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This article proposes a flexible extension of the Fay–Herriot model for making

inferences from coarsened, group-level achievement data, for example, school-

level data consisting of numbers of students falling into various ordinal per-

formance categories. The model builds on the heteroskedastic ordered probit

(HETOP) framework advocated by Reardon, Shear, Castellano, and Ho by

allowing group parameters to be modeled with regressions on group-level

covariates, and residuals modeled using the flexible exponential family of dis-

tributions recommended by Efron. We demonstrate that the alternative mod-

eling framework, termed the “Fay–Herriot heteroskedastic ordered probit”

(FH-HETOP) model, is useful for mitigating some of the challenges with direct

maximum likelihood estimators from the HETOP model. We conduct a simu-

lation study to compare the costs and benefits of several methods for using the

FH-HETOP model to estimate group parameters and functions of them,

including posterior means, constrained Bayes estimators, and the “triple goal”

estimators of Shen and Louis. We also provide an application of the FH-HETOP

model to math proficiency data from the Early Childhood Longitudinal Study.

Code for estimating the FH-HETOP model and conducting supporting calcu-

lations is provided in a new package for the R environment.

Keywords: ordinal data; heteroskedastic ordered probit model; small-area estimation;

student achievement

Increased standardized testing and data archiving by public education systems

have provided unprecedented opportunities for studying these systems and their

effects on student outcomes. While data housed in state longitudinal data systems

often contain test scores for individual students as they progress through grade

levels, it is still commonplace for publicly available data on academic achieve-

ment to be much less fine-grained. For example, state department of education

websites often provide achievement measures for schools and/or districts con-

sisting of the counts, or percentages, of students falling into a small number of
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ordinal performance-level categories (e.g., below basic, basic, proficient, and

advanced). Such data lose resolution in two ways relative to individual-level

student test scores: They are aggregated to a group level, and they are coarsened

by collapsing the scores into a small number of categories.

As argued by Reardon, Shear, Castellano, and Ho (2017), while such aggre-

gate, coarsened data are suitable for some purposes, there is often a desire to use

these data to make inferences about achievement on a latent continuous scale,

where familiar metrics such as standardized effect sizes and intraclass correlation

coefficients (ICCs) are available. Reardon, Shear, et al. (2017) apply the hetero-

skedastic ordered probit (HETOP) model to provide such inferences. The method

takes aggregate, coarsened data from g ¼ 1; : : : ;G groups (e.g., schools or

districts), such as counts of how many individuals in each group fall into each

of K ordinal performance categories, and computes an estimated mean bmg and

standard deviation (SD) bsg of the distribution of latent, continuous achievement

across individuals in each group. The framework is useful for synthesizing data

across geographic regions that may have different assessment frameworks and/or

performance-level definitions. For example, Fahle and Reardon (2018) use the

HETOP model to describe patterns in district-level ICCs of math and English-

language arts achievement using aggregate, coarsened achievement data from all

U.S. public school districts.

Reardon, Shear, et al. (2017) use the observed count data and the HETOP

model to compute what we will call “direct estimates” (DE) of the group

parameters fmg;sggG
g¼1. These estimates are obtained by maximum likeli-

hood estimation (MLE) under the assumption that the group parameters are

fixed, unknown constants. The term “direct estimates” is borrowed from the

small-area estimation literature (e.g., Ghosh & Rao, 1994; Pfefferman, 2002)

and indicates that the parameter estimates for a given group are not informed

by either the data for groups with similar observable characteristics or the

distributional properties of the true parameters across the ensemble of

groups.1

The DE computed by MLE have several limitations. First, the MLE has

relatively restrictive conditions for its existence (Haberman, 1980; McCullagh,

1980). Existence problems begin to arise when there is at least one group with

nonzero counts in fewer than three of the K performance-level categories. With K

¼ 3 or 4 typical in applications involving achievement tests, and with many

groups (some of which may be small), it is likely that the MLE of the ensemble

of true group parameters fmg;sggG
g¼1 does not exist in a given data set. Second,

even when it exists, the MLE can have large estimation errors when group

sample sizes are small and/or the marginal probability of at least one of the K

performance-level categories is small. The estimation errors can include notable

negative bias in bsg under these circumstances (Reardon, Shear, Castellano, and

Ho, 2017). The estimation errors in the group parameters can lead to noisy and
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biased estimates of functions of those parameters such as the ICC, standardized

mean differences between pairs of groups, and distribution functions. For exam-

ple, the empirical distribution function of fbsggG
g¼1 can be an excessively biased

estimator of the distribution function of fsggG
g¼1 due to overdispersion of the DE

fbmg; bsggG
g¼1. Thus, the DE are not well suited to support some desired inferences

about the true parameters, similar to the arguments provided by Mislevy, Beaton,

Kaplan, and Sheehan (1992) regarding MLEs of achievement attributes from

item response theory (IRT) models.

Additional issues can arise in some settings from the fact that the DE do not

use auxiliary information, which may include group-level covariates (e.g., aggre-

gate demographic characteristics of group members) and/or information about

distributional properties of the true parameters across the ensemble of groups.

DE of group parameters generally will be less accurate than estimates that

synthesize the observed count data with auxiliary information using various

forms of shrinkage (Efron & Morris, 1973, 1977; Morris, 1983). The lower

accuracy of the DE relative to alternatives may not be problematic, depending

on the ultimate goals of the analysis, but direct estimation by MLE provides no

mechanism for incorporating auxiliary information in cases where using it may

be desirable. Further, when an analyst possesses both group-level covariates and

the count data, as might be common with data obtained from state department of

education websites and merged to sources such as the National Center for Edu-

cation Statistics (NCES) Common Core of Data on school and district charac-

teristics (https://nces.ed.gov/ccd), using the DE requires a two-stage procedure to

study the relationships between covariates of interest and fmg;sggG
g¼1: The first

stage computes DE fbmg; bsggG
g¼1 from the count data, and the second stage uses

these estimates as outcome variables in regression models on the covariates. It

may be more efficient, and would permit more straightforward assessments of

uncertainty, to study relationships between group parameters and covariates

within the context of a single model.

This article proposes an extension of the HETOP model, termed the “Fay–

Herriot heteroskedastic ordered probit” (FH-HETOP) model due to its ties to

small-area estimation (Fay & Herriot, 1979; Ghosh & Rao, 1994; Pfefferman,

2002), as a way to mitigate these shortcomings of the direct estimators. The

framework supports joint estimation of fmg;sggG
g¼1 as well as relationships of

these parameters to covariates, using suggestions by Efron (2016) to flexibly

model the distributions of mg and sg across groups. The following section intro-

duces notation for data and the model and discusses options for using the model

to estimate group-specific parameters. Results of a simulation study investigating

model performance are then presented. This is followed by an example applica-

tion of the model to real data and a discussion.
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The Fay–Herriot HETOP Model

This section first describes the FH-HETOP model. It then discusses distinct

applications in which the model may be useful, provides details about specifying

and estimating it, and discusses options for using it to estimate group parameters.

Notation and Model Definition

Let g ¼ 1; : : : ;G index groups. Let Yig 2 f1; : : : ;Kg be the ordinal perfor-

mance category for individual i in group g. We describe the model as if Yig is a

performance-level category such as “below basic” or “advanced” that would be

derived from a score on a standardized assessment, but the modeling framework

applies to other circumstances with ordinal data (e.g., Likert-type scale ratings

from a survey instrument). It is assumed that Yig is determined by a latent con-

tinuous variable Y �ig through a vector of K � 1 “cut points” c ¼ ðc1; : : : ; cK�1Þ0,
assumed to be common across groups and satisfying

�1 < c1 < : : : < cK�1 <1. Specifically, it is assumed that Y �igjmg;sg are

independently and identically distributed (IID) normal random variables with

mean mg and variance s2
g and that Yig ¼ 1 if Y �ig � c1, Yig ¼ K if Y �ig > cK�1,

and Yig ¼ k if ck�1 < Y �ig � ck for k ¼ 2; : : :;K � 1. Thus, Yig follows the

ordered probit model (McCullagh, 1980)

PrðYig ¼ kjmg;sg; cÞ ¼

Fðc1 � mg

sg

Þ if k ¼ 1

Fðck � mg

sg

Þ � Fðck�1 � mg

sg

Þ if 2 � k � K � 1

1� FðcK�1 � mg

sg

Þ if k ¼ K

:

8>>>>><
>>>>>:

ð1Þ

This model is assumed to hold for each group, corresponding to a HETOP model

because sg varies by group. We assume throughout that K � 3 because the case

when K ¼ 2 reduces to the standard probit model for a dichotomous outcome,

where it generally would not be possible to allow both mg and sg to vary by

group.

The case considered here, as well as by Reardon, Shear, et al. (2017), is when

the individual-level data Yig are not observed. Rather, the observed data are

counts fNgkg for g ¼ 1; : : : ;G and k ¼ 1; : : : ;K, where Ngk is the number of

individuals from group g who are in ordinal performance category k. Thus, the

observed data are both aggregated and coarsened relative to the individual-level,

continuous measures Y �ig. Denote the vector of counts ðNg1; : : : ;NgKÞ0 for group

g by Ng, and let ng ¼
PK

k¼1Ngk . Assume that N1; : : : ;NG are mutually inde-

pendent conditional on ðfmg;sg; nggG
g¼1; cÞ. Then,

Ngjmg;sg; ng; c *Ind:
multinomial ðng;pðmg;sg; cÞÞ; ð2Þ
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where pðmg;sg; cÞ denotes the probabilities for the K categories on the right-

hand side of Equation 1. The resulting likelihood function may be used to

estimate ðfmg;sggG
g¼1; cÞ by MLE, provided that some necessary model identi-

fication constraints are imposed and that the MLE exists given the observed data.

This is the estimation approach advocated by Reardon, Shear, et al. (2017) to

obtain the DE fbmg; bsggG
g¼1.

Here we extend Model 2 by incorporating covariates and distributional struc-

ture of the group parameters. Letting Zg be an observed vector of covariates for

group g, we define the FH-HETOP model as follows:

Ngjmg;sg; ng; c *Ind:
multinomial ðng;pðmg;sg; cÞÞ

mg ¼ Zg
0�m þ dm;g

logðsgÞ ¼ Zg
0�s þ ds;g

ðdm;g; ds;gÞ0j�*IID Fð�; �Þ; ð3Þ

where �m is a vector of regression coefficients for the group means, �s is a vector

of regression coefficients for the logs of the group SDs, and Fð�; �Þ is a bivariate

distribution for the residuals ðdm;g; ds;gÞ that may depend on additional parameters

�. Details on the specification of Fð�; �Þ are provided in a later section. Certain

elements of either �m or �s may be set to 0 to allow different subsets of the

covariates Zg to be included in the mean and log SD models, and �m ¼ �s ¼ 0

corresponds to the case where no covariates are included in the model. The cov-

ariates are general, but in typical applications with achievement data, they may

include aggregate student demographic characteristics (such as percentages of

students in different racial/ethnic groups and percentages of students participating

in free- or reduced price lunch programs) or geographic and economic character-

istics of the groups.

The model is analogous to the Fay–Herriot (1979) area-level model used

in small-area estimation, where the “areas” in this context are the groups.

Modeling the group parameters as a function of both Zg and residuals with

distribution Fð�; �Þ allows the parameters for each group to be informed by

both its covariates and information about the heterogeneity of the group

parameters among the ensemble of groups. The use of covariates to predict

group means is commonplace, given the well-known relationships between

aggregate student characteristics and average achievement. The use of cov-

ariates to explain SDs is less common though not unprecedented (see, e.g.,

Gu, Fiebig, Cripps, & Kohn, 2009; Hedeker, Demirtas, & Mermelstein, 2009;

Kapur, Li, Blood, & Hedeker, 2015; Kim & Choi, 2008; Leckie, French,

Charlton, & Browne, 2014). The assumed linear model for logðsgÞ is analo-

gous to that used by Harvey (1976) to model heteroskedasticity as a function

of covariates.
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Applications in Which the FH-HETOP Model May Be Useful

There are two distinct applications in which the FH-HETOP model may be

useful. The first is for reporting what we will term “derived estimates” of group

means and SDs suitable for secondary data analysis, which is similar to the goals

in some other small-area estimation applications. For example, the Stanford

Education Data Archive (Reardon, Ho, et al., 2017) uses the HETOP model to

compute estimates of means and SDs of achievement distributions for each

school district in the United States, from 2008–2009 through 2014–2015. The

raw data used to compute these estimates are aggregate proficiency counts

obtained from the Federal Department of Education EDFacts initiative (https://

www2.ed.gov/edfacts), which contains these data for every state. There is no

equivalent, equally comprehensive database at the national level containing

individual-level data. This was the original motivation for Reardon, Shear,

et al.’s (2017) application of the HETOP model. A reasonable goal for the

derived estimates is that they be suitable for a variety of purposes that are

difficult to identify in advance because they depend on the goals of downstream

analysts. Applications may include regressions on covariates that may or may not

be available during the process of constructing the derived estimates, studies of

the distributional properties of group parameters, or studies of nonlinear func-

tions of the parameters such as ICCs. Derived estimates computed from the

FH-HETOP model can be particularly effective for estimating some of these

parameters as demonstrated in the Simulation Study section.

The other application for which the FH-HETOP model may be useful is when

an analyst possesses both group-level covariates and the coarsened, group-level

data and is interested in studying the relationships of those covariates to variation

across groups in the mean and/or heterogeneity of achievement. Inferences about

these relationships can be made from FH-HETOP model by including the cov-

ariates of interest in the model so that there is no need to use a two-stage

procedure that first obtains DE fbmg; bsggG
g¼1 and then relates these estimates to

the covariates. We provide an example of such an application in the Empirical

Example section.

Specification of Fð�; �Þ
Implementing the FH-HETOP model requires specifying the residual distri-

bution Fð�; �Þ. A convenient choice is a Gaussian distribution where � consists

of a mean vector and covariance matrix. This assumption is common in appli-

cations as well as in software capable of estimating random effects models

similar to the FH-HETOP model. However, there are likely going to be applied

settings where the joint normality assumption does not hold. Also, joint normal-

ity generally will not hold simultaneously for different possible specifications of

the covariates Zg included in Model 3 due to the changing definition of the
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residuals as covariate specifications change. Group parameter estimates obtained

from the FH-HETOP model using a bivariate normal specification for Fð�; �Þ
would be at risk of distortion by the model in cases where normality fails, and

misspecification could degrade the properties of estimated regression coeffi-

cients as well. Thus, we are interested in less restrictive specifications of the

residual distribution.

In the Bayesian literature, the Dirichlet process is commonly used for non-

parametric specifications of distributions such as Fð�; �Þ (Ferguson, 1973; Ohls-

sen, Sharples, & Spiegelhalter, 2007; Paddock, Ridgeway, Lin, & Louis, 2006),

and Gill and Casella (2009) use such an approach in a setting similar to the FH-

HETOP model. Such methods for using nonparametric distributions in Bayesian

models are analogous to other nonparametric approaches for specifying latent

distributions (Laird, 1978; Lockwood & McCaffrey, 2014; Mislevy, 1984; Rabe-

Hesketh, Pickles, & Skrondal, 2003; Roeder, Carroll, & Lindsay, 1996).

However, nonparametric specifications can be less efficient than parametric

specifications and can introduce problems with model identifiability with dis-

crete data such as those available here (Haberman, 2005). Thus, introducing

some degree of smoothness into the specification of Fð�; �Þ can be beneficial

(Efron, 2014, 2016; Shen & Louis, 1999).

Efron (2016) suggests a class of parametric exponential family distributions

that is capable of striking a balance among flexibility, efficiency, and smooth-

ness. To model the distribution of a latent variable d, such as the residual terms in

Model 3, the approach begins by selecting an arbitrarily fine grid fdmgM
m¼1 for

support of the distribution, and specifying a ðM � pÞ matrix Q. It then specifies

an exponential family probability distribution on the grid with probabilities

f ðdm; �Þ ¼ expfQm�� jð�Þg, where � is a p-dimensional vector of unknown

parameters, Qm is row m of Q, and jð�Þ is a normalizing constant to make the

probabilities sum to 1. Thus, rather than letting the probabilities on the grid be

unconstrained, which would require M � 1 free parameters, the probabilities are

constrained to follow the specified functional form that depends on only p para-

meters. In practice, p << M would be selected for parsimony, but flexibility in

the shape of the distribution can be maintained through the specification of Q.

For example, letting the p columns of Q be a cubic B-spline basis (e.g., Eilers &

Marx, 1996) allows the curve connecting the logs of the probabilities to be a

continuous, piecewise cubic polynomial which is capable of capturing a wide

variety of distributional shapes. We refer to the specification of M , the grid, and

the matrix Q as an “Efron prior” with p-dimensional parameter �. The Efron

prior is analogous to the “Ramsay curve” method of specifying latent ability

distributions in IRT models (Monroe & Cai, 2014; Woods & Thissen, 2006). The

introduction of a discrete grid is for computational convenience rather than

mathematical necessity, and the supporting theory carries over to the continuous

case (Efron, 2016). By approximating the latent distribution with a discrete

Lockwood et al.

669



distribution, the approach is similar to some nonparametric distribution specifi-

cations; however, the functional form constraint on the probabilities can be used

to force those probabilities to vary more smoothly across the grid. Efron (2016)

provides empirical examples that demonstrate the value of this model for being

sufficiently flexible to capture complicated structure in the latent distribution,

while simultaneously being sufficiently constrained to mitigate estimation error.

We view these benefits as being ideally suited to the FH-HETOP case, and to our

knowledge this application is novel to small-area estimation settings.

A challenge to implementing the Efron prior in the context of the FH-HETOP

model is that the model requires a bivariate specification Fð�; �Þ, whereas Efron

(2016) directly considers only the univariate case. Extension to the bivariate case

would be possible using bivariate splines but would entail computational diffi-

culties with fine grids. Thus, we opt for a simpler specification with a univariate

Efron prior for one dimension, and then a second univariate Efron prior for the

residual of the second dimension given the first. We use a linear regression to

allow for correlation between the dimensions, which is likely to be a suitable

approximation in many circumstances, and can be expanded if more flexibility is

needed. Details are provided in the Appendix in the online version of the journal.

Identification and Model Estimation

The locations and scales of the parameters fmggG
g¼1 and fsggG

g¼1 are indeter-

minate without additional identification assumptions (see Reardon, Shear, et al.,

2017, for an extensive discussion). We opt to identify the locations and scales of

these parameters by fixing exactly two of the cut points. This is sufficient for

identification for any K � 3.2 In cases with covariates Zg , we exclude an inter-

cept and center each covariate to have mean 0 across groups. This allows any

nonzero means of mg or logðsgÞ to be absorbed by the residual distribution

Fð�; �Þ, which is simpler to implement than alternative specifications in which

the mean of Fð�; �Þ is constrained to be 0.

Given a complete model specification, including identification constraints and

a specification for Fð�; �Þ, there are two common estimation approaches for

models such as the FH-HETOP model: an empirical Bayesian approach (Carlin

& Louis, 2000; Casella, 1985; Efron & Morris, 1973; Morris, 1983), and a fully

Bayesian approach (see, e.g., Gelman, Carlin, Stern, & Rubin, 1995). In the

empirical Bayesian approach, the model parameters ðc;�m;�s;�Þ would be

estimated by maximum likelihood or related methods, while the group para-

meters fmg;sggG
g¼1 would then be estimated conditional on ðbc; b�m; b�s; b�Þ, typi-

cally using posterior means (PMs) or modes. In the fully Bayesian approach,

ðc;�m;�s;�Þ would be given prior distributions, and a posterior distribution for

these parameters and the group parameters fmg;sggG
g¼1, given the observed data

would be obtained, often via Markov Chain Monte Carlo (MCMC) methods
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(Gilks, Richardson, & Spiegelhalter, 1996). The application of MCMC to ordinal

data settings similar to the FH-HETOP model is discussed by Albert and Chib

(1993); DeYoreo and Kottas (2017); Johnson (1996); Johnson and Albert (1999);

Lockwood, Savitsky, and McCaffrey (2015); Savitsky and McCaffrey (2014);

and Segawa (2005).

We opt for the fully Bayesian approach for several reasons. First, it has the

advantage of automatically incorporating uncertainty about ðc;�m;�s;�Þ into

inferences about group parameters because the marginal posterior distribution of

the group parameters integrates over ðc;�m;�s;�Þ. The fully Bayesian approach

using MCMC is also attractive because the posterior samples provide an auto-

matic way of providing inferences for arbitrarily complicated functions of the

group parameters such as the ICC, distribution functions, and percentiles (Pad-

dock & Louis, 2011). Finally, the fully Bayesian approach supports straightfor-

ward implementation of several options for constructing estimates of the group

parameters fmg;sggG
g¼1 from MCMC samples, as discussed in the following

section. Details on our fully Bayesian specification of the FH-HETOP model

with Efron priors are provided in the Appendix in the online version of the

journal.

Group Parameter Estimation

Special considerations are needed when the FH-HETOP model is used to

generate derived estimates of group parameters because under the model,

fmg;sggG
g¼1 depend in part on random effects distributed according to Fð�; �Þ.

PMs are common estimators in either the empirical or fully Bayesian model.

Such estimators are optimally accurate in terms of mean squared error (MSE),

but in contrast to the overdispersion of the DE, PMs are underdispersed relative

to the true distributions of the group parameters (Mislevy, Beaton, Kaplan, &

Sheehan, 1992; Shen & Louis, 1999; Warm, 1989). This makes PMs unattractive

for some uses of derived estimates because their empirical distribution across

groups does not well approximate the corresponding distribution of the true

group parameters, and PMs do not have proper covariances with any covariates

that were not used in their construction.

Here, we consider two options that have been developed to solve the problem

of underdispersion of PMs. The first is so-called constrained Bayes (CB) esti-

mators (Devine & Louis, 1994; Ghosh, 1992; Louis, 1984), which rescale PMs of

fmggG
g¼1 and fsggG

g¼1 so that each ensemble has variance equal to the estimated

marginal variance of the latent parameters. This tends to reduce the amount of

shrinkage bias in the PMs. The second option we consider is “triple goal” (TG)

estimators (Paddock et al., 2006; Shen & Louis, 1998, 2000), which aim to be

simultaneously effective for point estimation, estimation of ranks, and estimation

of the distribution of the latent parameters. For example, the TG estimates of
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fmggG
g¼1 are computed by first estimating the PM of the rank of each mg across the

groups. These are then stretched to be equally spaced percentile ranks brg on (0,

1), and then the TG estimates fbmggG
g¼1 are defined as the inverse of the estimated

true CDF of fmggG
g¼1 evaluated at brg. The TG estimators provide MSE-optimal

rank estimates, their histogram reasonably approximates the true latent distribu-

tion (i.e., they are neither underdispersed nor overdispersed), and they tend to

demonstrate both small bias and small MSE for the individual group parameters

as well (Shen & Louis, 1998). Thus, either the CB or TG estimators for fmggG
g¼1

and fsggG
g¼1 may be a reasonable way to compute derived estimates using the

FH-HETOP model that may function well for a variety of secondary data

analyses.

Simulation Study

We conducted a simulation study focused on the performance of derived

estimates of fmggG
g¼1 and fsggG

g¼1. The goal was to compare the DE obtained

by MLE as well as PMs, CB estimators and TG estimators from the FH-HETOP

model, in terms of their performance for several inferential goals representative

of how derived estimates may be used in applications. All simulations used

K ¼ 4. A total of 32 simulation conditions were examined, obtained by crossing

two choices for the number of groups (G ¼ 200 or 400), four choices for

the group sample sizes (ng ¼ 12; 25; 50, or 100), and four choices for the cut

point locations c corresponding to marginal category probabilities

of ð0:25; 0:25; 0:25; 0:25Þ, ð0:05; 0:45; 0:45; 0:05Þ, ð0:05; 0:25; 0:25; 0:45Þ, or

ð0:05; 0:10; 0:65; 0:20Þ. We chose to vary these three factors (G, ng and c)

because each can affect the amount of information that the observed data provide

about the unknown parameters. For example, data, where both G and ng are large,

and the categories are about equally frequent, are more informative than data,

where G and ng are relatively small, and one or more categories is rare. The focus

on relatively modest sample sizes per group was motivated by the facts that (a)

the candidate estimators may behave differently from one another in such cases,

whereas they will be similar when groups have large samples; and (b) small

samples are likely to be encountered in many practical applications (e.g., the

median ng in the data used in the Empirical Example section is 12). For each of

the 32 simulation conditions, 100 independent replications were conducted for a

total of 3,200 replications.

A replication of the simulation for a given value of G, ng, and c proceeded as

follows. First, scalar covariates fZggG
g¼1 were generated as ð1=

ffiffiffi
2
p
Þ times IID

draws from a Student’s t distribution with 4 degrees of freedom so that the

covariates have mean 0 and variance 1. Then, fmggG
g¼1 were generated as a linear

Flexible Bayesian Models

672



regression on fZggG
g¼1 with residuals IID from a scaled and centered w2

1 distri-

bution, and flogðsgÞgG
g¼1 were generated as a linear regression on fZggG

g¼1 with

residuals IID from a scaled and centered w2
1 distribution, and independent of the

residuals for fmggG
g¼1. The regression coefficients were selected so that the

covariate had R2 ¼ :50 for the means and R2 ¼ :10 for the log SDs. The gener-

ated true parameters fmg;sggG
g¼1 were then transformed to an alternate scale

fm�g;s�gg
G
g¼1 consistent with a population mean of 0 and population SD of 1;

details are in the Appendix in the online version of the journal. Across groups and

simulation replications, m�g has mean¼ 0 and SD¼ .48, while s�g has mean¼ .86

and SD ¼ .17. To complete the data generation, cut points c were selected to

achieve one of the four aforementioned scenarios for the marginal category

probabilities, and then count data fNgkg were generated from the appropriate

group-specific multinomial distributions with ng 2 f12; 25; 50; 100g, depending

on the simulation condition.

For each simulation replication, the simulated count data fNgkg were used to

compute the DE as the MLE of fm�g;s�gg
G
g¼1.3 Arbitrary identification rules are

required to ensure the existence of the MLE. We adopted the following rules for a

given set of simulated count data fNgkg. For any group g with nonzero counts in

fewer than three of the four categories, logðsgÞ was constrained to equal the

mean of logðsgÞ for the remaining groups. For example, if in a given simulated

data set with G ¼ 200, six groups had nonzero counts in fewer than three cate-

gories, logðsgÞ for each of these six groups was constrained to equal the mean of

logðsgÞ for the other 194 groups. In addition, constraints were imposed on the

mean parameters for groups in which all data fell into either the lowest or highest

category. Let G be the set of groups for which it is not the case that all data fall

into an extreme category. Then, for any group g with all data in the lowest

category, we set mg ¼ ming02Gðmg0 Þ, and similarly for any group g with all data

in the highest category, we set mg ¼ maxg02Gðmg0 Þ. Collectively, these constraints

reduce the dimension of the parameter space to force existence of the MLE by

assigning unidentified parameters to values informed by groups with better data.

After obtaining the DE, we used fNgkg to estimate the FH-HETOP model in

Just Another Gibbs Sampler (JAGS) (Plummer, 2003). The JAGS model code for

the FH-HETOP model, as well as a brief description of an accompanying pack-

age “HETOP” for the R environment that we developed to implement all esti-

mators used in this article, is given in the Appendix in the online version of the

journal. The first two cut points were fixed at �1 and 0, respectively, and the

Efron priors used Q with M ¼ 100 grid points equally spaced from ½�5; 5� for

the means and ½logð0:10Þ; logð5:0Þ� for the log SDs, and cubic B-splines with p ¼
10 degrees of freedom. Five thousand posterior samples were collected from

each of two independent chains after 2,000 burn-in iterations, and convergence
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was verified with Gelman-Rubin (1992) statistics. The samples of group para-

meters were transformed, iteration by iteration, using the transformation function

in the Appendix in the online version of the journal that puts the estimates on the

scale consistent with fm�g;s�gg
G
g¼1. Importantly, the covariate Zg for each group

was omitted from the estimation of the FH-HETOP model. This puts the DE and

the estimates from the FH-HETOP model on equal footing, allowing us to com-

pare their performance in a secondary regression model with a covariate that was

not used in either model. A summary of additional simulation results in which Zg

was included in the FH-HETOP model is provided near the end of this section.

The estimation process for a simulation replication resulted in four sets of

estimates fbm�g; bs�ggG
g¼1: the DE and then PMs, CB, and TG from the FH-HETOP

model. These four sets of estimates were compared with respect to their perfor-

mance for estimating fm�g;s�gg
G
g¼1 and their distributions, the between-group ICC

of achievement, and the regression of the group parameters on the omitted

covariate Zg. Each of these sets of results is discussed in turn. Results are sum-

marized by pooling across all 3,200 replications for the 32 simulation conditions,

with any key findings for particular conditions noted.

Results: Group Parameter Estimation

The top half of Figure 1 summarizes the bias (left) and root mean squared

error (RMSE; right) for the different estimators of the group means. The true

group means m�g were sorted and broken into 20 bins each containing 5% of the

distribution, and the figures provide the bias and RMSE of each estimator by bin.

The population SD of m�g is .48, which can be used to calibrate the magnitude of

the bias and RMSE of the mean estimators with respect to the population distri-

bution of the true means. The bias for DE is smallest overall, while the other

estimators demonstrate the expected shrinkage bias, which is most severe for

PM. However, the empirical distribution of DE across groups and simulation

replications has SD ¼ .53, which is overdispersed relative to the true parameters

and contributes to the lower accuracy of DE relative to the other estimators (top

right of Figure 1). The empirical distribution of PM is underdispersed, with SD of

.45. Alternatively, both the TG and CB estimators have SD of .48, matching the

truth. The first row of Table 1 shows that the overall accuracy of CB and TG is

close to that of PM, which is optimal in terms of RMSE.

The bottom half of Figure 1 is analogous to the top half, but is for the group

SDs. DE has negative bias across the range of true parameters, whereas the other

estimators again demonstrate the expected shrinkage bias, with CB and TG

demonstrating somewhat less such bias than PM. The empirical distribution of

DE is substantially overdispersed relative to the true distribution of s�g , leading to

lower accuracy across the distribution of s�g (bottom right of Figure 1) and thus
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overall (second row of Table 1). Again the CB and TG estimators are competitive

with PM in terms of accuracy. It is worth noting that all estimators demonstrate

overall lower accuracy for estimating s�g than they do for estimating m�g, as the

magnitudes of the RMSEs relative to the variation of the true parameters are

notably larger for s�g (population SD¼ .17) than they are for m�g (population SD¼
.48). This suggests the coarsened data provide relatively weaker information

about within-group variability of achievement than they do about within-group

level of achievement.

The basic patterns of the performance of the different estimators for m�g and s�g
were largely insensitive to the simulation condition though accuracy naturally
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FIGURE 1. Bias and root mean squared error for different estimators of group means (top

half) and group standard deviations (bottom half) from the simulation study, conditional

by 5 percentile bins of the corresponding true parameters.
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was larger when ng was larger and/or the category frequencies more balanced.

There was negligible sensitivity to G.

Results: ICC

The between-group ICC of the latent variable is defined as the ratio of the

between-group variance to the population variance. In the parameterization

fm�g;s�gg
G
g¼1 that imposes population variance of one, the ICC is simply the

variance of fm�gg
G
g¼1. Not surprisingly, the overdispersion of the DE leads to

notable positive bias in the estimated ICC. The solid curve in Figure 2 is the

estimated density, across the 3,200 simulation replications, of the difference

between the ICC computed from the DE and the true ICC based on fm�gg
G
g¼1.

The corresponding densities for the PM and TG estimates are provided with other

line types, with the density for CB omitted because it is nearly identical to that of

TG. The ICC estimated from the DE is positively biased with a heavy right tail.

The ICC estimated from PM has a smaller negative bias, whereas the ICC from

the TG (and CB) estimates has almost no bias and is comparatively precise. Row

3 of Table 1 summarizes the higher accuracy of the ICC estimated from either TG

or CB relative to the alternatives.

Results: Regression on Zg

Recall that the true parameters were generated with a regression relationship

on Zg, but that Zg was not used in the construction of the derived estimates. This

allows us to examine the performance of the derived estimates in a second-stage

regression model, as might be common in applications using derived estimates

for secondary analysis involving covariates not used or available during the

computation of the derived estimates. For the group means, we define the “true”

regression coefficient by the linear regression of fm�gg
G
g¼1 on fZggG

g¼1. This varies

TABLE 1.

Root Mean Squared Errors of Derived Estimators for Different Target Estimands From

Simulation Study

Target

Direct

Estimates

Posterior

Means

Constrained

Bayes

Triple

Goal

fm�gg
G
g¼1 .236 .185 .191 .196

fs�gg
G
g¼1 .208 .122 .139 .139

Intraclass correlation coefficient .054 .033 .027 .027

Regression of means on fZggG
g¼1 .025 .064 .040 .041

Regression of log(standard deviations)

on fZggG
g¼1

.021 .030 .030 .026
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across simulation replications due to the random generation of both the covari-

ates and the group parameters. Across all 3,200 simulation replications, the true

regression coefficient had mean ¼ .34 and SD ¼ .02. The solid curve in the top

left frame of Figure 3 is the estimated density, across all simulation replications,

of the difference between the coefficient obtained from regressing the DE of the

group means on Zg and the true regression coefficient. The corresponding den-

sities for the PM and TG estimates are provided with other line types, with the

density for CB omitted because it is nearly identical to that of TG. Second-stage

regression using DE is approximately unbiased and is most accurate (fourth row

of Table 1), while that using PM has a large negative bias due to shrinkage, which

degrades accuracy. These problems are partially mitigated by second-stage

regression with TG.

The top right frame of Figure 3 is analogous to the top-left frame but is instead

for regressions of the log group SDs on Zg. Analogous to the means, the “true”

regression coefficient for a simulation iteration is defined by the linear regression

of flogðs�gÞg
G
g¼1 on fZggG

g¼1. This coefficient has mean¼ .05 and SD¼ .01 across

simulation iterations. The patterns are similar to those for the group means though

in this case the density for CB (not shown) is shifted slightly below that of TG,

leading to somewhat lower accuracy of CB relative to TG (fifth row of Table 1).

Variations in performance by specific simulation condition were predictable:

All estimators were more accurate with larger ng, more balance in category
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FIGURE 2. Estimated densities, across simulation replications, of the difference between

the estimated and true intraclass correlation coefficients. Constrained Bayes is almost

identical to triple goal and is omitted from the figure. Vertical line at 0.
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frequencies, and larger G, all of which correspond to having more information to

infer regression relationships. This held for both regressions of estimated means

on the covariate, and regression of the estimated log SDs on the covariate. In both

cases, the loss of accuracy due to shrinkage was most pronounced for ng ¼ 12,

but even in that case, TG was notably more accurate than PM.

The bias for the regression coefficients estimated using derived estimates

from the FH-HETOP model can be eliminated by including the covariate in the

model. To demonstrate, we conducted a parallel set of simulations that fit the FH-

HETOP model with Zg included in the model and computed the PM of the

regression coefficient from both the mean and log SD regression models after

transforming those coefficients to the scale appropriate for fm�g;s�gg
G
g¼1 (see

Appendix in the online version of the journal). The bottom frames of Figure 3

provide the same densities for DE as the top frames, but now compare these

densities to the corresponding densities for the regression coefficients estimated
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FIGURE 3. Estimated densities, across simulation replications, of the difference between

the estimated and true regression coefficient of the group means (top left frame) and group

log standard deviations (top right frame) on Zg. The bottom frames are analogous to the

top frames, but instead compare direct estimates (DE; reproduced from the top frames) to

the posterior means of the regression coefficients obtained by including Zg in the Fay–

Herriot heteroskedastic ordered probit (FH-HETOP) model. Vertical line at 0.
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from the FH-HETOP model with Zg included in the model. Estimating the

regression coefficients directly from the FH-HETOP model eliminates the bias,

and it also improves accuracy compared to estimating the regression coefficients

using a two-stage procedure. The RMSEs for the true regression coefficients

from the FH-HETOP model are .019 and .016 for the mean and log SD models,

respectively, which improve upon all of the estimators in Rows 4 and 5 of Table

1, and specifically are about 24% smaller than the RMSEs achieved with the DE.

Summary of Simulation Results

The simulation study demonstrates that the FH-HETOP model can produce

derived estimates that can be useful for various inferential goals. The CB and TG

estimates largely live up to their promise of providing a single set of estimates

that are suitable for many purposes and tend not to perform poorly even in cases

where they are not optimal (e.g., for estimating regression coefficients for cov-

ariates not used during the estimation). These benefits result primarily from the

fact that their empirical distribution across groups is designed to match features

of the corresponding distribution of the true parameters. This comes at the price

of some degree of shrinkage bias in their covariances with omitted variables, but

this bias is not as severe as it is for PMs. The simulation also demonstrates that

this bias can be eliminated, and accuracy improved, by using the FH-HETOP to

directly model relationships between group parameters and covariates without

using a two-stage procedure.

We also conducted a set of simulations parallel to those presented here, but

using p ¼ 5 degrees of freedom for the Efron priors rather than p ¼ 10. The

results were extremely similar. The only difference worth noting is that the bias

in the estimates of the group SDs using p ¼ 5 was slightly smaller for small

values of the true group SDs, which led to slightly improved performance for the

regression coefficients for the group log SDs. Model selection criteria can be

used to select p. An example is provided in the following section.

Empirical Example

As previously noted, the FH-HETOP can support either the production of

derived estimates or the direct estimation of relationships of covariates to group

parameters. The simulation study focused primarily on the former. This section

presents an example of the latter, using a subset of the Early Childhood Long-

itudinal Study—Kindergarten cohort (ECLS-K) data set to demonstrate the use

of the FH-HETOP model to study the relationships between school-level covari-

ates and school-level means and SDs of math proficiency. These data are publicly

available and thus can be further explored with the accompanying “HETOP” R

package (described in Appendix in the online version of the journal).
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Data Description and Context

We merged the “ecls_child.dta” and “ecls_school.dta” data sets available

through the website (http://www.stata-press.com/data/mlmus3.html) for the text-

book Multilevel Modeling Using Stata, Volume II (Rabe-Hesketh & Skrondal,

2012), and described on pages 626–627. The outcome variable of interest is the

math proficiency (“profmath”) variable, which is coded as an ordinal variable

taking on values 0 to 5. The ordinal categories represent the “highest develop-

mental milestone [in math] reached by the child” (Rabe-Hesketh & Skrondal,

2012, p. 626) at the end of Kindergarten, as determined by the student’s perfor-

mance on items within item clusters that correspond to each developmental

milestone (e.g., Milestone 1 is “number and shape” and Milestone 2 is “relative

size”). These proficiency levels are thus distinct from those typically reported in

K–12 standardized testing that is defined by cut scores along the score scale

determined by a standard-setting panel. However, for illustration of the FH-

HETOP model, we can still posit that there is a continuous, latent unidimensional

math ability construct that is measured by a coarsened ordinal outcome using the

items and their scoring procedure.

For this illustration, we assume we are interested in relationships between

covariates and the school-level means and SDs. We sum the number of students

at each proficiency level to compute the counts Ngk . Given that only 9 of the

6,477 students obtained “profmath” of 0 (i.e., did not pass any developmental

milestone), we combine categories “0” and “1,” resulting in K ¼ 5. There are

G ¼ 569 schools with ng ranging from 2 to 22 (median ¼ 12). The preponder-

ance of small schools makes this a prime data set for a FH-HETOP model

application, given Reardon, Shear, et al.’s (2017) findings of negative bias for

DE bsg for small groups. Moreover, 117 of the 569 schools (20.6%) have nonzero

counts for only one or two of the K ¼ 5 categories, so that the DE computed by

MLE do not exist for these data.

The data set includes several student- and school-level covariates that can be

used to model covariate relationships with the school means and SDs. We focus

on three student-level covariates, which we aggregate to the school level, and two

school-level covariates. These covariates are:

	 Mean number of student risks (mnNumRisks): Average number of student risks

recorded for each student out of four possible risks;

	 Mean student socioeconomic status (MnSES): Average student SES (continuous)

composite of five standardized measures (details available from National Center

forEducation Statistics, 2002, pp. 7–25);

	 Percentage of male students (percMale): Percentage of male students in the school;

	 Neighborhood climate index (Nbhoodcl): School-level covariate that reflects the

principal’s perception of six specific problems in the school neighborhood (takes

on integers from 0 to 12, with larger values indicating more perceived problems);

and
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	 Private school indicator (Private): School-level covariate that is coded as 1 for

private schools and 0 for public schools.

An analyst may want to model the covariate relationships with the group

means and SDs to identify what type of schools have high/low mean math

proficiency and high/low variance. High mean/low variance schools could be

considered ideal. However, schools with high mean math proficiency and high

variance would also be useful to identify, as the high mean indicates that overall

they are performing well, while the high variance indicates that the school may

not be serving all students.

Method

To determine the value of using covariates to explain variation in mg and sg

and to illustrate the process for selecting p for the Efron prior, we fit models with

and without the covariates and varied the value of p used to define the matrix Q

across p ¼ 3; 4; 5; . . . ; 14; 15. The number of rows M of Q should be chosen to

be as large as computationally tolerable, and we fixed M ¼ 100. We identified

the model by fixing the first two cut points at�2 and�1. We specified the range

of the grid for the residual terms iteratively, trying certain grids and then eval-

uating the distribution of residuals to determine if the upper or lower boundary

points needed to be readjusted. We found that grid ranges of ½�2; 7� for the mean

residuals and ½logð0:10Þ; logð5:0Þ� for the log SD residuals were sufficient to

support the distribution. For each p and model type (with and without covariates),

we ran two independent chains with 2,000 burn-in iterations and 5,000 iterations

saved for inferences. Convergence was verified with Gelman and Rubin (1992)

statistics. For each p and model type, we computed the Watanabe–Akaike infor-

mation criterion (WAIC; Vehtari, Gelman, & Gabry, 2017), a model selection

criterion. Vehtari, Gelman, and Gabry (2017) argue that WAIC improves upon

the deviance information criterion (Spiegelhalter, Best, Carlin, & van der Linde,

2002), commonly used for selection among Bayesian models, in terms of com-

putational stability and parameterization invariance. Smaller values are

preferred.

Results

To determine the effect of including the covariates on model fit and the ideal

choice of p, we compare the WAICs, shown in Figure 4. The figure shows that

the models that include the covariates (dashed line) fit notably better than those

that do not, and that the WAICs fluctuate for even and odd values of p due to the

location of the knots for the spline basis, but are fairly stable for larger values

from p ¼ 10 to p ¼ 15. These results support using the model with covariates,

which has smallest WAICs for p ¼ 4; 6; and 8. Closer inspection of the WAIC

values indicate that the WAICs for p ¼ 6 and p ¼ 8 are very similar and slightly
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smaller than for p ¼ 4. The same conclusions were supported by an independent

replication of the entire analysis, conducted to ensure that results were not

sensitive to Monte Carlo error in the WAIC estimates.

We are also interested in how sensitive inferences about the regression coef-

ficients are to the model specifications. Figure 5 plots the 2.5th and 97.5th

percentiles of the posterior samples of the estimated regression coefficients, with

the PMs indicated by an asterisk, for each covariate in the modeling of the group

means and log SDs. PMs and intervals are provided for each value of p. The

regression coefficients are presented on the scale where the latent math profi-

ciency has population mean ¼ 0 and variance ¼ 1. Thus, coefficients from the

model for the school means can be interpreted as population SD units of profi-

ciency associated with one-unit changes in the school-level covariates. Alterna-

tively, coefficients from the model for the log school SDs that are not far from 0

in absolute value can be interpreted as percent changes in the within-school SD of

proficiency associated with one-unit changes in the school-level covariates. The

PMs and intervals are generally quite stable across all values of p, with the most

sensitivity tending to occur for the very small values of p that are ruled out by the

WAIC.4 Table 2 provides the PMs and SDs of the regression coefficients for each

covariate for the model with p ¼ 6, the more parsimonious of the two models

(p ¼ 6; 8) preferred by the WAIC. The table also provides the 2.5th and 97.5th

percentiles of the posterior samples. The asterisked covariates are those where

the 95% credible interval does not contain 0. The mean number of student risks,

mean student SES, and neighborhood climate all are significantly related to

school mean performance. Only one covariate had a significant relationship with
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FIGURE 4. Watanabe–Akaike information criterions to compare model fit in the empiri-

cal data analysis.
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school variance: Private schools, on average, have less variance in their students’

math proficiency than public schools. This may result from private schools

tending to serve more homogeneous populations than public schools, but further

investigation of the schools would be required to explore that hypothesis.

We also used the model output to compute the posterior distribution of the

adjusted R2 of the covariates for the means and log SDs. For the means, the PM

adjusted R2 is .67 with 95% credible interval of ð0:57; 0:77Þ, whereas for the log

SDs, the PM adjusted R2 is :04 with 95% credible interval of ð0:01; 0:09Þ. Not

surprisingly, the covariates are much more effective at explaining variation in the

group means but appear to have some predictive value for the group SDs as well.

Discussion

Even though individual-level achievement data are increasingly archived,

obtaining such data can be difficult due to increasing privacy concerns, and

processing such data can be costly when inferences are needed for many juris-

dictions or reporting agencies. The FH-HETOP model may be valuable in such

cases because it relies only on aggregate data that are easier to obtain and

process. Also, the model can be used in other ordinal data settings where con-

tinuous data generally would be unavailable, such as with Advanced Placement®

scores or Likert responses to survey instruments. The model also can be extended

straightforwardly into a multilevel modeling framework if individual-level

TABLE 2.

Summary Statistics of Estimated Regression Coefficients From the Empirical Example

(p ¼ 6)

Parameter Covariates

Posterior

Mean

Posterior Standard

Deviation

2.5th

Percentile

97.5th

Percentile

m�g mnNumrisks* �.18 .06 �.30 �.06

mnStudSES* .44 .05 .34 .53

percMale �.01 .11 �.22 .21

nbhoodcl* �.02 .01 �.04 �.01

Private .03 .04 �.06 .12

s�g mnNumrisks .03 .05 �.06 .13

mnStudSES .07 .04 �.01 .15

percMale .08 .10 �.11 .27

nbhoodcl �.01 .01 �.03 .00

Private* �.08 .04 �.17 .00

Note. The 97.5th percentile for nbhoodcl for s�g is þ:0014, while that for private is �:0048.

mnNumRisks ¼ mean number of student risks; MnSES ¼ mean student socioeconomic status;

percMale ¼ percentage of male students; Nbhoodcl¼ neighborhood climate index; private¼ private

school indicator.
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ordinal data and associated covariates, rather than group-level aggregates, are

available (see Gu et al., 2009, for such an extension in a setting similar to the FH-

HETOP model). In such cases, there may be covariates at both the individual and

group levels, providing the opportunity to study contextual effects separately

from individual-level effects. The Efron priors for random effects may be useful

to provide a multilevel estimation framework that provides more flexibility than

the standard assumption of multivariate normality for the random effects. Future

work could consider the properties of such estimators.

In settings where the FH-HETOP model is used to report derived estimates of

group parameters, we focused on the case where only a single set of derived

estimates is computed. In other similar applications, such as with skill estimates

obtained from large-scale achievement surveys, multiple sets of derived esti-

mates or “plausible values” are reported (Mislevy et al., 1992). Like the CB and

TG estimates, these can mitigate the shrinkage bias of PMs, and the fully Baye-

sian version of the FH-HETOP model could be easily used to generate appro-

priate sets of plausible values for secondary analysis.

However, the simulations demonstrate that it is impossible for any one method

for producing derived estimates to be best for all possible secondary analysis

purposes. The DE has notable deficiencies for some inferences (e.g., distribu-

tional properties and ICC), whereas the TG and CB estimates perform reasonably

well for most inferences but have more bias and error than the DE for regressions

on covariates not used in their construction. It thus may be sensible to report

multiple types of derived estimates, with guidance about the most suitable uses

for each type, so that secondary analysts can use the estimates that are best

aligned with their inferential goals.

In general, there are pros and cons to using covariates in the construction of

derived estimates. Using covariates may improve the suitability of derived esti-

mates for some secondary data analysis purposes, such as regression modeling.

However, there may be fairness arguments against using covariates in the derived

estimates because it implies that two groups with the same observed counts will

get different estimates depending on group attributes. The FH-HETOP model can

provide useful derived estimates whether or not covariates are used but whether

to use covariates at all may require careful consideration in some settings. If

covariates will be used to compute derived CB estimates, Kubokawa and Straw-

derman (2013) and Lyles, Moore, Manatunga, and Easley (2009) discuss meth-

ods for constraining the estimates to achieve target covariances with covariates.

While we focused on the FH-HETOP model, we also suggest, and evaluate via

simulation, a procedure for direct estimation that ensures the existence of a finite

MLE outside of extreme boundary cases (such as when all groups have sparse

data). Such a procedure was not provided by Reardon, Shear, et al. (2017)

although they consider parameter constraints designed to address small-sample

biases. Our procedure that uses constraints for groups with unidentified para-

meters due to sparse count data builds on that work and provides analysts
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interested in direct estimation with additional ideas about how to handle identi-

fication problems in this setting. The parameter constraints we chose borrow

from Bayesian ideas because they effectively shrink what would otherwise be

extreme estimates to be less extreme. The approach performed reasonably well in

our simulation studies and so may be worth considering in applications. The R

package accompanying this article includes a function for direct estimation that

implements this approach. We also conducted simulations that evaluated adding

a flattening constant of 0.5 to all counts for any group with sparse counts to

enforce existence of the MLE (Fienberg & Holland, 1972), but this resulted in

direct estimators with notably worse bias and variance than those obtained by

constraining parameters for groups with sparse data. There are also other

approaches for dealing with existence problems of MLEs that could be consid-

ered in this setting (e.g., Firth, 1993; Warm, 1989), and evaluating the costs and

benefits of these possibilities relative to alternatives would be worth future study.

There are several other areas of future work to consider. While our simulations

varied the group sample sizes, the number of groups, and the cut point locations,

there are numerous other relevant features that could be manipulated and future

work could consider the implications of these factors for performance of various

estimators. Examples include the incorporation of multiple covariates, different

distributions of the true group parameters, violations of the normality assumption

of the within-group achievement distributions, the extension to variable group

sizes, and the consideration of target estimands beyond those considered here. It

also would be reasonable to consider the performance of various estimators using

coarsened, aggregate data to corresponding estimators based on individual-level

data to better understand the costs of operating with the coarsened, aggregate data.

Also, the FH-HETOP modeling framework could be generalized to relax the

assumption of normality of the latent variables within groups. A straightforward

extension would specify the within-group distributions to be members of the three-

parameter skew normal family (Azzalini & Dalla Valle, 1996). In that case, the

residual distribution would be three-dimensional, and the conditional regression

method of chaining Efron priors would carry over. Regarding the Efron priors,

further investigation of the implementation details is warranted. Efron (2016)

provides limited guidance on the selection of p, the range of the grid, or specifica-

tion of Q. Our empirical example with the ECLS-K data illustrated the use of

WAIC to select p, but we did not consider more nuanced issues such as how to

choose the knot locations determining the elements of Q. The oscillating behavior

of the WAIC for small values of p suggests that the alignment of knot locations

with the underlying distribution of latent variables can consequentially affect some

indicators of fit, and it seems likely that better fit could have been achieved with

alternative methods for computing Q. More generally, our empirical example

considered only WAIC for model selection with the FH-HETOP model, and it

would be reasonable for future work to consider alternative approaches to model

selection such as cross validation. Finally, a shortcoming of the TG method of
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group parameter estimation is that the algorithmic definition of the TG estimators

does not lend itself to an obvious uncertainty measure. The posterior variance of

the corresponding parameters may be a reasonable approximation, but future work

is needed to evaluate this and potential alternatives.
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Notes

1. As described in a later section, the computation of the direct estimates by

maximum likelihood estimation (MLE) implicitly uses data from all groups to

estimate “cut points” that influence performance category probabilities, but

conditional on the estimated cut points, the parameter estimates for a given

group are determined by only its own count data.

2. Intuitively, this is because when K ¼ 3, each group has two free probabilities

to inform the two unknown group parameters conditional on the two fixed cut

points. Alternatively, when K > 3, each group has K � 1 free probabilities to

inform the two unknown group parameters and the locations of the K � 3 free

cut points, again conditional on the two fixed cut points.

3. We follow the suggestion of Reardon et al. (2017) by applying a bias correc-

tion to obtain estimates of fm�g;s�gg
G
g¼1 from MLEs computed for fmg;sggG

g¼1

under alternative identification constraints. Thus, fbm�g; bs�ggG
g¼1 are technically

bias-corrected MLEs rather than true MLEs. However, the substantive results

were the same if we instead examined true MLEs.

4. We fit all the considered models with M ¼ 50 and found comparable poster-

ior means and intervals for all the regression coefficients, indicating that if

computational burden is a concern, a smaller value of M could be used without

risk of key inferences changing.
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