematical proficiency proposed by Kilpatrick, 
Swafford and Findell (2001). Conceptual understanding 
refers to ‘comprehension of mathematical concepts, 
operations, and relations’ and procedural fluency refers 
to ‘skill in carrying out procedure flexibly, accurately, and 
appropriately’ (Kilpatrick et al. 2001:116).

It is also in line with the difference between levels of 
cognitive demand, exemplified by Stein, Smith, Henningsen 

1.Ball et al.’s (2008) work includes six domains. The fourth domain, knowledge of 
content and teaching, is relevant in lesson design and teaching. Having completed 
a round of error analysis, the teachers were tasked to plan a set of lessons around 
the errors identified. In their groups the teachers planned practical examples of 
how to engage learners’ errors in classroom situations. They then reflected on the 
way they engaged with learners’ error during teaching. A different set of criteria 
was operationalised for this domain. The curriculum mapping activity exposed 
the teachers in their groups to certain dimensions of the fifth and sixth domains, 
knowledge of curriculum and knowledge of the mathematical horizon. Its analysis is 
reported in Shalem, Sapire and Huntley (2013). 

TABLE 1: Domains of teacher knowledge and related error analysis criteria.
Subject matter knowledge (SMK) Pedagogical content knowledge (PCK)

Domain: Common content knowledge Domain: Specialised content knowledge Domain: Knowledge of content and students
Criterion Criterion Criterion

1. Procedural understanding of correct answer 3. Awareness of error 4. Diagnostic reasoning of learners’ thinking in relation 
to error

2. Conceptual understanding of correct answer 
-

5. Use of everyday links in explanations of error
- -

6. Multiple explanations of error
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and Silver (2000) as ‘procedures with connections’ and 
‘procedures without connections’ in the context of analysing 
mathematical tasks (p. 13).

For example, in the text below, the explanation of the correct 
answer notes both the procedural and the conceptual aspects 
of understanding required in order to answer this question. 
(See Table 1 for further possible levels of explanation.)

Question: Which row contains only square numbers? 
(Correct answer, C)

(A) 2 4 8 16
(B) 4 16 32 64
(C) 4 16 36 64
(D) 16 36 64 96

Explanation: 1² = 1; 2² = 4; 3² = 9; 4² = 16; 5² = 25; 6² = 36; 
7² = 49; 8² = 64. Therefore the row with 4, 16, 36 and 64 only 
has square numbers. To get this right, the learner needs 
to know what ‘square numbers’ mean and to be able to 
calculate or recognise which of the rows consists only of 
square numbers. (Grade 8 teacher group.)

The relationship between procedural and conceptual 
mathematics knowledge is complex and recent research 
insists that the two need to be seen as integrated rather 
than polarised when thinking about mathematical ideas 
(Baroody, Feil & Johnson, 2007; Long, 2005; Star, 2005). 
Notwithstanding, some mathematical problems lend 
themselves more to procedural explanations whilst in others 
the procedural and the conceptual are closely linked. There 
is a progression in mathematical understanding of concepts: 
what may be conceptual for a Grade 3 learner (for example, 
basic addition of single digit numbers) is procedural for a 
Grade 9 learner who will have progressed to operations at a 
higher level. The two criteria are thus closely aligned and yet 
they can be differentiated.

Under the second domain, specialised content knowledge, we 
map aspects related to mathematical knowledge required 
for the recognition of the nature of the error. In Ball et al.’s 
(2008) words, the key aspect here is teachers looking for 
patterns in student errors, ‘sizing up whether a nonstandard 
approach would work in general’ (p. 400). Whereas teachers’ 
knowledge of what counts as the explanation of the correct 
answer enables them to spot the error, looking for patterns in 
learners’ errors enables them to interpret learners’ solutions 
and evaluate their plausibility. Knowledge of this domain 
enables teachers to ‘size up the source of a mathematical 
error’ (p. 397) and identify what mathematical steps would 
produce a particular error. We added the following criterion 
under this domain.

Criterion 3: Awareness of error
This criterion focuses on teachers’ explanations of the actual 
mathematical error and not on learners’ reasoning. The 
emphasis in the criterion is on the mathematical quality of 
teachers’ explanations of the actual mathematical error.

Under the third domain, knowledge of content and students, 
we map aspects related to teachers’ mathematical 
perspective of errors, typical of learners of different ages 
and social contexts in specific mathematical topics. This 
knowledge includes common misconceptions of specific 
topics (Olivier, 1996) or learners’ levels of development in 
representing a mathematical construct (e.g. Van Hiele levels 
of geometric thinking, Burger & Shaughnessy, 1986). From 
the point of view of error analysis, this knowledge domain 
involves teachers explaining specific mathematical content 
primarily from the perspective of how learners typically 
learn the topic or ‘the mistakes or misconceptions that 
commonly arise during the process of learning the topic’ 
(Hill et al. 2008:375). The knowledge of this domain enables 
teachers to explain and provide a rationale for the way the 
learners were reasoning when they produced the error. Since 
it is focused on learners’ reasoning, this aspect of teacher 
knowledge of errors includes the ability to provide multiple 
explanations of the error. Because contexts of learning (such 
as age and social background) affect understanding and 
because in some topics the learning develops through initial 
misconceptions, teachers will need to develop a repertoire 
of explanations, with a view to addressing differences in 
the classroom. We included three further criteria under this 
domain:

Criterion 4: Diagnostic reasoning of learners’ thinking in 
relation to error
The idea of teachers’ explanation of error goes beyond 
identifying the actual mathematical error (‘awareness of 
error’). The idea is to understand how teachers go beyond 
the mathematical error and explain the way learners were 
reasoning when they produced the error. The emphasis 
in this criterion is on the quality of the teachers’ attempt 
to provide a rationale for how learners were reasoning 
mathematically when they chose a distractor. This aspect 
aligns with one of the knowledge of content and students 
categories studied by Hill et al. (2008), which they call 
common student errors; this refers to ‘providing explanations 
for errors, having a sense for what errors arise with what 
content, etc.’ (p. 380).

Criterion 5: Use of everyday links in explanations of error
Teachers sometimes explain why learners make 
mathematical errors by appealing to everyday experiences 
that learners draw on and confuse with the mathematical 
context of the question. Drawing on the work of Walkerdine 
(1982), Taylor (2001) cautions that:

familiar contexts provide essential starting points for teaching 
young children to reason formally. … [But] not just any 
everyday example provides a suitable jumping off point for 
higher levels of conceptual development. (p. 3)

The emphasis in this criterion is on the quality of the use of 
everyday knowledge in the explanation of the error, judged 
by the links made to the mathematical understanding that 
the teachers attempt to advance. For example, in the error 
explanation below, which is about learners’ confusion 
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between units of measurement of capacity (between litres 
and millilitres) the use of ‘everyday’ enables mathematical 
understanding: ‘He draws on his frame of reference of how 
he perceives a litre to be e.g. a 1.25l of cold drink or a 1l of 
milk or a 2l of coke, etc.’

Criterion 6: Multiple explanations of error
One of the challenges in the teaching of mathematics is that 
learners might need to hear more than one explanation 
of the error. This is because some explanations are more 
accurate or more accessible than others and errors may need 
to be explained in different ways for different learners. This 
criterion examines the teachers’ ability to offer alternative 
explanations of the error when they are engaging with 
learners’ errors, which is aligned with Shulman’s (1986) 
aspect of PCK related to ‘the ways of representing and 
formulating the subject that make it comprehensible to 
others’ (p. 9) in the context of error explanations.

The set of six criteria hence span the first three of Ball’s 
knowledge domains, providing evidence of the rich nature 
of error analysis activities. In the next section we explain 
the teacher development project from which the data for 
this analysis is taken and show how we operationalised the 
criteria.

Teacher development research 
project
The Data Informed Practice Improvement Project (DIPIP), a 
teacher professional development project, was one of the first 
attempts in South Africa to include teachers in a systematic 
process of interpretation of learners’ errors on a standardised 
mathematics test (Shalem, Sapire, Welch, Bialobrzeska 
& Hellman, 2011). The 3-year (2007–2010) research and 
development programme2 included 62 mathematics 
teachers from Grade 3–9 from a variety of Johannesburg 
schools. Schools were initially selected on the basis of their 
participation and results in the International Competitions and 
Assessments for Schools (ICAS3) 2006 round of testing; later, 
proximity to the university campus also became a priority for 
practical reasons. Teachers were organised into groups of three 
by grade level, forming eight groups of Grade 3−6 teachers 
and six groups of Grade 7–9 teachers. The groups consisted 
of a group leader (a mathematics specialist: staff member or 
postgraduate student who could contribute knowledge from 
outside the teaching workplace), a departmental subject 
advisor and two or three teachers. In this way groups were 
structured to include different authorities and different kinds 
of knowledge bases. Over a period of three years, during term 
time, the groups met once a week, sharing ideas and learning 
from each other and exposing their practice to each other. Six 
different activities were designed to provide a set of learning 
opportunities for the groups to reason about assessment data 

2.There is currently a third phase of DIPIP that is located in certain schools following a 
similar process with teacher groups in these schools.

3.ICAS is conducted by Educational Assessment Australia, University of New South 
Wales. Learners from over 20 countries in Asia, Africa, Europe, the Pacific and the 
United States of America participate in ICAS each year.

in the context of a professional learning community. In the 
project teachers mapped the ICAS 2006 and 2007 mathematics 
test items onto the curriculum, analysed learners’ errors, 
designed lessons, taught and reflected on their instructional 
practices and constructed test items. Item-based statistics 
provided to the teachers for the analysis corresponded to 55 
000 learners from Gauteng who wrote the ICAS tests in the 
province. In this analysis we report on the groups’ analysis of 
the learners’ errors related to 332 test items.

For each test item analysed by the groups, the group was 
requested to fill in an error analysis task template. The 
template was designed to guide the error analysis of learners’ 
choices of correct and incorrect answers. The template 
consisted of four parts. The first part of the template required 
the group to map each test item to the national curriculum 
expectations and grade level. The second part required the 
groups to anticipate learners’ achievement and comment 
on any particular distractor before checking the actual item 
achievement. The last two parts required the groups to 
analyse the correct answer and learners’ errors. The groups 
wrote up their explanations of how they thought the learners 
had reasoned when they selected the correct answer and 
each of the distractors. They were requested to write several 
explanations.

Operationalising the criteria
The sample of explanations for the analysis reported on 
in this article related to 140 items (20 items per grade) 
across a range of items covering all of the content areas 
in the mathematics curriculum. A total of 572 texts were 
collected and coded (for the purpose of coding, each one 
of the groups’ explanations was called a ‘text’). There were 
320 texts relating to the correct answer (‘answer texts’) and 
252 texts relating to the most common distractor selected 
by learners (‘error texts’) which were analysed. The texts 
collected were a product of small group discussions and not 
of particular teachers; hence, inferences made about teachers’ 
explanations of learners’ errors should take this into account.

The first two criteria (henceforth ‘procedural’ and 
‘conceptual’) were used to analyse the answer texts. 
The remaining four criteria (henceforth ‘awareness’, 
‘diagnostic’, ‘everyday’ and ‘multiple explanations’) were 
used to analyse the error texts. To capture variability in the 
quality of the teachers’ explanations of the correct answers 
and of the errors, each of the six criteria was divided into 
four categories: full, partial, inaccurate and not present. 
Category descriptors were developed for the criteria (see 
the Appendix 1 for the error analysis coding template). 
Exemplars were developed to operationalise the criteria 
(Shalem & Sapire, 2012).

The answer and error texts were entered into Excel 
spreadsheets to facilitate the coding process. Two coders 
were given the Excel spreadsheet to record their coding 
decisions for each text. The coders were requested to enter 
one of the above four categories next to the text, according 
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to each of the criteria’s category descriptors (see Box 2 and 
Box 3). Consensus discussions between the coders were held 
on certain items in order to hone agreement between them. 
The final set of codes used in the analysis was agreed on in 
discussion with and through arbitration by a third expert 
(a member of the evaluation analysis team). The alignment 
between coders was 57% before the review, 71% after the 
review and full agreement after the arbitration.

The data was analysed quantitatively, finding observable 
trends and relationships evident in the sample. Data was 
summarised for descriptive analysis. The correlation 
between the two criteria for the answer texts (‘procedural’ 
and ‘conceptual’) was calculated. Similarly the correlation 
between two of the criteria for the error texts (‘awareness’ 
and ‘diagnostic’) was calculated. Both were calculated using 
Pearson’s r coefficient.

Exemplars of answer and error texts, the codes and the 
coding justification are given below. These are presented 
in two tables. Box 1 relates to answer texts (‘procedural’ 
and ‘conceptual’ criteria) and Box 2 relates to error texts 
(‘awareness’ and ‘diagnostic’ criteria).

Findings: Usability of the 
measurement criteria
In terms of the first research question, the nature of the 
teachers’ explanations, we found that groups drew primarily 
on mathematical knowledge and less so on other possible 
explanations to explain the correct answer and the errors. In 
about 70% – 80% of all the explanation texts (that is, the answer 
and error texts), groups drew primarily on mathematical 
knowledge and much less so on other discourses. Figure 1 
shows that only about 15% of the answer texts and closer 
to 25% of the error texts did not have mathematical content 
(see not present). This result means that the groups did not 

often resort to common sense talk on learners’ errors, such 
as test-related explanations (e.g. the learners did not read 
the question well, or the learners guessed) or learner-related 
explanations (e.g. the question is not within the learners’ field 
of experience) or curriculum-related explanations (e.g. the 
learners have not learned this work). This finding is consistent 
with the following finding: despite the recommendation in 
the national curriculum at the time, to make links to everyday 
experiences when explaining mathematical concepts, 95% 
of the error texts included no links to learners’ everyday 
experiences (Criterion 5) (see Figure 1). Only a small number 
of texts in the sample of error texts demonstrate teachers’ 
explanations that are focused on the link between an everyday 
phenomenon and the mathematical content of the item. These 
two findings are consistent with Hill et al. (2008), who found 
in cognitive interviews with teachers responding to multiple-
choice items measuring knowledge of content and students that 
teachers’ reasons for their choices were more often related to 
knowledge of learners’ errors or mathematical reasoning than 
test-taking skills.

In terms of the second research question, variability in 
the quality of the teachers’ explanations, we found that 
the distribution of levels of quality of explanation within 
the domain of subject matter knowledge (‘procedural’, 
‘conceptual’ and ‘awareness’) was similar across the three 
criteria (see Figure 1). In comparison, the distribution of levels 
of quality of explanation within the domain of pedagogical 
content knowledge (‘diagnostic’, ‘everyday’ and ‘multiple’) 
varied across the three criteria. This suggests that in teachers’ 
explanations of learners’ errors matters of content knowledge 
are consistent in quality (most of them are partial) whilst 
matters of pedagogical content knowledge are inconsistent 
(no pattern of quality can be seen).

Most of the explanation texts (that is, the answer and error 
texts) were partial, missing crucial steps in the analysis 

BOX 1: Exemplars of coded answer texts in relation to a number patterns item.

Test item (Grade 8 Item 8 ICAS 2006) Criterion wording Criterion wording
Which row contains only square numbers? Procedural Conceptual

(A) 2 4 8 16
(B) 4 16 32 64
(C) 4 16 36 64
(D) 16 36 64 96

Selection – correct answer - C

The emphasis of this criterion is on the teachers’ 
procedural explanation of the solution. Teaching 
mathematics involves a great deal of procedural 
explanation, which should be done fully and 
accurately for the learners to grasp and become 
competent in working with the procedures 
themselves.

The emphasis of this criterion is on the teachers’ 
conceptual explanation of the procedure or other 
reasoning followed in the solution. Mathematical 
reasoning (procedural or other) needs to be unpacked 
and linked to the concepts to which it relates in order 
for learners to understand the mathematics embedded 
in the activity.

Answer text Category Category descriptor: Teachers’ explanation of 
the learners’ mathematical reasoning behind the 
solution includes demonstration of procedure. 

Category descriptor: Teachers’ explanation of the 
learners’ mathematical reasoning behind the solution 
includes conceptual links. 

1² = 1; 2² = 4; 3² = 9; 4² = 16; 5² = 25; 6² = 36; 
7² = 49; 8² = 64. Therefore, the row with 4, 16, 36 
and 64 only has square numbers. To get this right 
they need to know what ‘square numbers’ mean 
and to be able to calculate or recognise which of 
the rows consists only of square numbers. 

Full The procedure is accurate and includes all of the key 
steps in the procedure.

The explanation illuminates conceptually the 
background and process of the activity. 

Learners would illustrate squares to choose the 
right row.

Partial The procedure is accurate but it does not include all 
of the key steps in the procedure.

The explanation includes some but not all of the key 
conceptual links that illuminate the background and 
process of the activity.

Learners could calculate the square roots of all the 
combinations in order to discover the correct one. 
To get this learners need to know how to use the 
square root operation.

Inaccurate Teachers’ use of procedure is inaccurate or 
inaccurate to the extent that it could be confusing.

The explanation includes incorrect or poorly conceived 
conceptual links and thus is potentially confusing.

Learners understood the question and chose the 
right row.

Not present No mathematical procedural explanation is given. No conceptual links are made in the explanation.
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FIGURE 1: Percentage of texts by error analysis aspect.
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BOX 2: Exemplars of coded error texts in relation to a number patterns item.

Test item (Grade 7 Item 26 ICAS 2006) Criterion wording Criterion wording
26. Judith shaded this grid using the rule (multiples of 3) + 2.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

She shaded another grid with a new rule.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

What was the new rule?

(A) (multiples of 2) + 1
(B) (multiples of 3) + 1
(C) (multiples of 4) – 1
(D) (multiples of 5) – 2

Selection – incorrect answer: B

Awareness of error

The emphasis of this criterion is on 
teachers’ explanation of the actual 
mathematical error and not on 
learners’ reasoning.

Diagnostic reasoning

The idea of error analysis goes beyond identifying 
a common error and misconception. The idea is to 
understand the way teachers go beyond the actual 
error to try and follow the way the learners were 
reasoning when they made the error. The emphasis of 
this criterion is on teachers attempt to provide rationale 
for how learners were reasoning mathematically when 
they chose the distractor.

Text Category Category descriptor: Teachers explain 
the mathematical error made by the 
learner.

Category descriptor: Teachers describe learners’ 
mathematical reasoning behind the error. 

The pupils started from the highlighted 3 and then counted in 
groups of 3 and then just added 1 because the next box being 
7 was highlighted. They then continued this pattern throughout 
and found that it worked well. The pattern worked and so they 
assumed that this was the correct answer but ignored the 
word multiples. They just counted in three’s (plus 1) to get the 
answer.

Full The explanation of the particular error 
is mathematically sound and suggest 
links to common misconceptions or 
errors. 

It describes the steps of learners’ mathematical 
reasoning systematically and hones in on the particular 
error.

Perhaps the pupils looked at the 3 and the 1 in the answer, decided 
that 3 + 1 = 4 and thus started from the highlighted 3 and then 
counted in four’s and thus got the numbers of 3, 11, 15, 19, etcetera.

Partial The explanation of the particular error 
is mathematically sound but does not 
link to common misconceptions or 
errors. 

The description of the learners’ mathematical reasoning 
is inaccurate although it does hone in on the particular 
error.

The pupils have a poor understanding of the word multiple, as 
they just counted in groups of three’s and not in multiples of 
three’s (sic).

Inaccurate The explanation of the particular 
error is mathematically inaccurate.

The description of the learners’ mathematical reasoning 
does not hone in on the particular error.

The pupils did not work out the actual sum, they just read the 
question, it looked similar to the answer and thus chose (multiples 
of 3) + 1.

Not 
present 

No mathematical explanation is given 
of the particular error.

No attempt is made to describe learners’ mathematical 
reasoning behind the particular error.
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of what mathematics is needed to answer the question. 
Overall, across the 14 groups 50% of the answer texts 
on Criterion 1 (‘procedural’), 42% of the answer texts 
on Criterion 2 (‘conceptual’), 43% of the error texts on 
Criterion 3 (‘awareness’) and 33% of the error texts on 
Criterion 4 (‘diagnostic’) were partial. More full answer texts 
were found in Criterion 1 (34%) than in Criterion 2 (28%) 
(see Figure 1). The evidence of teachers using predominantly 
partial explanations on Criterion 1 is particularly interesting. 
Partial procedural explanations of the mathematics involved 
in solving a particular mathematics problem may impede 
teachers’ capacity to identify mathematical errors, let alone 
to diagnose learners’ reasoning behind the errors.

The extent to which the groups were able to describe learners’ 
reasoning behind mathematical errors (Criterion 4) is an 
indication that the teachers struggled to think diagnostically 
about learners’ errors. Figure 1 shows that 27% of the error 
texts did not attempt to explain learners’ reasoning behind 
the error (not present) and another 28% described learners’ 
reasoning without honing in on the error (inaccurate). 
Altogether, more than 50% of the error texts demonstrated 
weak diagnostic reasoning. About 33% of the texts honed 
in on the error but the description of learner reasoning 
was partial. This means that in close to 90% of the error 
texts, groups offered no explanation, and where they did 
offer a mathematical explanation of learners’ reasoning it 
was inaccurate or partial. Only 12% of the error texts were 
systematic and honed in on the learners’ reasoning about the 
error. According to Ball et al. (2008), explanation of learners’ 
reasoning implies ‘nimbleness in thinking’ and ‘flexible 
thinking about meaning’. This is the criterion in which 
groups’ performance was the weakest and proportionally so 
more in the Grade 3–6 group (see Figure 2). The weakness in 
explaining learners’ reasoning is consistent with the groups’ 
inability to produce more than one explanation of the error 
(Criterion 6). The four category descriptors for Criterion 
6 (multiple explanations) indicate a numeric count of the 
number of mathematically correct explanations (see the 
Table 1−A1). The code inaccurate for Criterion 6 means that 
one mathematically correct explanation was given. Overall, 
73% of the error texts provided only one mathematically 
feasible or convincing explanation.

A comparison between the explanations of correct answers 
recorded by the two grade groups gives insight into some 
differences between these groups. The Grade 3–6 groups 
were a little weaker than the Grade 7–9 groups (see Figure 2 
and Figure 3). This can be noted in the relative strength of 
the Grade 7–9 group evidenced in higher percentages of full 
explanations in both Criterion 1 and Criterion 2 compared to 
the Grade 3–6 group.

In terms of the third research question, the use of criteria 
enabled us to find two interesting correlations. The first 
correlation we found is between Criterion 1 and Criterion 
2 (‘procedural’ and ‘conceptual’). The correlation was high 
(r = 0.73). This suggests that when teachers are able to 
provide a full explanation of the steps to be taken to arrive 
at a solution, their explanations also cover the conceptual 

links that underpin the solution and vice versa. The weaker 
the procedural explanations are, the weaker the conceptual 
explanations, and vice versa. The correlation confirms 
that there is interdependence between the procedural 
and conceptual aspects in teachers’ explanation of the 
mathematics that underlie a mathematical problem. The 
second correlation we found is between Criterion 3 and 
Criterion 4 (‘awareness’ and ‘diagnostic’). The correlation 
was also high (r = 0.67). This suggests that when groups 
demonstrate high awareness of the mathematical error 
(SMK) they are more likely to give a better diagnosis of the 
learner thinking behind that error (PCK). When teachers can 
describe the error mathematically well (SMK) they are more 
likely to be able to delve into the cognitive process taken 
by the learners and describe the reasoning that led to the 
production of the error (PCK). Furthermore, in view of the 
finding that the teachers’ answer texts were mostly partial, 
we suggest that the finding that the teachers struggled 
to describe the mathematical way in which the learners 
produced the error is expected.

Discussion: The teachers’ 
knowledge of error analysis
Much research in South Africa suggests that teachers use 
more procedural and not enough conceptual explanations 
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of mathematics and that this may explain learners’ poor 
performance (Baroody et al., 2007; Carnoy, Chisholm & 
Chilisa, 2012; Long, 2005; Star, 2005). This research was able 
to quantitatively examine the procedural and conceptual 
relationship and found a strong correlation. More research 
is needed to differentiate between strong and weak 
explanations of answer texts, in general and in different 
mathematical content areas. This is important for building 
the database for teachers on crucial steps in explanations, 
particularly in mathematical topics that underpin conceptual 
understanding at higher levels, such as place value. Efforts 
in teacher education are needed to improve the quality of 
teachers’ procedural explanations, making sure that teachers 
are aware of which steps are crucial for addressing a 
mathematical problem and what counts as a full procedural 
explanation.

The dominance of the partial category in all the texts, the 
groups’ difficulty with explaining the rationale for the ways 
in which the learners were reasoning and their inability, 
even in a group situation, to provide alternative explanations 
despite being requested to do so are noteworthy. These 
findings suggest that teachers struggle to explain the 
mathematical content covered by an item and particularly 
so when they are asked to explain it from the perspective 
of how learners typically learn that content. Teachers seem 
to draw on different kinds of knowledge when explaining 
correct answers or errors and when providing reasons 
(single or multiple) behind learners’ errors. Providing full 
procedural and conceptual explanations to correct answers 
and explanations of the actual mathematical error depends 
on teachers’ knowledge of mathematics, whilst diagnostic 
reasoning depends not only on mathematical knowledge 
but also on the degree of teachers’ familiarity with learners’ 
common ways of thinking when choosing an incorrect 
answer. That is, teachers understand when learners’ 
answers or reasoning are incorrect due mainly to their 
own understanding of the mathematics but this does not 
necessarily translate into an understanding of learners’ ways 
of thinking. Evidence of the presence of different patterns 
in the distribution of levels for criteria grouped in the two 
different knowledge domains (SMK and PCK) highlights 
the difference between these domains of knowledge. Error 
analysis aspects within the mathematical knowledge domain 
(Criteria 1, 2 and 3) show similar patterns of distribution. 
This implies that these three aspects of error analysis can be 
interpreted and studied as a single construct. In contrast, the 
variation of distributions within the PCK domain (Criteria 
4, 5 and 6) is an indication of the multidimensionality of 
this construct even in the specific context of error analysis. 
Formally, the varied distribution means that providing a 
rationale for how learners reason mathematically is not 
related to the ability to provide multiple explanations of the 
error, nor to explaining the error by linking the rationale 
with everyday experiences. More development is needed for 
error analysis aspects in this domain of knowledge if they 
are going to be used as a single measurement scale. To those 
interested in using error analysis tasks and the proposed 

analytical tool to educate or develop teachers, this is an 
important and useful identification.

Conclusion
The argument of this article shows that assessment data 
can be used as an artefact to stimulate discussion and can 
provide an opportunity for teachers instead of being used 
against them as a naming and blaming tool. The study also 
shows that the six criteria and their category descriptors 
can be used to evaluate the variation in quality of teachers’ 
explanations of learners’ errors in mathematics assessments 
and can detect relationships between some of the aspects 
that inform teachers’ explanations of learners’ errors.
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APPENDIX 1
TABLE 1−A1: Error analysis coding template.
Criteria Category descriptors

Full Partial Inaccurate Not present
Analysis of explanations of the correct answer
Procedural: The emphasis of this criterion is 
on the teachers’ procedural explanation of the 
solution. Teaching mathematics involves a great 
deal of procedural explanation, which should 
be done fully and accurately for the learners to 
grasp and become competent in working with 
the procedures themselves.

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes demonstration of 
procedure. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes demonstration of 
procedure. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes demonstration of 
procedure. 

No mathematical procedural 
explanation is given

The procedure is accurate and 
includes all of the key steps in 
the procedure.

The procedure is accurate but 
it does not include all of the 
key steps in the procedure.

Teachers’ use of procedure 
is inaccurate or inaccurate 
to the extent that it could be 
confusing.

Conceptual: The emphasis of this criterion is 
on the teachers’ conceptual explanation of the 
procedure or other reasoning followed in the 
solution. Mathematical reasoning (procedural or 
other) needs to be unpacked and linked to the 
concepts to which it relates in order for learners 
to understand the mathematics embedded in 
the activity.

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes conceptual links. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes conceptual links. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the solution 
includes conceptual links. 

No conceptual links are made 
in the explanation.

The explanation illuminates 
conceptually the background 
and process of the activity.

The explanation includes 
some but not all of the 
conceptual links that 
illuminate the background 
and process of the activity.

The explanation includes 
incorrect or poorly conceived 
conceptual links and thus is 
potentially confusing.

Analysis of explanations of the error
Awareness of error: The emphasis of this 
criterion is on teachers’ explanation of the 
actual mathematical error and not on learners’ 
reasoning.

Teachers explain the 
mathematical error made by 
the learner.

Teachers explain the 
mathematical error made by 
the learner.

Teachers explain the 
mathematical error made by 
the learner.

No explanation is given of 
the mathematical of the 
particular error.

The explanation of 
the particular error is 
mathematically sound and 
suggests links to common 
misconceptions or errors.

The explanation of 
the particular error is 
mathematically sound but 
does not link to common 
misconceptions or errors.

The explanation of 
the particular error is 
mathematically inaccurate.

Diagnostic reasoning: The idea of error analysis 
goes beyond identifying a common error and 
misconception. The idea is to understand the 
way teachers go beyond the actual error to try 
and follow the way the learners were reasoning 
when they made the error. The emphasis of 
this criterion is on teachers’ attempt to provide 
rationale for how learners were reasoning 
mathematically when they chose the distractor.

Teachers describe learners’ 
mathematical reasoning 
behind the error. 

Teachers describe learners’ 
mathematical reasoning 
behind the error.

Teachers describe learners’ 
mathematical reasoning 
behind the error.

No attempt is made 
to describe learners’ 
mathematical reasoning 
behind the particular error.

It describes the steps of 
learners’ mathematical 
reasoning systematically and 
hones in on the particular 
error.

The description of the 
learners’ mathematical 
reasoning is inaccurate 
although it does hone in on 
the particular error.

The description of the 
learners’ mathematical 
reasoning does not hone in 
on the particular error.

Use of everyday knowledge: Teachers often 
explain why learners make an error by appealing 
to everyday experiences that learners draw on 
and confuse with the mathematical context of 
the question. The emphasis of this criterion 
is on the quality of the use of everyday, 
judged by the links made to the mathematical 
understanding teachers try to advance.

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the error 
appeals to the everyday. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the error 
appeals to the everyday. 

Teachers’ explanation of 
the learners’ mathematical 
reasoning behind the error 
appeals to the everyday.

No discussion of everyday 
is done.

Teachers’ use of the 
‘everyday’ enables 
mathematical understanding 
by making the link between 
the everyday and the 
mathematical clear.

Teacher’s use of the 
‘everyday’ is relevant but 
does not properly explain 
the link to mathematical 
understanding.

Teacher’s use of the 
‘everyday’ dominates and 
obscures the mathematical 
understanding; no link to 
mathematical understanding 
is made.

Multiple explanations of error: One of the 
challenges in error analysis is for learners to 
hear more than one explanation of the error. 
This is because some explanations are more 
accurate or more accessible than others. This 
criterion examines the teachers’ explanations 
of the error itself rather than the explanation of 
learners’ reasoning.

Multiple mathematical 
explanations are provided.

Multiple mathematical and 
general explanations are 
provided. 

Multiple mathematical and 
general explanations are 
provided.

No mathematically feasible 
or convincing explanation 
provided.

All of the explanations (two 
or more) are mathematically 
feasible or convincing.

At least two of the 
mathematical explanations 
feasible or convincing.

One mathematically feasible 
or convincing explanation 
provided.

- This is criterion F/N (mathematically feasible or not) for each new and different explanation offered by the teacher. The final 
criterion is assigned according to the level descriptors above. 


