
Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 23
http://www.isedj.org; http://iscap.info

Infrastructure Tools for

Efficient Cybersecurity Exercises

Jim Marquardson

jimarqua@nmu.edu

College of Business
Northern Michigan University

Marquette, MI 49855, USA

Abstract

Academics are responding to the call from industry for graduates armed with cybersecurity skills. A

common challenge that educators face is creating effective cybersecurity curriculum that prepares
students with practical skills upon graduation. While hands-on exercises are a powerful method for
teaching and assessing cybersecurity skills, these exercises can be difficult to create, require large
infrastructure investment, or waste valuable learning time simply configuring the learning environment.
In recent years, industry has demanded increased infrastructure automation. These tools have matured
and help make provisioning and configuring hardware and software easier. Infrastructure automation
tools can help cybersecurity educators create exercises that can scale without adding substantial burden

on the educators.

Keywords: Cybersecurity, Infrastructure automation, Curriculum design and development, Computer
Security

1. INTRODUCTION

Malicious actors know how to find and exploit
weaknesses in systems. They not only know the
definitions of key cybersecurity concepts, but
they know how to operationalize those concepts.
To effectively defend against malicious actors, it

is critical that cybersecurity students can apply
the skills they learn in the classroom. The
National Security Agency / Department of
Homeland Security Centers of Academic
Excellence in Cyber Defense program defines
knowledge units with skills that cybersecurity
students should obtain in their degree programs

(NSA / DHS, 2013). It is important to note that
the knowledge units often list outcomes where
students should be able to use, apply, operate,
configure, install, and analyze key cybersecurity
technologies. These active verbs reinforce the
need for cybersecurity students to have practical,
hands-on skills.

There are many challenges when creating
technical exercises to teach and assess

cybersecurity skills. Clearly, some infrastructure

is required. Students must have computers with
administrative privileges so they can install
software and make configuration changes. Often,
dedicated cybersecurity labs with networking
equipment and servers are needed. Lab networks
may need to be segmented from the general

campus network. Capital and operational costs
musts be considered when designing the
infrastructure to support a cybersecurity
program. While private labs provide an excellent
space for conducting cybersecurity exercises,
maintaining infrastructure and configuring
systems can be a major burden. For example,

giving students an exercise where they configure
firewalls on a server might require one new server
be created for each student in the class. If done
manually, setting up a single lab exercise can be
extremely taxing on educators.

Information technology has long aimed to

increase operational efficiency in organizations.
The increasing adoption of cloud computing has
spurred developments in infrastructure

http://www.isedj.org/
mailto:jimarqua@nmu.edu

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 24
http://www.isedj.org; http://iscap.info

automation. Cloud computing is sold with the

promise of quick and easy provisioning and
deprovisioning of computing resources to scale
with demand. To reduce the cost of provisioning

resources, cloud providers have leveraged
existing tools and built tools to automate
infrastructure. Educational institutions can
leverage these same infrastructure automation
tools within their private infrastructures.

To date, few educators have published clear,

actionable strategies for creating cybersecurity
exercises that meet student needs without
excessive burden on the educator to maintain
infrastructure. The following sections in this paper
describe some of the most popular tools for
virtualization and infrastructure automation that

educators can use to develop cybersecurity
exercises. Practical recommendations are given
to help educators known when adoption of the
tool can be beneficial. The purpose of these
overviews is to introduce the tool, the benefits the
tools provide, and a high-level overview of key
concepts.

2. VIRTUALIZATION

Virtualization technologies allow one or more
guest virtual machines to run on a physical host.
Virtualization can be broken down into two main
categories: client-side virtualization and server-

side virtualization. The advantages and potential
drawbacks of adopting each solution in an

educational environment will be discussed in the
following sections.

Client-side Virtualization

With client-side virtualization, students run one or
more guest operating systems on their computer
in a similar way to how they run applications.
Changes made inside the virtual machine do not
affect the host operating system. A student
running Microsoft Windows as her primary
desktop operating system could run a Windows

Server virtual machine and a Linux virtual
machine to observe the interaction of those two
systems. The top virtualization platforms for
desktop systems are VMWare Workstation Player

(VMWare Workstation Player, 2017) and Oracle’s
VirtualBox (VirtualBox, 2017).

VMWare Workstation Player is proprietary
software. It should be noted that VMWare has
changed its licensing model and product offering
several times over the past several years.
Currently, VMWare Workstation must be licensed
for use in the classroom. It is impossible to know

if VMWare will continue to support the product or
change its licensing structure. VMWare Player has

proven to work well for desktop virtualization, but

building on top of a closed platform can be
problematic.

VirtualBox is an open source desktop
virtualization platform maintained by Oracle.
VirtualBox is free and supports a wide variety of
guest operating systems such as Windows
desktop editions, Windows server editions, Linux,
BSD, and Solaris. Because VirtualBox is open
source, the community could feasibly support the

product if Oracle stopped updating the platform.
Because of these reasons, VirtualBox became the
platform of choice when developing our
cybersecurity curriculum.

There are several key advantages of using client-

side virtualization for cybersecurity exercises.
First, students can run cybersecurity exercises
completely on their personal computers. Students
would not need access to a dedicated campus
computer lab, thereby reducing the infrastructure
investment required and increasing accessibility.
Another benefit is the ability to segment

cybersecurity traffic from the rest of the network.
It is possible to run client-side virtualization
without any network connectivity, making it a
good choice for students with network
connectivity challenges.

Perhaps one of the key benefits of running

cybersecurity exercises through virtual machines
rather than using students’ host operating

systems is the ability to segment network traffic.
A virtual machine can be configured so that
network traffic never leaves the client machine.
This segmentation prevents students from

accidentally performing malicious actions on the
network. Two key networking modes available in
VirtualBox will be explained. With network
address translation mode enabled, a virtual
machine can connect to the internet, but the
virtual machine cannot interact with other virtual
machines running on the same guest. With

internal networking, virtual machines on the
same guest can communicate with each other but
cannot connect to the internet. Students may
need to switch network modes during exercises.

For example, a student might use the network
address translation mode to connect to the
internet and download software packages, then

switch to the internal networking mode to
communicate with other virtual machines and
prevent traffic from reaching other networks
accidentally.

Some drawbacks exist in client-side virtualization

that prevent it from being the definitive solution
in cybersecurity exercise development. First,

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 25
http://www.isedj.org; http://iscap.info

student computers may be limited by hardware

capabilities. A single cybersecurity exercise might
require several virtual servers to be running
simultaneously. The exercises that can be

conducted may be constrained by RAM, CPU, or
hard disk. Modern Windows Server operating
systems require at least 2GB RAM to run
reasonably well, so running three virtual servers
may be infeasible on older hardware. Each virtual
server can take between 1-10GB on average.
Computers with smaller solid-state disks typically

perform well but often sacrifice capacity. Some
hardware may simply not have enough capacity
to install multiple operating systems. Second,
supporting a wide number of devices can be
challenging. Though modern virtualization
software can be installed on Windows, MacOS,

and Linux, differences between client
configurations can lead to time spent
troubleshooting virtualization software. For
example, some laptops have virtualization
features disabled in the BIOS by default which can
be corrected, but can cause confusion. Also, anti-
virus has interfered with the successful

installation of virtualization software leading to
problems completing exercises.

Server-side Virtualization
Microsoft’s Hyper-V (Hyper-V, 2017) and VMWare
vSphere (vSphere, 2017) are two popular server
virtualization platforms used in the data center.

At a high level, both platforms run virtual servers
on top of physical hardware. Unlike client-side

virtualization platforms that run virtual machines
on top of a complete operating system layer,
modern server-side platforms run virtual
machines on a thin hypervisor layer which gives

virtual machines more direct access to hardware
resulting in better performance.

The VMWare vSphere Hypervisor is a free product
with limited functionality that is installed directly
on server hardware. Administrators install the
vSphere Client on their computers and connect to

the server to manage virtual machines. While
vSphere Hypervisor is a low-cost option, key
productivity features are missing (such as the
ability to clone an existing server). Like VMWare

vSphere Hypervisor, Microsoft Hyper-V Server
2016 is a free, thin virtualization layer that sits on
top of the physical hardware. Hyper-V can also be

enabled on a modern Windows Server by enabling
the Hyper-V role.

Both vSphere and Hyper-V allow administrators
to over-commit resources to accommodate more
virtual hardware. For example, a physical server

might have 32GB RAM. On that physical server,
32 virtual servers can be created and assigned

2GB RAM each. Because servers rarely use all

available RAM, each virtual server should run fine
despite the overallocation. Using either platform,
licenses for Windows Server guest operating

systems must be obtained as usual.

The VMWare and Microsoft platforms are both
mature and good candidates for deploying virtual
servers in a private cybersecurity lab. Choosing
one platform over the other will likely be driven
by vendor preference, licensing costs, or

compliance with established information
technology standards.

Major benefits of server-side virtualization include
centralized control, scalability, and policy
enforcement. Because administrators have

complete control over the infrastructure,
exercises can be designed and tested in a stable
environment. Administrators can control all
aspects of the environment from operating
system versions, firewalls rules, and software
installed. Students are less likely to have to spend
time troubleshooting extraneous issues in a

tightly controlled environment. Next, leveraging
the same tools as large cloud providers,
infrastructure can be built to scale computing
capacity to meet student needs so that issues of
students’ computers lacking sufficient resources
are negated. Lastly, because the infrastructure is
centrally managed, policy regarding network

traffic and acceptable use can be carefully
monitored.

A clear drawback of server-side virtualization is
initial investment. Hardware must be purchased,
configured, and actively managed throughout its

lifecycle. Dedicated lab administrators may need
to be hired to manage the computing
environment. Lastly, increased control comes at
the cost of increased administrative burden. With
client-side virtualization, students typically
manage their own infrastructure. With server-
side virtualization, the educator is responsible.

Server-side virtualization can mean more time
creating and configuring the infrastructure.

3. INFRASTRUCTURE AUTOMATION

Virtual machines frequently need specific
software and configurations. Manual installation

and configuration can be time consuming and
error prone. Fortunately, infrastructure
automation tools exist to streamline the process
of creating virtual machines, installing software,
and making configuration changes. The following
sections describes some of the top tools that have

emerged that can help educators be more
effective.

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 26
http://www.isedj.org; http://iscap.info

Vagrant

Vagrant is a tool that makes provisioning and
deprovisioning virtual machines efficient
(Vagrant, 2017). Though Vagrant can be used to

provision virtual machines on several
virtualization platforms, emphasis will be given
here on its integration with VirtualBox. A core
concept in vagrant is a Vagrant box—a partially
configured virtual machine used in lieu of an
operating system DVD image for the creation of a
virtual machine. The typical workflow for creating

a virtual machine using VirtualBox without
Vagrant involves downloading an ISO, creating a
blank virtual machine, attaching the ISO, botting
the virtual machine, following the installation
prompt, and waiting for the operating system to
be installed. The entire process can take dozens

of clicks and 30 minutes of waiting.

Using Vagrant, a virtual machine can be created
with just two commands: vagrant init [version];
vagrant up. Table 1 shows the commands needed
to create a virtual machine in VirtualBox using
Vagrant and connecting through SSH. The entire

process takes approximately 4 minutes to
complete.

C:\temp> vagrant init ubuntu/xenial64
C:\temp> vagrant up

C:\temp> vagrant ssh

Table 1: Creating an Ubuntu Server Virtual
Machine with Vagrant

Creating virtual machines with Vagrant requires
fewer steps, fewer decisions, and completes in

less time. With Vagrant, the cost of breaking a
virtual machine accidentally or intentionally is low
because they can be recreated easily.

In addition to creating generic servers, instructors
can create Vagrant configuration files that carry
out post-installation configurations automatically.

A Vagrantfile is a Ruby file that tells Vagrant
which virtual machines to create along with basic
configuration settings. A single cybersecurity
exercise, such as address resolution protocol
spoofing, might require three virtual machines.
Table 2 shows a sample Vagrantfile that defines

three virtual machines and assigns them private
IP addresses. The Vagrantfile could be distributed
to students via a learning management system.
Then, students would copy the file to their hard
drive, navigate to the folder in the command
prompt, then run the command “vagrant up.” The
three virtual machines would then begin the boot

process without any additional input required by
the students.

A Vagrantfile that installs the Moodle learning

management system on a single virtual server as
part of the provisioning process is shown in
Appendix A. Vagrant can leverage configuration

management tools such as Ansible and Chef
(described in the subsequent sections), but much
can be done using shell scripting. The advantage
of shell scripting is that special configuration
management software is unnecessary. The
downside to shell scripting is the potential time
requirement needed to write and troubleshoot

custom scripts.

The main benefit of Vagrant is the ease with
which virtual machines can be created. The
drawbacks include the learning curve to create
Vagrantfiles. Vagrant also introduces another tool

that must be updated. Both the Vagrant software
and the boxes must periodically be updated to fix
bugs and obtain the latest patches from operating
system vendors. The learning curve for Vagrant
is low for basic usage. Advanced Vagrant features
can be introduced over time.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|

config.vm.provision "shell", inline: "echo
Starting victim, middle, and server"

config.vm.define "victim" do |victim|
 victim.vm.box = "ubuntu/trusty64"
 victim.vm.host_name = "victim"

 victim.vm.network "private_network",
 ip: "192.168.10.10"
end

config.vm.define "middle" do |middle|
 middle.vm.box = "ubuntu/trusty64"
 middle.vm.host_name = "middle"

 middle.vm.network "private_network",
 ip: "192.168.10.50"
end

config.vm.define "server" do |server|

 server.vm.box = "ubuntu/trusty64"

 server.vm.host_name = "server"
 server.vm.network "private_network",
 ip: "192.168.10.100"
end

end

Table 2: Vagrantfile Defining Three Servers

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 27
http://www.isedj.org; http://iscap.info

Ansible

Ansible is RedHat’s infrastructure automation tool
that aims to automate simple and complex
infrastructures (Ansible, 2017). Administrators

use the Ansible language to define playbooks.
Playbooks describe system configurations that
should be applied to target systems by the
Ansible automation engine. A paid add-on, the
Ansible Tower can monitor and apply playbooks
on a large infrastructure. Ansible does not require
custom agents to run on the server; instead it

applies all changes over SSH.

The playbook in Table 3 demonstrates the human
readable format of the Ansible language. An
administrator with some Linux experience can
understand that the playbook ensures that the

Apache web server and PostgreSQL database
servers are running. The example comes from the
Ansible online documentation (“Intro to
Playbooks,” 2017).

- hosts: webservers

 remote_user: root

 tasks:

 - name: ensure apache is at the

latest version

 yum: name=httpd state=latest

 - name: write the apache config file

 template: src=/srv/httpd.j2

dest=/etc/httpd.conf

- hosts: databases

 remote_user: root

 tasks:

 - name: ensure postgresql is at the

latest version

 yum: name=postgresql state=latest

 - name: ensure that postgresql is

started

 service: name=postgresql

state=started

Table 3: Sample Ansible Playbook

Ansible must be installed on a Linux control
node—this is the only machine that needs Ansible
installed. Unfortunately, the Linux requirement

means that students running Windows or MacOS

operating systems cannot use Ansible to create
virtual machines on their own computers. For this
reason, Ansible is most applicable for private labs
where the instructor wants full control over the
infrastructure.

An example will help illustrate the value of
Ansible. Suppose an instructor wants to configure
50 virtual servers to ensure that they have nmap

installed for a port scanning exercise. First, the

instructor must create the Ansible playbook.
Next, the instructor would run the following
command to apply that playbook to all hosts

defined in the playbook: “ansible-playbook cyber-
exercise-1.yml.” Ansible would login to each
virtual server and install nmap if needed.

Key benefits of Ansible include a low learning
curve compared to other infrastructure
management tools, lack of an agent required on

the remote servers, and scalability. However, the
introduction of any configuration management
tool requires that the administrator be trained in
its use. And as mentioned previously, the Ansible
controller must run Linux, though the controller
does not have to be a dedicated server.

Chef
Chef is one of the first widely used infrastructure
automation platforms (Chef, 2017). Chef is open
source software created by Chef Software, Inc.
Like Ansible, Chef requires a master controller to
communicate with nodes. One difference is that

Chef’s master must be a dedicated server,
whereas the Ansible client can be run from any
Linux computer. Also, whereas Ansible performs
configuration changes on nodes using SSH, Chef
communicates to custom Chef agents on the
nodes.

Chef’s documentation and tutorials are extensive.
However, the learning curve for using Chef is

steeper than Ansible. For example, the
introduction tutorial for infrastructure automation
is estimated to take eight hours. The new Chef
user can quickly become overwhelmed with

cooking related tools—recipes, knives,
supermarkets, kitchens, etc. But the maturity of
the platform and extensive features make it a
robust solution for complex infrastructure needs.

Chef starts with a cookbook. Cookbooks are
written in the Ruby programming language—a

dynamic language with similar readability to
Python. A cookbook contains one or more recipes,
files, libraries, attributes, and additional
environment information. Recipes instruct chef

how to configure the system. Cookbooks are
registered on the chef server and pushed out to
chef nodes.

To create a cybersecurity exercise using Chef, an
instructor would first need to create a cookbook.
The Chef Development Kit comes with command
line tools to create a skeleton cookbook. Recipes
must be added to the cookbook. Table 4 shows a

sample recipe to install the Apache web server.

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 28
http://www.isedj.org; http://iscap.info

This recipe would be saved in a Ruby .rb file

within the cookbook folder.

package "apache2" do
 action :install
end

Table 4: Sample Chef Recipe

When the recipe is complete, the knife tool is used
to upload the cookbook to the chef server. Then,
the knife command can be used to run the recipe
on nodes.

Because Chef an Ansible are similar tools, their
benefits can be directly compared. Chef’s

advantages include extensive documentation,
and active community, and a mature, tested

solution. Compared to Ansible, Chef has a steeper
learning curve, is more complex, and uses more
computing resources. Chef is more likely than
Ansible to force the educator to spend time
managing the configuration management.

4. CONCLUSIONS

Advances in virtualization and infrastructure
automation tools make it easier than ever to
develop and deploy cybersecurity exercises. No

single tool can solve all infrastructure and
configuration management challenges. For the
organizations that lack dedicated lab
environments, the Vagrant and VirtualBox
combination is a mature, flexible solution for

creating virtual environments on the fly quickly.
For organizations with dedicated lab

environments, Ansible, Chef, and server-side
virtualization platforms are solutions that should
be explored. Ansible is a lighter weight solution
for organizations that want to take their first
steps using configuration management. Chef
would be an appropriate choice for more complex
configuration scenarios, though the steeper

learning curve than Ansible should be taken under
consideration.

The technologies shared in this paper have been

evaluated for fit in a cybersecurity program. It is
hoped that educators continue to share
cybersecurity exercise best practices so that the

discipline can move forward quickly to meet the
increasing need for qualified professionals.

5. REFERENCES

Ansible. (2017). Retrieved from

https://www.ansible.com/

Chef. (2017). Retrieved from https://www.chef.io

Hyper-V. (2017). Retrieved from
https://www.microsoft.com/en-us/cloud-
platform/server-virtualization

Intro to Playbooks. (2017). Retrieved June 14,
2017, from

http://docs.ansible.com/ansible/playbooks_i
ntro.html#playbook-language-example

NSA / DHS. (2013). NSA / DHS National Centers
of Academic Excellence in Cyber Defense
(CD) Knowledge Units (pp. 1–73). Retrieved
from
https://www.iad.gov/NIETP/documents/Req

uirements/CAE-CD_Knowledge_Units.pdf

Vagrant. (2017). Retrieved from
https://www.vagrantup.com/

VirtualBox. (2017). Retrieved from
https://www.virtualbox.org/

VMWare Workstation Player. (2017). Retrieved
from

http://www.vmware.com/products/player/pl
ayerpro-evaluation.html

vSphere. (2017). Retrieved from
https://www.vmware.com/products/vsphere
.html

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 29
http://www.isedj.org; http://iscap.info

Appendices and Annexures

Appendix A – Additional Tables and Figures

Vagrantfile that Installs Moodle
The following code can be used to install the Moodle learning management system as part of the
virtual machine provisioning process. The Vagrantfile could be distributed to students via a course
website. Student would download the Vagrantfile to their computers, open a command prompt,
navigate to the folder with the Vagrant file and run “vagrant up.” Vagrant would then create a new
virtual machine, download required packages, and complete the Moodle installation in the background.
When the process completes, students could open a web browser and view the Moodle installation at

http://localhost:8888.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|

 config.vm.box = "ubuntu/xenial64"
 config.vm.network "public_network", ip: "192.168.1.99"
 config.vm.synced_folder "./", "/vagrant_share"

 #Provisioning instructions leveraged from:
 # https://docs.moodle.org/31/en/Step-by-step_Installation_Guide_for_Ubuntu
config.vm.provision "shell", inline: <<-SHELL

sudo su
echo "nameserver 8.8.8.8" > /etc/resolv.conf #Fix DNS resolving "bug" in Xenail
apt-get update
debconf-set-selections <<< 'mysql-server mysql-server/root_password password mysqladmin'
debconf-set-selections <<< 'mysql-server mysql-server/root_password_again password mysqladmin'
apt-get -y install mysql-server
apt-get -y install apache2 mysql-client php7.0 libapache2-mod-php7.0

apt-get -y install graphviz aspell php7.0-pspell php7.0-curl php7.0-gd php7.0-intl php7.0-mysql

php7.0-xml php7.0-xmlrpc php7.0-ldap php7.0-zip
echo "Installing php-mbstring and php-soap (optional Moodle components)"
apt-get -y install php-mbstring php-soap
service apache2 restart
apt-get -y install git-core

cd /opt
git clone git://git.moodle.org/moodle.git
cd /opt/moodle
git branch --track MOODLE_32_STABLE origin/MOODLE_32_STABLE
git checkout MOODLE_32_STABLE
cp -R /opt/moodle /var/www/html/
mkdir /var/moodledata

chown -R www-data /var/moodledata
chmod -R 777 /var/moodledata
chmod -R 0755 /var/www/html/moodle

echo "default_storage_engine = innodb" >> /etc/mysql/mysql.conf.d/mysqld.cnf
echo "innodb_file_per_table = 1" >> /etc/mysql/mysql.conf.d/mysqld.cnf
echo "innodb_file_format = Barracuda" >> /etc/mysql/mysql.conf.d/mysqld.cnf

service mysql restart
mysql -u root --password=mysqladmin -e "CREATE DATABASE moodle DEFAULT CHARACTER SET utf8
COLLATE utf8_unicode_ci;"
mysql -u root --password=mysqladmin -e "create user 'moodleadmin'@'localhost' IDENTIFIED BY
'moodleadmin';"

http://www.isedj.org/

Information Systems Education Journal (ISEDJ) 16 (6)

ISSN: 1545-679X December 2018

©2018 ISCAP (Information Systems and Computing Academic Professionals) Page 30
http://www.isedj.org; http://iscap.info

mysql -u root --password=mysqladmin -e "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE

TEMPORARY TABLES,DROP,INDEX,ALTER ON moodle.* TO moodleadmin@localhost IDENTIFIED BY
'moodleadmin';"

echo "<?php // Moodle configuration file

unset(\\$CFG);
global \\$CFG;
\\$CFG = new stdClass();

\\$CFG->dbtype = 'mysqli';

\\$CFG->dblibrary = 'native';
\\$CFG->dbhost = 'localhost';
\\$CFG->dbname = 'moodle';
\\$CFG->dbuser = 'moodleadmin';
\\$CFG->dbpass = 'moodleadmin';
\\$CFG->prefix = 'mdl_';

\\$CFG->dboptions = array (
 'dbpersist' => 0,
 'dbport' => '',
 'dbsocket' => '',
);

\\$CFG->wwwroot = 'http://127.0.0.1:8888';

\\$CFG->dataroot = '/var/moodledata';
\\$CFG->admin = 'admin';

\\$CFG->directorypermissions = 0777;

require_once(__DIR__ . '/lib/setup.php');
" >> /var/www/html/moodle/config.php

echo "Changing the Document root"
sed -i "s/DocumentRoot \\\/var\\\/www\\\/html/DocumentRoot \\\/var\\\/www\\\/html\\\/moodle/"

/etc/apache2/sites-available/000-default.conf
service apache2 restart
echo "The installation has completed."
echo "Open a browser on your host and go to http://127.0.0.1:8888 to complete configurations."

SHELL

end

http://www.isedj.org/

