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Introduction
Mathematics competitions globally have grown into an immense vibrant network that engage 
millions of students and teachers, contributing significantly to the development and maintenance 
of mathematical knowledge and the educational process. However, performance in mathematics 
competitions does not always correlate with classroom performance (Ridge & Renzulli, 1981). 
In fact, Kenderov (2006) sees competitions as providing a tool to identify and develop students 
with higher abilities and talent who do not experience any challenge in the standard curriculum. 
The outcome of this curtailed curriculum experience in many a classroom is that the mathematical 
abilities and talent of students with great potential then remain undiscovered and undeveloped.

While they play an important role, competitions are not unconditionally promoted. One critique 
of competitions is that they provide unnecessary pressure, stress and feelings of failure from 
excessive competitiveness (Davis, Rimm & Siegle, 2011). Kenderov (2006) supports this view and 
argues that although students who perform well in competitions often become good mathematics 
researchers, many highly creative students do not function well under time pressure. He further 
states:

What matters in science is rarely the speed of solving difficult problems posed by other people. More 
often, what matters is the ability to formulate questions and pose problems, to generate, evaluate, and 
reject conjectures, to come up with new and nonstandard ideas. (Kenderov, 2006, p. 1592)

The South African Mathematics Olympiad (SAMO), organised by the South African Mathematics 
Foundation (SAMF), is the premier mathematics Olympiad in the country and an important event 
in the school calendar. Participation has grown from just over 5000 contestants in the first event in 
1966 to about 82 000 contestants who participated in the SAMO 2015. Objectives of the SAMO are 
to generate enthusiasm and interest in the subject, to enrich the study of mathematics, to promote 
mathematical problem-solving proficiency, to equip contestants for university level mathematical 
thinking and, in addition, to identify and inform selection of the finest young mathematical minds 
for international competition.

The reported benefits and critique of competitions apply in part to the SAMO. However, ongoing 
evaluations have over the years introduced changes to ensure the furthering of the main aims of 
the SAMO competition. This research study forms part of the evaluation in the interest of 
furthering the central objectives stated previously.

The purpose of the South African Mathematics Olympiad is to generate interest in mathematics 
and to identify the most talented mathematical minds. Our focus is on how the handling of 
missing data affects the selection of the ‘best’ contestants. Two approaches handling missing 
data, applying the Rasch model, are described. The issue of guessing is investigated through a 
tailored analysis. We present two microanalyses to illustate how missing data may impact 
selection; the first investigates groups of contestants that may miss selection under particular 
conditions; the second focuses on two contestants each of whom answer 14 items correctly. 
This comparison raises questions about the proportion of correct to incorrect answers. 
Recommendations are made for future scoring of the test, which include reconsideration of 
negative marking and weighting as well as considering the inclusion of 150 or 200 contestants 
as opposed to 100 contestants for participation in the final round.
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This study focuses on the second round results of the SAMO 
2012 for the junior division (Grade 8 and Grade 9). We 
investigate specific aspects of the second round test for the 
purpose of providing information on the fitness for purpose 
of the test and for the future refining of the processes of 
contestant selection for the third and final round of the 
competition.

The primary question guiding this study is:

How do the testing procedures and processes, including administration, 
marking and analysis processes, support the selection of the most 
deserving 100 contestants for participation in the third round; in other 
words: are there contestants excluded from the third round who should 
reasonably be included?

Subsidiary questions, supporting the primary question, 
include:

To what extent are the psychometric properties robust enough to claim 
measurement of mathematical excellence?

How does the treatment of missing data affect the selection outcomes?

How do various test design features, administration, scoring and 
analysis procedures affect the outcomes?

Design of the testing programme
At the design stage the construction and the selection of 
items is the task of the Olympiad committee comprising master 
teachers of mathematics, past Olympiad winners and 
mathematicians from tertiary institutions.

Items in the SAMO test are ranked from 1 to 20 according to 
the level of difficulty as judged by the item writing team. 
Items 1 to 5 are considered to be easy or accessible to most 
contestants; items 6 to 15 are considered to be moderately 
difficult and items 16 to 20 are expected to be most difficult. 
Each band of items is scored differently. The standard scoring 
procedure in SAMO is depicted in Table 1.

The question here is whether the weighting of items (as in 
Table 1) skews the selection outcome to some extent, whether 
the a priori judgement of weighting is valid and whether this 
weighting makes a difference to the ranking of contestants. 
These questions are explored in the results section and 
suggestions are offered in the discussion.

One of the features of the test programme is ‘negative’ 
marking. In the administration phase of the SAMO 2012 test, 
the instructions to contestants state that incorrect answers will 
be penalised. The rationale for negative marking is as follows. 
For each multiple-choice item with five options, the probability 
of answering correctly through random guessing is 20%. 
Taking this logic further over all the items in the test means 
that any contestants simply guessing all the way through the 

test will obtain scores close to an average score 20%. The 
intended outcome of the negative marking is to ensure that 
the random guessers score on average zero on each item.

The intended behavioural effect is to eliminate random 
guessing. By knowing there is a penalty for wrong answers 
the contestant, when confronted with an item for which they 
find no apparent correct answer, is induced to omit the answer 
rather than risk the negative penalty, as opposed to a minimal 
chance for a prospective positive score. In the case where a 
contestant is not completely unsure of the answer but thinks 
they may select a correct option, they may take the risk.

The question arises here whether, when analysing the data, 
the induced missing value should be allocated a zero score or 
should be taken as missing and what effects these two 
different treatments have on the rankings of contestants.

The time allocated for the first round paper of the SAMO is 
one hour for 20 multiple-choice questions. For the second 
round the time is increased to two hours to complete the 
20 multiple-choice questions. The test designers and 
administrators are of the opinion that the time is adequate for 
the test to serve its purposes. One reported caveat is that 
some good mathematical thinkers may require extra time per 
item simply because they are excessively thorough. This 
comment is in line with Kenderov’s (2006) call for 
acknowledging and encouraging original mathematical 
thinking. The third round paper is four hours for six extended 
format questions. This format shows a radical departure 
from the first two rounds.

Missing data
Missing data is common in research and alludes to planned 
and desired information that is not available for examination 
and analysis (Tsikriktsis, 2005). Thus, explanations for the 
missing data may be difficult to deduce (Mallinckrodt et al., 
2003). It is due to the very nature of the phenomenon that it 
cannot be adequately described (McKnight, McKnight, 
Sidani & Figueredo, 2007). There are several reasons why 
data could be missing: these conditions may relate to the 
participants, the study design and the interaction between 
the participants and the study design. The contestant could 
have missed an item, saved the item for later and run out of 
time or felt reluctant to answer the question (Sijtsma & 
Van der Ark, 2003). Missing data may be described in terms 
of three mechanisms of missingness: missing completely at 
random (MCAR), missing at random (MAR) and missing not 
at random (MNAR).

Missing completely at random (MCAR) asserts a completely 
unsystematic pattern. The probability of a missing data 
element at any observation on any variable is unrelated to 
any of the data values intended in the data set, missing or 
observed. We may write an equation to state the marginal 
probability and the joint conditional probabilities:

Prob (xk is missing) = Prob (xk is missing | xk and xobs)

TABLE 1: Weighting and penalty procedure and random guess score.
Correct answer Wrong answer No answer

Items 1–5 4 –1 0
Items 6–15 5 –1 0
Items 16–20 6 –1 0
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An example of the MCAR phenomenon occurs when a 
contestant accidentally skips an item. The accidental skipping 
of an item has a probability that is not related to proficiency 
in the test construct, for example, and can therefore be 
classified as MCAR.

Data values are said to be MAR when the propensity for an 
element in a data case to be missing may be related to the 
observed values for that case, but the propensity is not related 
to the values of its own unobserved (missing) variables. Here 
the word random may appear to have an unfamiliar 
connotation. Equivalently, if any two data cases share 
identical values on their commonly observed elements, the 
pair will presumably have the same statistical behaviour on 
the other observations, whether observed or not. The 
probability of a missing value may depend upon the value of 
the observed elements. For example, the missing data 
mechanism may be related to general language proficiency 
or may be related to speed and time available, rather than the 
difficulty of the item or proficiency of the contestant. The 
relationship between proficiency, speed and difficulty 
impacts on the performance in any timed test.

In both instances, MCAR and MAR, the response mechanism 
is termed ignorable. Thus the researcher can make a reasoned 
argument to ignore the unknown factors leading to the 
missing data and thus permit a simpler approach to the 
available data (Pigott, 2001).

When unobserved data are neither MCAR nor MAR, the data 
are termed to be missing not at random (MNAR). MNAR 
means that the data is missing for a specific reason (i.e. the 
unknown value of a variable that may become missing in a 
data case may affect the probability of the value becoming 
missing). This situation arises in the context of this Olympiad 
study, when the missing status for an unobserved (missing) 
data value is directly attributable to contestant proficiency or 
item difficulty. In the case of negative marking being a 
deterrent to guessing, MNAR may be the case. However, 
there is an argument to be made that overcautious contestants 
may forego the reasonable probability of answering correctly.

Missing data, of any kind, influences the interpretation of the 
results. In the case of this study, we posit that the missing 
data impacts somewhat on the item difficulty estimates and 
on the ranking of the contestants. It therefore has consequences 
for validity and reliability claims (McKnight et al., 2007). It 
remains one of the major challenges for analysis, due to the 
fact that information has been lost. Potential solutions to 
address missingness include regarding omitted items as not 
administered, or by contrast as incorrect, and allocating a 
zero score (Ludlow & O’Leary, 1999).

In this SAMO 2012 junior second round test, 92.8% of the 
total item-person data points (20 × 4141 = 82 820) were 
recorded, with some 7.2% of the data missing, which may be 
perceived as relatively inconsequential. Nevertheless, the 
approaches to handling of missing data account for slight 
differences in the estimated locations of items and greater 

corresponding shifts in estimated person locations, which in 
turn account for variation in the selections of the top 100 
contestants (at the highest person locations).

In this article each of these approaches is explored with 
reference to specific items and the consequences or the 
differing effects on the selection of contestants are 
discussed.

Methodology
Our data sources consisted of 4141 junior contestants (Grade 
8 and Grade 9) who participated in the SAMO 2012 second 
round test comprising 20 multiple-choice items with five 
options, one of which was correct. In view of the primary 
research question, that is whether or not the testing 
procedures and processes support the selection of the most 
deserving 100 learners, with particular reference to the 
procedure for handling missing data, two parallel analyses 
were conducted on two versions of the dataset. In one 
analysis, zeroes were assigned for all missing data (ZM) and 
in the second all missing data were handled through the 
standard procedures of the RUMM 2030 software (MM). For 
both sets of data, a Rasch analysis was conducted and the set 
of statistical methods applied to provide information on the 
test as a whole and on the individual items. Parallel results 
are reported throughout the analysis.

Rasch measurement theory
The application of the Rasch measurement theory (RMT) to 
item level data collected on the second round tests enabled 
us to answer questions concerning the robustness of the data, 
in terms of the psychometric properties required for 
measurement-like outcomes. The model is clearly explained 
elsewhere (Andrich, 1988, 2004; Dunne, Long, Craig & Venter, 
2012; Rasch, 1960/1980; Wilson, 2005); some pertinent aspects 
are discussed here.

The dichotomous model, scoring correct responses as one and 
incorrect answers as zero, is operationalised in the 
RUMM2030 software features and applied in the early stages 
of the analysis to verify the functioning of the test as a whole 
and the coherent functioning of individual items.

The model assumes that the probability of a contestant 
answering any dichotomous item correctly is ‘a logistic 
function of the relative distance between the item location 
and the [contestant] location on a common linear scale’ 
(Tennant & Conaghan, 2007, p. 1359). The Rasch analysis 
aligns both item difficulty and person proficiency on the 
same scale, by assigning estimated locations whose difference 
governs probabilities of zero or one item scores.

For person (v) and item (i), the probability of a correct 
response is governed by:

β δ{ }= =
+

β δ

β δ

−
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1
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 [Eqn 1]

http://www.pythagoras.org.za


Page 4 of 14 Original Research

http://www.pythagoras.org.za Open Access

The left-hand side of the equation is read as ‘the probability 
of [person] v being correct [scoring 1] on item i given the 
[person’s] ability, βv , and the item’s difficulty, δi‘. The right-
hand side involves only an exponential transformation of the 
difference between person ability, βv , and the item difficulty, δi. 
The function of the denominator in Equation 1 is to constrain 
the sum of the (two) probabilities for any dichotomous item 
to 1 (Andrich, 2006, p. 63).

One consequence of the model (Equation 1) being applied 
independently to all the data of each candidate and all items is 
an expectation that the parameters for candidate ability and 
item difficulty are all on a common interval scale, called the 
logit scale. If the data collectively fit the complete model 
derived from Equation 1, this common scale permits very 
specific stochastic interpretations of the observed data that are 
highly desirable, including measurement-like interpretations 
of the functioning of the test and its constituent items.

Analysis
In this analysis there are two analytic processes that we 
regard as somewhat distinct but related in that they both 
impact on the outcomes of the contest and influence which 
second round contestants will be selected for the third round.

The first process is the analysis of the theoretical coherence of 
the test and the test items: the second is the method of scoring. 
We report on the model and the software selected for the 
analysis, the summary statistics (means, standard deviations, 
chi-square statistics and associated exceedance probabilities 
and person separation index) and then the fit of items and 
persons to the model.

The second process involves the handling of missing data and 
the possibility of randomly guessed correct items within the 
observed data. Its purpose is to manage the fact that despite 
the attempts to dissuade guessing, there would inevitably be 
one or more chance correct multiple-choice question responses 
guessed by a contestant for whom the conditional probability 
of a correct response on any difficult item seems very low. We 
expect that a contestant will have a low probability of success 
on difficult items precisely because the contestant appears to 
perform at a low ability level on the test as a whole.

For clarity, we note that weaker contestants tend to have lower 
scores and we expect them to offer correct responses to easier 
items. We also expect them by definition to either leave 
difficult multiple-choice questions items blank or possibly 
choose randomly amongst some or all of the options on that 
item subset. The effect of correct guesses made by weaker 
contestants is twofold. Each correct guess increases the 
candidate’s score, but simultaneously makes the item in 
question appear less difficult than expected because the 
observed frequency of correct responses is increased by correct 
random guesses. The above rationale underpins the process in 
a tailored analysis (Andrich, Marais & Humphry, 2012).

While the focus of the article is essentially on the treatment of 
missing values in the Olympiad test, the first analysis was to 

discuss aspects of the test and the testing process that impact 
on the theoretical coherence of the test and the testing process. 
These aspects include the expected versus empirical difficulty, 
the fit of the test as a whole, the targeting of the test and 
investigation of specific items. A second analysis investigates 
the handling of missing data.

The ranks of the item locations that represent the empirical 
difficulty levels as determined by the Rasch analysis were 
compared with the ranks of the expected difficulty levels as 
assigned by the designers of the tests.

Test validity
For the test as a whole, the summary statistics, including item 
and person means and standard deviations, point to the 
appropriateness of the test. The fit of the data to the model, 
reflected in the chi-square statistics, and the test reliability as 
reflected in the person separation index (PSI) provide 
evidence of the robustness of the test. The PSI, specific to 
latent trait models such as the Rasch model, contrasts the 
variance among the ability estimates of persons tested in the 
data relative to the error variance within each person 
(Andrich, 1982). The index provides a measure of internal 
consistency by providing an indicator of the separation of 
persons relative to the difficulty of the item. The equivalent 
in traditional test theory is the Kuder-Richardson 20, or 
Cronbach’s alpha, which provides a measure of the internal 
consistency of the items, rather than a measure of person 
consistency relative to items (Andrich, 1982).

For measurement in the psychosocial sciences, as with the 
physical sciences, appropriate targeting of an instrument as a 
whole implies that maximum information can be expected in 
the functioning of the items over the persons who are to be 
assessed. Targeting is an implicit goal of the test designers, in 
seeking to select k useful items as the instrument for their 
purpose (here using k = 20 items to select top-end mathematics 
talent on the basis of high total scores).

In the Rasch model, the item location mean is set by 
convention at zero as a reference value on the logit scale. The 
comparison of the item mean with the observed person 
location mean provides a summary post hoc indication of the 
appropriate targeting of the test for the observed contestant 
group. The closer the person mean to the item mean, zero, the 
more accurately measures of ability can be obtained.

For individual items, the fit residual is the standardised sum of 
all differences between observed and expected values summed 
over all persons. If a fit residual is over 2.5, or less than –2.5, the 
item is regarded as possibly misfitting. In the application of 
the Rasch model, the item fit is investigated and where 
anomalies are found these residuals are further investigated.

The sign of the item fit residuals relates to the notion of item 
discrimination. In the sense used here, discrimination is the 
rate of increase in the probability of a correct response to a 
specific item with respect to the underlying person ability 
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level. The Rasch model suggests expected frequencies of item 
scores for each ability level. If the observed pattern of item 
performance against ability levels exaggerates the frequency 
of zero scores among contestants of lower ability, and also 
exaggerates the frequency of correct scores for high ability 
contestants, the overall item-fit residual will be negative 
(smaller than expected), pointing to overly high 
discrimination. Overly high discrimination indicates that 
persons of high ability may be obtaining special advantage. 
This special advantage may indicate that a second dimension 
(possibly language proficiency) that is positively correlated 
with the intended construct gives learners of high ability an 
undue advantage (Masters, 1988). This possible second 
dimension is to be investigated.

The further analysis compared the two approaches to missing 
data; the first simply regarded the missing data as incorrect 
(by default) and entered zero (ZM). This approach implies a 
judgement was made that the reason the contestant did not 
answer the question was that the correct answer was unknown 
to the contestant, hence the data was MNAR and for a reason 
directly related to the construct knowledge being tested.

The second approach was to reserve judgement (assume that 
the data may be MAR, perhaps related to the time factor or a 
reluctance to offer a wrong answer) and rather to assign a 
value using maximum likelihood estimates of the parameters 
and of the corresponding expected values for the missing 
data elements. In this second approach the missing values are 
treated as simply absent (MM).

Guessing and tailored analysis
It is inevitable, where the item difficulty far exceeds the 
proficiency of the candidate, that there may be guessing. 
Here a tailored analysis is conducted to adjust for possible 
guessing on each of the data sets, ZM and MM. This approach 
is based on the understanding that ‘guessing is a function of 
the difficulty of the item relative to the proficiency of the 
person’ (Andrich et al., 2012, p. 1). Andrich et al. (2012) 
propose a strategy to ‘remove those responses most likely to 
be affected by guessing’ (p. 3), making particular removals 

for each person based upon their pattern of scoring. These 
removed responses are then treated as missing responses.

A tailored analysis was conducted with the cut-off at 0.20 or 
one-fifth, based upon the frequency for a randomly selected 
option from the set of five options offered for each of the 
multiple-choice questions. This cut-off is applied to 
the estimated probability of correct response, obtained from 
the Rasch model. For each person all the difficult items with 
estimated probabilities of a correct response below 0.20 are 
eliminated, hence rendered missing, whether correct or 
incorrect.

Identifying best contestants
The highest performing contestants in each of the two modes, 
zero for missing (ZM) and missing as missing (MM), and then 
in each of the further two tailored analyses, zero for missing 
tailored (ZMT) and missing as missing tailored (MMT) are 
ranked from highest to lowest. Contestants whose rankings 
on all four treatments fall exclusively within particular ranges 
are coded. For example, contestant P may be ranked 3rd in the 
ZM ranking, 6th in the ZMT ranking, 4th in the MM ranking 
and 7th in the MMT ranking. This contestant would be coded 
A, as all four rankings fall into the top 25. Contestant Q may 
be ranked 39th in ZM ranking, 47th in ZMT ranking, 13th in 
MM ranking and 22nd in MMT ranking. This contestant 
would be coded B as all four rankings fall within the top 50. 
The contestants with all four rankings in the top 100 would 
fall into category C. This process is continued for contestants’ 
rankings falling within 150 and within 200 (see Table 2).

The count of 14 includes only the contestants who achieved 
rankings exclusively in the top 25, 25th inclusive, in all four 
statistical treatments. Likewise, the count 27 includes all 
contestants who achieved ranking in the top 50; it therefore 
includes the count of 14 who achieved rankings exclusively 
within the top 25 (see Table 2).

Table 3 shows the number of contestants who obtained the 
highest total score of 19, down to the total score of 12, in the 
vertical column. Along the top row are the number of missing 

TABLE 2: Cumulative counts of contestants in rank groups on four analysis routines.
A B C D E

All rankings in top 25 All rankings in top 50 All rankings in top 100 All rankings in top 150 All rankings in top 200
14 27 54 85 107

TABLE 3: Counts of contestants by total score and missing answers.
Total score Missing Count Cumulative

0 1 2 3 4 5 6 7 8

19 4 1 5 5
18 8 2 0 10 15
17 6 1 0 0 7 22
16 13 3 2 1 0 19 41
15 14 9 3 1 3 0 30 72
14 25 9 6 3 6 1 0 50 121
13 39 11 4 9 7 4 1 0 75 196
12 98 16 5 11 9 11 6 1 0 157 353
Cumulative 208 51 20 25 25 16 7 1 0 353
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items for each group. For example, for the group whose total 
score was 16 (looking along the row), 13 contestants had no 
missing values, three contestants had one missing value, two 
contestants had two missing values and one contestant had 
three missing values. It appears from this analysis that 
negative marking did not dissuade the contestants from 
answering questions whose correct answer was not 
immediately obvious.

Micro-studies
To further investigate the handling of missing data in the 
context of the SAMO we conduct two explanatory micro-
studies for illustration purposes. In the first we compare 
three categories of contestants who would fall, according to 
this system, outside of the top 100. We identified three other 
categories, some 25 contestants who had 14 out of the 20 
items correct and none incorrect (Category F), some 39 
contestants who had all 13 items that they attempted correct 
(Category G) and some 26 contestants who had 12 out of 13 
or 13 out of 14 (Category H). Contestants in these categories 
would fall out of the top 100, on one, two or three of the 
rankings but be included on others. One contestant from each 
of the categories F, G and H is described.

A second micro-study identifies two contestants each of 
whom obtained 14 correct answers; the first answered 14 
correctly and six incorrectly and the second answered 14 
correctly and omitted the other six items. This comparison 
raises questions about the effect of time on assessing 
mathematics ability. It also raises questions about the 
proportion of correct to incorrect answers. Does the contestant 
who answers everything they attempt correctly have greater 
potential than the contestant who answers almost a third of the test 
incorrectly?

Results
Throughout this investigation we conduct a comparison 
between the two data sets, the first case where the zeroes are 
given for missing information, denoted as ZM, and the 
second case where missing values are dealt with through 
maximum likelihood estimation, denoted as MM.

The results are presented in terms of both the test as a whole 
and the component items and on the performance of the 
contestants. The following analytic categories are discussed: 
expected and empirical item difficulty, summary statistics on the 
test as a whole, targeting of the test, individual item statistics and 
the guessing factor. Two additional categories that might have 
been reported, namely differential item functioning and local 

independence, which may have been important for checking 
the robustness of the data, have not been covered here.

The contestants are discussed in relation to their overall 
performance and in relation to the varied rankings based on 
the different analytic treatments, namely ZM and MM, and in 
pertinent cases the tailored equivalents, MMT and ZMT.

Test design
The notional (or expected) difficulty of items from the perspective 
of the test designers was found to differ from the empirical 
difficulty outcomes. In 50% of the cases the items were at the 
expected levels (see Table 4).

The reasons for the differences are explored elsewhere 
(Engelbrecht & Mwambakana, 2016). Some of the reasons for 
the unexpected differences may include curriculum coverage, 
language issues, lack of exposure to the particular problem-
solving strategy required for a specific problem or an element 
of surprise not obvious at the time of setting the paper.

Associated with the change in item difficulty order, there will 
be some difference in most contestants’ scores when using 
the weighted scores, rather than using unweighted scores (as 
shown in Table 1).

Summary statistics and targeting of the test
A comparison between the two versions of the data set is made, 
the first with zero scores for missing information (ZM) and the 
second case in which all missing values are dealt with through 
maximum likelihood estimation of person locations (MM).

The high total chi-square and the extremely low chi-square 
probability indicate that there is poor fit to the model (see 
Table 5). The PSI indicates rather moderate reliability with 
slightly improved reliability when the missing values are 
estimated through the standard procedure of the RUMM 
software. The moderate PSI indicates a limited spread of 
person locations along the scale. This limited spread may be 
an indication of a fairly homogeneous group taking the test, 
a consequence of common selection from a previous first 
round of testing serving as a screening mechanism.

We note here that the large number of data cases, over 4000, 
inevitably exacerbates the statistics for any misfit. By 
artificially reducing the size of the data set to a manageable 
number, the fit statistics were found to be more acceptable. 
Nevertheless, we use the fit statistics, prior to any statistical 
correction improvement (see Table 5).

TABLE 4: Comparison of intended and empirical difficulty, under ZM and MM methods.
Design of the test items ranked from 

less difficult to greater difficulty
Empirical ranking of items ranked from less  

difficult to greater difficulty
Overlap between intended and 

empirical difficulty

ZM case MM case

Easy 1→2→3→4→5 16→6→4→13→1 16→6→4→13→1 40% (2/5)

Moderate difficulty 6→7→8→9→10 11→8→7→15→9 11→8→15→7→9 60% (6/10)

11→12→13→14→15 17→19→2→14→3 17→2→14→19→3
Difficult 16→17→18→19→20 5→18→20→10→12 5→18→20→12→10 40% (2/5)
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The statistics suggest that the test is moderately well targeted, 
with a person location mean of –0.804 (standard deviation 
0.868) for the ZM case and a person location mean of –0.645 
(standard deviation 0.942) for the MM case (see Table 6). The 
standard deviation in both cases indicates a spread of items 
that is acceptable. The optimal situation for obtaining 
maximum information is for the person mean to be aligned 
with the item mean. In the case of this test, the mean of –0.804 
suggests the test is slightly on the difficult side for this set of 
contestants. The person mean in the MM case is located 
closer to the item mean, zero, and, given an argument for 
regarding missing data as missing rather than zero, could be 
regarded as the more accurate test statistic.

The person-item threshold distribution is depicted 
graphically in Figure 1. The spread of items is fairly good, 
with slightly better fit for the MM analysis. There is, however, 
a cohort of contestants for whom there are no items within 
their proficiency range. About 500 contestants, roughly an 
eighth of the complete set, have locations below the easiest 
item, Item 16. The implication here is that all of these 
contestants have a less than 50% chance of answering any 
specific item correctly. An explanation of this phenomenon is 
given in the discussion.

Item difficulty
The person-item maps (see Figure 2, ZM, Figure 3, MM) are 
graphical pictures of both item difficulty and person 
proficiency aligned on the same scale. Items are depicted on 
the right-hand side of the graph. On the left-hand side, the 
estimates of learner proficiency are located. Item 10 and Item 
12 are distinctly more difficult than other items. The next 
three items, 5, 18 and 20, form a second but less difficult 
cluster. Items 7, 8, 9, 11 and 15 form a cluster around the mean 
zero location. The remainder of the items spread from –0.2 to 
–1.8 on the logit scale, indicating relatively easier items. From 
an investigation of each cluster, it may emerge that particular 
problem-solving skills are required in addition to mastery of 
the topic area.

The estimated item difficulty locations differ across the 
missing data treatments. However, the group of the five most 
difficult items is common but in a slightly different order (see 
Table 7). Similarly, the five easiest items are in slightly 
different orders and likewise both middle quartiles involve 

common items but with internal order changes. The range of 
the MM analysis is slightly narrower, with the easiest item 
apparently slightly harder.

A tailored analysis, by adjusting for guessing, provides a 
better estimate of item difficulty and of item fit (Andrich 
et al., 2012). For this reason, we report for particular items the 
statistics provided by the tailored analysis MMT, as derived 
from MM. These results are presented in the three columns 
on the right of Table 7.

Individual items
Item 10 (see Figure 4), one of the most difficult items, required 
an understanding of three concepts: the area of a circle, ratio 
and probability. A feature of this question was that the correct 
option was not the most frequent choice by even the top 
contestants. This selection can be explained by the first 
distractor being very seductive (most frequently chosen), 
while being incorrect. We report here on the statistics after 
applying a tailored analysis.

For each item discussed, there is a description of the item, 
together with its item characteristic curve and the multiple-
choice distractor plot. For further explanation see Dunne 
et al. (2012).

Item 16, contrary to expectation, was found to be the easiest 
item empirically (see Figure 5). The easiness of the item can 
be explained by the strategy of some contestants to, rather 
than use mathematical techniques, simply extend the pattern 
to the 81st term.

Item fit
The item fit residual is a statistic for assessing the extent to 
which an aggregate of the person-item residuals deviates from 
its expected value, zero. When fit residuals are greater than 2.5 
or less than –2.5, we regard them as exceeding criterion levels 
for misfitting. In the initial data analysis six items were 
overdiscriminating (1, 3, 6, 14, 17, 19 with negative item 
residuals) and six items were underdiscriminating (2, 7, 10, 11, 
15, 18). With further analysis (see the section on the tailored 
analysis), some of these items conformed to the model.

Item 2 (see Figure 6) initially exhibited large overdiscrimination 
(–7.883); however, after the tailored analysis, while still 
showing some overdiscrimination, the fit was better (–3.871). 
The percent topic is a complex construct as explained by 
Parker and Leinhardt (1995). The problem was that of 
ignoring the referent to which the percentage ratio is being 
applied. We might also posit here that additive reasoning is 
applied in this problem rather than multiplicative reasoning.

TABLE 5: Test fit to the model.
ZM MM

Total chi-square 1742.53700 1900.93500
Total degrees of freedom 160.00000 178.00000
Total chi-square probability 0.00000 0.00000
Person separation index (PSI) 0.59346 0.62227

TABLE 6: Summary statistics.
ZM data (N = 4141) MM data (N = 4141)

Items Persons Items Persons

Location Fit residual Location Fit residual Location Fit residual Location Fit residual

Mean 0.0000 –0.1947 –0.8041 –0.1476 0.0000 –0.2580 –0.6450 –0.1362
SD 0.9440 4.4771 0.8675 0.9275 0.8940 4.6141 0.9416 0.8908
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FIGURE 1: Person-item distribution thresholds for ZM (a) and MM (b) analyses.
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Item 6 (see Figure 7) on the initial analysis was highly 
overdiscriminating (–6.269). With the tailored analysis, the 
discrimination was reduced to –2.772. This item requires an 
application of algebra that is perhaps unfamiliar to many 
contestants. In addition, the requirement to explore the 
numbers in a number block may not have been previously 
encountered.

Guessing and tailored analyses
As stated previously, additional procedures were 
administered that would provide a more accurate picture of 

the difficulty of the items, by firstly eliminating Item 11 
(found to be faulty), and secondly by conducting a tailored 
analysis to adjust for guessing.

Table 8 shows a comparison of the summary statistics across 
the two approaches, the ZM, and the associated tailored 
analysis, ZMT, and the MM, and the associated MMT. Note 
that the person location means of the tailored analyses being 
closer to zero indicate that the test is better targeted in this 
approach. The reason for this better fit is that where an item 
is judged to have a low probability of being answered 
correctly by a specific person, that data point is omitted and 

LOCATION          PERSONS     ITEMS [locations] 
------------------------------------------------------------------
  4.0                      |  
                           |  
                           |  
                           |  
                           |  
  3.0                      |  
                           |  
                           |  
                           |  
                         × |  
  2.0                      |  
                         × |  
                         × |  
                        ×× | I0010   
                        ×× | I0012   
  1.0                   ×× |  
                       ××× | I0005  I0018  I0020   
                      ×××× |  
                  ×××××××× | I0015  I0008  I0011   
                ×××××××××× | I0007   
  0.0                 ×××× | I0009   
             ××××××××××××× |  
            ×××××××××××××× | I0002  I0017   
        ×××××××××××××××××× | I0003  I0019  I0014   
      ×××××××××××××××××××× | I0001   
 -1.0  ××××××××××××××××××× | I0013   
                      ×××× | I0004   
        ×××××××××××××××××× | I0006   
           ××××××××××××××× | I0016   
                        ×× |  
 -2.0          ××××××××××× |  
                           |  
                    ×××××× |  
                           |  
                           |  
 -3.0                  ××× |  
                           |  
                           |  
                           |  
                           |  
 -4.0                      |        × = 23 Persons 

-------------------------------------------------------------------------

FIGURE 3: Person-item map for MM data with mean item location at zero. 

LOCATION          PERSONS     ITEMS [locations] 
-----------------------------------------------------------------------------
  4.0                      |  
                           |  
                           |  
                           |  
                           |  
  3.0                      |  
                           |  
                           |  
                           |  
                           |  
  2.0                      |  
                           |  
                           |  
                         × | I0012   
                         × | I0010   
  1.0                      | I0018  I0020   
                        ×× | I0005   
                       ××× | I0011   
                    ×××××× | I0015  I0007  I0008   
                   ××××××× |  
  0.0                      | I0009   
                ×××××××××× |  
             ××××××××××××× | I0017   
         ××××××××××××××××× | I0014  I0002  I0019   
       ××××××××××××××××××× | I0001  I0003   
 -1.0  ××××××××××××××××××× | I0013   
                           |  
       ××××××××××××××××××× | I0006  I0004   
           ××××××××××××××× |  
                           | I0016   
 -2.0         ×××××××××××× |  
                           |  
                    ×××××× |  
                           |  
                           |  
 -3.0                  ××× |  
                           |  
                           |  
                           |  
                           |  
 -4.0                      |     × = 27 Persons 
---------------------------------------------------------------

FIGURE 2: Person-item map for ZM data with mean item location at zero. 

TABLE 7: Item difficulty locations and standard error: ZM, MM and MMT methods.
ZM MM MMT

Item Location SE Item Location SE Item Location SE

12 1.401 0.049 10 1.405 0.049 10 2.118 0.089
10 1.381 0.049 12 1.390 0.050 18 1.562 0.073
20 1.186 0.046 20 0.994 0.048 20 1.538 0.078
18 1.173 0.046 18 0.986 0.048 5 1.216 0.062
5 0.977 0.043 5 0.923 0.045 12 1.074 0.078
11 0.604 0.039 11 0.555 0.040 Deleted
8 0.488 0.038 8 0.510 0.040 15 0.671 0.046
7 0.458 0.038 15 0.429 0.038 7 0.469 0.047
15 0.404 0.038 7 0.383 0.040 8 0.353 0.048
9 0.071 0.036 9 0.132 0.036 9 0.073 0.04
17 –0.299 0.034 17 –0.276 0.035 17 –0.407 0.038
19 –0.450 0.034 2 –0.331 0.034 2 –0.499 0.036
2 –0.477 0.034 14 –0.500 0.035 14 –0.559 0.037
14 –0.489 0.034 19 –0.518 0.036 19 –0.671 0.037
3 –0.604 0.034 3 –0.596 0.035 3 –0.737 0.037
1 –0.757 0.033 1 –0.665 0.034 1 –0.809 0.036
13 –0.937 0.033 13 –0.844 0.034 13 –0.967 0.036
4 –1.215 0.034 4 –1.183 0.035 4 –1.313 0.037
6 –1.311 0.034 6 –1.265 0.035 6 –1.459 0.037
16 –1.605 0.035 16 –1.529 0.036 16 –1.653 0.038

http://www.pythagoras.org.za


Page 10 of 14 Original Research

http://www.pythagoras.org.za Open Access

Item 10
A circular logo is made up of three circles with the same centre and radii in the
ra�o 1:2:3. A point is chosen randomly inside the logo. How many �mes more
likely is the point to be in the outer ring than in the shaded centre? 

(A) 3 (B) 4 (C) 5 (D) 6 (E) 9 
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FIGURE 4: Item 10, with item characteristic curve, and multiple choice distractor 
plot. 

Item 16
The 81st term of the sequence
1 2 2 3 3 3 4 4 4 4 ... is

(A) 11          (B) 12          (C) 13          (D) 14          (E) 15
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Item 16 Locn = -1.653 FitRes = 3.376 ChiSq[Pr] = 0.000 SampleN = 3.945

I0016 Item 16 Locn = -1.653 FitRes = 3.376 ChiSq[Pr] = 0.000 SampleN = 3.945
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FIGURE 5: Item 16, with item characteristic curve, and multiple choice distractor 
plot. 

regarded as missing. The reported person separation index 
improves in this situation (see Table 8).

With the application of the tailored analysis there was a better 
fit for some of the items, although some items emerged as 
worse fitting (see Table 9).

Further analysis, which explores possible reasons for some 
items improving with the tailored analysis and others not, as 
well as investigating local independence and the extent of 
guessing, is in process.

Selection of contestants
The higher performing contestants, expected to have some 
chance of success in the final round, were clustered into 
five groups, as explained earlier, according to their 
performance in the four statistical treatments ZM, ZMT, 
MM and MMT. The number of contestants in each group is 
given in Table 10.

The practice applied in SAMO 2012 was to select the top 100 
contestants according to their performance when the ZM 

approach is used. The analyses applied in this study seems to 
indicate that in order to select the most deserving 100 for the 
third round, it may be better to consider all contestants that 
fall into categories A to E.

Three other categories were also considered, comprising 
candidates who were not in any of the categories A to E. 
Thus we have category F, those contestants with a score of 
14 out of 20, with no errors, category G, those contestants 
who scored 13 correct, with no errors, and category H, 
where contestants scored 11 or 12 correct with no errors, or 
obtained 11, 12 or 13, with only one error (Table 11). All of 
these contestants fall outside the top 100, but within the top 
155 (see Table 11).

It is with the above reasoning that a closer micro-analysis 
was conducted on three contestants falling into the 
above three categories to use for illustrative purposes 
(see Table 12).

Fay scored 14/20 in the test. She qualifies for the top 100 if we 
use the ZM approach but does not when any of the other 
approaches is used. Grant only answered 11 items but 
answered no items incorrectly. Using the MM or MMT 
approach he qualifies for the top 100 easily but he does not 
when we use either ZM or ZMT. Henry attempted 13 items 
and answered 12 correctly. Again, when we apply either MM 
or MMT criteria he qualifies for the top 100 easily but not 
when we use ZM or ZMT.
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In a second micro-analysis, we compare the results of two 
contestants. Adri answered 14 items, all of them correctly. 
Her score for the test according to the system that was used, 
that is, taking the weighting and penalties into account, is 
68%. Bets attempted all 20 items and 14 of her answers were 
correct. After weighting and penalties, her final mark was 
64% for the test. In Table 13 we compare the two contestants. 
The items in Table 13 have been ordered according to the 
empirical difficulty (location) when analysed with missing 
values regarded as missing.

We see from Table 13 that although Adri and Bets answered 
the same number of items correctly (14), Adri obtained a final 
mark of 68% and Bets obtained a mark of 64%, because of the 
penalties for incorrect answers. It is also clear that most of 
Adri’s missing answers were of high empirical difficulty. This 
pattern indicates that her missing answers could be classified 

as MNAR: she deliberately avoided answering the difficult 
questions of which she was uncertain. Bets lost most of her 
penalty marks in the more difficult items, where she possibly 
guessed but selected answers incorrectly. There is a high 
probability that Bets might have guessed Item 20 correctly. The 
fact that she answered Item 4 incorrectly is something of an 
anomaly.

Discussion and recommendations
The results of the Rasch analysis show that the test is fairly 
robust and adequate for the purpose. Drawing from both 
professional judgement and from the outcomes of the 
analysis we conclude that the test is appropriate for 
engaging contestants’ interest and enthusiasm; it is 
appropriately targeted with both easy items to encourage 
contestants at the lower end and challenging items at the 

I0006

ICC1.0

0.5

0.0

Pr
ob

ab
ili

ty
Ex

pe
ct

ed
 V

al
ue

Item 6 Locn = -1.459 FitRes = -2.772 ChiSq[Pr] = 0.000 SampleN = 3.945

I0006 Item 6 Locn = -1.459 FitRes = -2.772 ChiSq[Pr] = 0.000 SampleN = 3.945

1.0

0.5

0.0

Slope
0.25

ExpV
0.50

–3 –2 –1 0

Person Loca
on (logits)

1 2 3

4**321 5

Person Loca
on (logits)
–3 –2

** = Correct answer

–1 0 1 2 3

Item 6  
The natural numbers are wri�en in seven columns:  

A square is drawn around a block of four numbers, and the sum of those four
numbers is 312. The number at top le� of the square is 

(A) 67 (B) 69 (C) 72 (D) 74 (E) 76 

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 ... ... ... ...

FIGURE 7: Item 6, with item characteristic curve, and multiple choice distractor 
plot. 

Ex
pe

ct
ed

 V
al

ue

1.0

0.5

0.0

Slope
0.25

ExpV
0.50

Person Locaon (logits)

–3 –2 –1 0 1 2 3

I0002 Item 2 Locn = -0.499 FitRes = -3.871 ChiSq [Pr] = 0.000 SampleN = 3 945

I0002 Item 2 Locn = -0.499 FitRes = -3.871 ChiSq [Pr] = 0.000 SampleN = 3 945

ICC1.0

0.5

0.0

Pr
ob

ab
ili

ty

Person Locaon (logits)

–3 –2

** = Correct answer

–1 0 1 2 3

Item 2 

A man gives away half of his money to his friend, and a�er that 10% of what he
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FIGURE 6: Item 2, with item characteristic curve, and multiple choice distractor 
plot. 

TABLE 8: Comparison of statistics across tailored analyses.
(n = 4141) ZMT w/o Item 11 ZM Initial analysis MMT w/o Item 11 MM Initial analysis

Location Fit residual Location Fit residual Location Fit residual Location Fit residual

Item mean 0 1.4870 0 –0.1947 0 1.1918 0 –0.2580
Item SD 1.1952 3.3663 0.9440 4.4771 1.1210 3.5108 0.8940 4.6141
Person mean –0.8903 0.0747 –0.8041 –0.1476 –0.7082 0.0422 –0.6450 –0.1362
Person SD 1.0196 0.8925 0.8675 0.9275 1.0788 0.8807 0.9416 0.8908
PSI 0.44890 0.5935 0.5251 0.6223
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difficult end which will discriminate between the top 
contestants.

It appears that the time allowed was adequate and that most 
participants managed to reach the end of the test, though we 
do not know how the participants approached the test as a 
whole. The missing 7.2% of 4141×20 data points may have 
been due to time constraints. For the present purposes we 
acknowledge that the missing data may be impacted by time 
constraints and this fact should be considered in the handling 
of missing data.

Negative marking and weighting definitely impact the 
results. Negative marking increases the count of missing data 
elements. Weightings of item contribution to the final score 
needs serious reconsideration since the weighting is based on 
the anticipated rather than on the empirical location. We 
recommend no a priori weightings of item contribution to the 
final score. In the Rasch analysis even empirical weighting is 
redundant, because item location ensures contestants who 
can handle difficult items are credited for that ability. In the 
Rasch framework it is possible to construct open-ended items 

for which a higher maximum score than the value 1 can be 
allocated by a suitable memo.

Some aspects of the analysis may be informative for future 
test design. The cluster of contestants, about 500, for whom 
the test appears too difficult should perhaps have been 
omitted from the second round testing. A closer investigation 
of these 500 contestants indicate some anomalies in the 
system. A deviation from the normal selection procedure 
was made on account of providing opportunities to learners 
who were exceptional at their school but who did not meet 
the cut-off. The question arising is whether the positive 
benefits for participating outweigh possible knocks to 
confidence. SAMF currently have programmes in place for 
learners with potential to receive more tuition in problem-
solving strategies earlier on in the Olympiad cycle, in an 
attempt to address lack of familiarity with problem-solving 
strategies in cohorts such as these.

The most important question that was addressed in this 
study is whether this testing process adequately supports 
the selection of the top 100 contestants who will go through 
to the third round of the Olympiad. This question does not 
have a simple answer and the only way of addressing this 
issue would be to monitor contestants’ performance in the 
third round. Such a study is recommended. Our analysis 
suggests that some contestants may deserve to qualify for 
the top 100, for example contestants who answered all 
items attempted correct, subject to some lower cut-off.

From our analysis it can be recommended that rather than 
only taking the top 100 in the existing scoring approach (ZM), 
it may be advisable to consider all contestants who ended up 
in the top 150 or 200 in all four statistical applications. These 
contestants can be thought of as yielding consistent evidence 
for their selection.

TABLE 9: Comparison of tailored analysis and MM case analysis from perspective of MM.
MM fit residual order MM tailor fit residual order Direction of change

Item Fit Residual Item Fit Residual

2 –7.883 2 –3.871 better fit
6 –6.269 6 –2.772 better fit
19 –5.649 19 –2.433 better fit
17 –5.048 17 –2.041 better fit
1 –4.787 1 –1.203 better fit
3 –4.483 3 –1.358 better fit
8 –2.372 8 1.592 better fit
12 –1.49 12 –0.757 better fit
4 –1.049 4 1.778 change from slight overfit to slight underfit
13 –0.807 13 2.462 change from slight overfit to slight underfit 
9 –0.31 9 4.423 change from slight overfit to marked underfit 
16 1.079 16 3.376 worse fit
20 2.311 20 0.331 better fit
5 2.505 5 –0.218 better fit
7 2.762 7 6.83 worse fit
14 2.994 14 5.167 worse fit
10 3.031 10 0.113 better fit
18 3.378 18 1.55 better fit
15 7.716 15 9.675 worse fit
11 9.209

TABLE 10: Counts in contestant ranking categories within four analyses.
Code Category Count Cumulative

A All 4 ranks in top 25 14 14
B All 4 ranks in top 50 13 27
C All 4 ranks in top 100 27 54
D All 4 ranks in top 150 31 85
E All 4 ranks in top 200 22 107

TABLE 11: Counts in further rank categories.
Code Category Count Cumulative

F Score of 14 17 124
G Extreme scores 13/13 10 134
H 11, 12 or 11/12, 12/13 or 13/14 21 155
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From the analysis it appears that the test is functioning 
adequately. The different approaches have slightly different 
effects on the difficulty levels of the items, but have a greater 
effect on the selection of contestants. The various analyses 
resulted in different subsets of contestants falling within the 
top 100. The reason for the differences rests on different 
views of underlying proficiency and therefore the differing 
approaches to missing data. A rationale may be made for the 
selection of one data set; however, a composite arrangement 
may offer advantages.

The empirical evidence for the ranking must be critically 
examined as other factors may contribute to ranking, for 
example non-coverage in some schools of related curriculum 
elements.
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