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ImprovIng science, technology, engineering, and mathemat-
ics (STEM) education has become a national priority. The 
National Academies’ 2007 publication Rising Above the 
Gathering Storm asserts the importance of addressing the 
eroding achievement of U.S. students in mathematics and 
science relative to students in other countries, as well as the 
importance of addressing racial and gender achievement 
gaps in these fields. Subsequent reports have echoed these 
concerns—including the Report of the Academic 
Competitiveness Council (Academic Competitiveness 
Council, 2007) and The Opportunity Equation (Carnegie 
Corporation of New York, 2009)—and policy makers and 
other political actors have suggested STEM-focused schools 
as one possible solution. For example, the America 
COMPETES Act of 2007 explicitly called for providing 
“assistance to the states for the costs of establishing or 
expanding public, statewide specialty schools for mathemat-
ics and science,” and in 2010, a report by the President’s 
Council of Advisors in Science and Technology called for 
the creation of 1,000 more STEM-focused high schools 
within the next decade.

An emerging model is the “inclusive” STEM high school. 
This type of high school combines nonselective admission 
policies with a STEM-focused curriculum to seed interest in 
the STEM fields and expand the STEM workforce pipeline 
(Means, House, Young, & Wang, 2013). It has proliferated 

over the last decade, enjoying support from a variety of 
political actors and education reformers, such as the Obama 
administration and the Bill and Melinda Gates Foundation. 
Yet, due to its recent emergence, there is little research that 
examines its academic impact. To our knowledge, Wiswall, 
Stiefel, Schwartz, and Boccardo’s (2014) study of 30 selec-
tive and nonselective STEM high schools in New York City 
is the only published study to use student-level data.1 They 
find positive impacts of STEM school attendance on some 
math and science exams. However, although their use of 
student-level data enables them to better account for selec-
tion bias than analyses that employ school-level data, they 
do not account for students’ prior achievement in science. As 
our analysis reveals, that is a potentially important 
omission.

This study estimates the impact on academic achieve-
ment of six inclusive STEM high schools established in 
Ohio since 2006. It employs 2006–2013 student-level 
administrative data from the Ohio Department of Education 
to estimate the impact of 2 years of attendance at these high 
schools on 10th-grade standardized test scores in STEM 
subjects (math and science) and non-STEM subjects (read-
ing and social studies). First, we estimated ordinary least 
squares (OLS) regression models comparing the achieve-
ment of STEM school students with the achievement of cor-
responding students in traditional public schools in STEM 
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students’ districts of residence. Second, we estimated OLS 
models for which we used different propensity score–match-
ing techniques to create comparison groups. Finally, for one 
school, we were able to use the results of admission lotteries 
as an exogenous source of variation in STEM school atten-
dance to identify the causal impact of STEM school atten-
dance on student achievement. Consistent with prior studies 
of student achievement, the models all account for prior stu-
dent test scores in math and reading, in addition to the typi-
cal battery of demographic covariates. Additionally, contrary 
to existing research on STEM high schools, we compare 
estimates from these models to estimates from models that 
account for prior student test scores in science.

There is some debate in the literature about the validity of 
the nonexperimental techniques that we employ, but recent 
evidence from Forston, Gleason, Kopa, and Verbitsky-Savitz 
(2014) suggests that propensity score–matching estimates 
will be similar to experimental estimates if the pretreatment 
variables employed are highly predictive of posttreatment 
outcomes. Lagged test scores, particularly in the same sub-
ject as the outcome score, are strongly predictive of future 
test scores. Indeed, recent research has shown that bias is 
minimal in such “value added” estimates of school quality 
(e.g., see Abdulkadiroğlu, Angrist, Dynarski, Kane, & 
Pathak, 2011; Angrist, Pathak, & Walters, 2013; Deming, 
2014).2 In our case, the 10th-grade graduation tests contain 
much of the same content as the eighth-grade tests that we 
use to account for students’ educational histories. This 
strengthens the validity of our analysis for the two STEM 
subjects (math and science) as well as reading and represents 
a marked improvement over existing research that has failed 
to account for prior science scores that are highly predictive 
of performance on the achievement outcomes of interest.

The results indicate that, on average, attendance at these 
inclusive STEM high schools had a negative impact on stu-
dent achievement across all four subjects—particularly the 
non-STEM subjects, reading and social studies. Although 
there is significant heterogeneity in effects across the six 
schools, only two schools are associated with statistically 
significant achievement benefits—around a 0.15–standard 
deviation advantage in science—but this impact is accompa-
nied by a 0.1– to 0.25–standard deviation disadvantage in 
social studies. However, two schools are associated with 
large negative effects across all four of the tested subjects, 
with the negative effects being most pronounced in the non-
STEM subjects. There is also evidence that African American 
students bear the brunt of these negative effects, whereas 
there were no significant differences in impact between male 
and female students.

The results are quite similar across the various models, 
whether estimates are based on all available STEM school 
and feeder district students, matched samples, or a restricted 
sample based on the availability of test scores in all subjects. 
However, the estimated effects of STEM school attendance 

depend significantly on whether models account for stu-
dents’ eighth-grade test scores in science, in addition to test 
scores in math and reading. The results that we report in the 
preceding paragraph are based on models that account for 
students’ prior science scores because these models more 
plausibly account for prior student interest and aptitude in 
STEM fields. Indeed, our analysis suggests that nonexperi-
mental studies of STEM schools that fail to account for prior 
science test scores should be viewed with skepticism. For 
example, the two independent STEM schools in our sample 
seem to have a positive impact on math achievement in mod-
els that account only for prior reading and math achieve-
ment. However, the magnitude of these impacts is cut in half 
and no longer approaches conventional levels of statistical 
significance when models account for students’ eighth-grade 
science scores. It is also noteworthy that accounting for prior 
science scores has a similar impact on estimates of achieve-
ment in non-STEM subjects.

Finally, it is worth emphasizing that all schools in the 
analysis were established in 2006 or later and that our esti-
mates for each school are based on one to six student cohorts. 
The literature indicates that new charter schools tend to 
underperform for their first 3 to 5 years of operation, as com-
pared with observationally similar traditional public schools, 
but then catch up to and sometimes surpass them afterward 
(Bifulco and Ladd 2006; Hanushek, Kain, Rivkin, & Branch, 
2007; Sass 2006; Zimmer et al., 2009). There is reason to 
believe that these initial years were particularly trying for 
some of the STEM schools in our study, as some of them 
underwent construction or conducted classes in alternative 
buildings during a portion of the observation period. 
Accordingly, we estimated linear time trends to examine 
achievement progression in the five schools with multiple 
cohorts. The results show mostly null trends. Among the few 
discernable trends, all but one were negative.

As we discuss below, these results are not all that sur-
prising. LaForce et al. (2014) show inclusive STEM 
schools do not generally emphasize coursework in science 
and mathematics. Instead, they typically focus on problem-
based and personalized learning and the development of 
life skills. However, political actors often speak of STEM 
education as a critical way to improve student learning in 
subjects such as science and math. Indeed, our analysis 
indicates that students who score highly on science and 
math exams are far more likely to select into some of these 
schools, which is consistent with the notion that a substan-
tive emphasis in these subjects is of import to parents. The 
results suggest that parents and policy makers may not 
always be getting from these schools what they think they 
are getting.

The remainder of this article is organized as follows. The 
next section provides background on STEM high schools in 
the United States, and the third describes the schools that are 
the subject of this study. The fourth section describes the 
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data, and the fifth discusses the empirical methods. The sixth 
section reviews the results, and the last offers concluding 
thoughts.

STEM High Schools in the United States

Specialized STEM high schools in the United States date 
back to the establishment of Stuyvesant High School in 1904 
and Bronx High School of Sciences in 1938. The late 1960s 
and early 1970s saw a surge in the establishment of special-
ized STEM schools, with the birth of magnet schools in the 
wake of the civil rights movement. In 1977, North Carolina 
became the first state to establish a statewide residential 
STEM high school for talented students, and Louisiana, 
Illinois, and Mississippi followed suit in the mid-1980s 
(Eilber, 1987; National Consortium for Specialized 
Secondary Schools of Mathematics, Science, and 
Technology, 2014). The rapid expansion of STEM magnet 
and state residential high schools in the 1980s led to the 
establishment of the National Consortium for Specialized 
Secondary Schools of Mathematics, Science, and Technology 
in 1988 (Atkinson, Hugo, Lundgren, Shapiro, & Thomas, 
2007; Thomas & Williams, 2010). These schools continued 
to proliferate through the 1990s and into the 21st century. As 
of 2010, 28 states had public residential STEM high schools, 
and there are many more local STEM magnet and charter 
schools (Thomas & Williams, 2010).

The nonselective, “inclusive” STEM high school is an 
emerging model that marks a significant departure from pre-
vious approaches (Carnegie Corporation of New York, 2009; 
Means, Confrey, House, & Bhanot, 2008). Prior to the early 
21st century, a majority of STEM-focused high schools, 
whether publicly or privately funded, were selective, with 
admission decisions based on competitive exams or previ-
ous academic achievement (Means et al., 2008). These 
schools have mainly sought to cultivate and strengthen exist-
ing STEM talent and interest. Inclusive STEM high schools, 
however, distinguish themselves by their nonselective 
admission policies. In cases of oversubscription, admission 
decisions are typically made by random lottery. Consequently, 
they also are thought to help address gender and racial 
STEM interest and achievement gaps. Studies have shown 
that inclusive STEM high schools tend to serve more racially 
diverse student bodies than both their selective counterparts 
and traditional public schools (Means et al., 2008; Means 
et al., 2013).

Inclusive STEM high schools are difficult to define 
because they do not operate under a single umbrella philoso-
phy or organizational structure (Lynch, Behrend, Burton, & 
Means, 2013). Most recent studies, including those cited 
above, identify these schools from the use of nonselective 
admission policies, a school’s self-proclaimed emphasis on 
the STEM fields, and perhaps a school’s affiliation with an 
organized STEM education initiative. These schools vary 

significantly in their educational practices, but a systematic 
analysis of 25 inclusive STEM schools across the country 
conducted by the University of Chicago’s Center for 
Elementary Math and Science Education (see LaForce et al., 
2014) revealed that inclusive STEM schools have some 
common characteristics.

First and foremost, LaForce et al. (2014) found that these 
schools feature problem-based learning, interdisciplinary 
instruction, student autonomy, and “rigorous learning,” 
which often entails mastery learning and a staff-created cur-
riculum that features real-world applications. These schools 
also emphasize establishing a positive school culture, devel-
oping skills that students can use in their everyday lives and 
future careers (e.g., technological proficiency, communica-
tion, and collaboration), personalized learning (e.g., differ-
entiation of instruction based on ability and relevance to 
students’ lives), and a connection between the school and 
local community (e.g., partnerships with external educa-
tional and business organizations). Thus, LaForce et al. 
(2014) discovered that what makes these schools “STEM” is 
not necessarily a greater emphasis on STEM subjects. 
Although that is the case in some inclusive STEM schools, 
what makes them “STEM” schools is primarily the use of 
problem-based, interdisciplinary, and personalized learning 
approaches—none of which is unique to this recent STEM 
movement.

Inclusive STEM High Schools in Ohio

The Bill and Melinda Gates Foundation has played a lead 
role in propagating the inclusive STEM high school model 
by funding large-scale initiatives in Texas, Ohio, North 
Carolina, Tennessee, and Washington throughout the early 
21st century, often supporting state-initiated programs. Our 
study focuses on six such high schools in Ohio, established 
through state and local public-private partnerships and fea-
turing the Bill and Melinda Gates Foundation as an impor-
tant benefactor.

A major university and two nonprofit organizations in 
Ohio established a STEM-focused early-college high school 
in 2006, drawing students from multiple districts in a large 
metropolitan area. This high school was inclusive and 
employed a lottery-based admission system. One year later, 
these nonprofits committed funds and received significant 
financial support from the Bill and Melinda Gates Foundation 
and the State of Ohio to establish the Ohio STEM Learning 
Network (OSLN), which is anchored by a series of STEM 
“platform” schools across the state. The platform schools, 
including the original STEM high school established in 2006, 
were designed to serve as laboratories for STEM education 
and to disseminate best practices. They are located through-
out the state so that they can tailor education to local needs.

Platform schools must commit to inclusive admission 
policies and five broad “design principles” established by 
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the OSLN: “form new skills and sharp minds for a new 
century,” “engage partnerships to accelerate capacity and 
broaden opportunity,” “start and stay small,” “make 
STEM literacy attainable and desirable for all,” and 
“drive scalable and sustainable innovations” (OSLN 
2014). There are few other requirements. This study 
focuses on the six OSLN platform schools that were still 
part of the OSLN in 2012–2013 and were at least 2 years 
old by the end of the 2012–2013 school year, given that 
this was the last year of available data.3 All of these high 
schools also are (or eventually would be) state-designated 
STEM schools. To achieve a state “STEM” designation, 
schools must, among other things, provide the following:

(3) Evidence that each school will offer a rigorous, diverse, 
integrated, and project-based curriculum to students in any of 
grades six through twelve, with the goal to prepare those 
students for college, the workforce, and citizenship, and that 
does all of the following:

(a) Emphasizes the role of science, technology, engineering, and 
mathematics in promoting innovation and economic progress;

(b) Incorporates scientific inquiry and technological design;
(c) Includes the arts and humanities;
(d) Emphasizes personalized learning and teamwork skills. (“STEM 

School Grants,” 2007)

Thus, Ohio’s STEM schools are required by law to fea-
ture problem-based and personalized learning and the 
development of life and career skills, which is consistent 
with the practices of inclusive STEM schools across the 
country.

Additionally, the Ohio Department of Education states 
that proposals to establish a state-sanctioned STEM school 
must do the following:

1. Create a public school (in any of the Grades 6–12) to help 
generate a talent base that will establish Ohio as a magnet and 
global leader in attracting, educating, and producing the next 
generation of scientists, engineers, and other professionals 
needed to create tomorrow’s innovations for the betterment of 
all citizens;

2. Foster increases in the number of Ohio citizens studying and 
working in STEM fields; and

3. Foster increases in all students developing stronger skills in 
problem solving, innovation, and teamwork. (Ohio Department 
of Education, 2015)

Presumably, these goals entail increasing proficiency in 
the STEM fields—including science and mathematics. 
Indeed, just below the delineation of these goals on the Ohio 
Department of Education’s website, the agency also empha-
sizes its role in helping schools with their educational pro-
grams in math and science.

Table 1 provides some basic information about each 
school that we examine in this study. As the table indicates, 
two of the schools in this study are state-chartered indepen-
dent high schools (called “state STEM schools”) that receive 
a portion of district funds tied to their students and that rely 
heavily on private contributions, whereas the rest were 
established and are run by traditional public school districts. 
Additionally, some of these schools are relatively new, 
whereas others are traditional public schools that converted 
to STEM schools. Finally, the table reveals that, as of the 
2012–2013 school year, Schools B and C included middle 
school grades. It is worth noting that all but one of the stu-
dent cohorts analyzed in this study entered these schools in 
Grade 9 and that these schools added lower grade levels only 
later. The sole exception is that one cohort from School B 
entered in the seventh grade. Although this may affect this 
group’s eighth-grade scores, because we use a value-added 
approach, this will not interfere with out estimation of treat-
ment effects in ninth to 10th grade.

Once again, these schools received the state’s “STEM 
school” designation and should thus, to some extent, empha-
size problem-based and personalized learning, develop life 
and career skills, and generate interest and proficiency in the 
STEM fields. In practice, however, there is great variation in 
how these schools operate. For example, Schools A, B, and 
E were part of LaForce and colleagues’ (2014) study, which 
revealed that all three schools emphasize project-based 

TABLE 1
STEM High Schools in the Analysis

School Type
First Year of 

Operation
Cohorts Tested 

in Grade 10a
Grade 
Spansb Enrollmentb

Teacher 
FTEsb

Student:Teacher 
Ratio

A Independent 2006–2007 6 9–12 394 20 19.7
B Independent 2009–2010 3 6–12 416 28.5 14.6
C District 2009–2010 3 7–12 995 62.8 15.8
D District 2008–2009 4 9–12 289 10 28.9
E District 2010–2011 2 9–12 494 21.2 23.3
F District 2011–2012 1 9–12 422 18.7 22.6

Note. FTE = full-time equivalent; STEM = science, technology, engineering, and mathematics.
a2012–2013 or prior.
bAs of 2012–2013.
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learning, mastery learning, student autonomy, and flexible 
schedules. But these schools also differ from one another. 
For example, unlike School E (the district school), Schools 
A and B (the two independent state-chartered schools) also 
noted in surveys that students must complete cognitively 
demanding work. Additionally, these three schools (A, B, 
and E) differ significantly from the others in our analytic 
sample. For example, as the analysis below reveals, they are 
far more likely than the others to attract students with high 
proficiency levels in science and math.

These STEM schools have received significant resources 
from government and private actors. For example, in 2007, 
Ohio House Bill 119 allocated $13 million to STEM schools 
and programs, and the Bill and Melinda Gates Foundation 
added $12 million to create the network of STEM hubs and 
platform schools (OSLN, 2012). Indeed, anecdotes abound 
that schools have sought the STEM designation simply to 
secure the millions of dollars in grants that the state distrib-
utes to these schools. In addition, Race to the Top funds, as 
well as a multitude of financial and other gifts4 from private 
and public STEM school partners, have subsidized STEM 
schools and their students (e.g., through the provision of 
supplies)—often above and beyond the funding that these 
schools get from the typical local, state, and federal sources.

Unfortunately, systematic, building-level financial data 
are unavailable for all six schools, but an analysis of enroll-
ment and student:teacher ratios revealed that these STEM 
high schools vary significantly in size and instructional 
resources. During the 2012–2013 school year, the median 
public high school in the state enrolled 465 students and 
employed 28.6 teachers—a student-teacher ratio of 16.26.5 
As Table 1 indicates, four of the six STEM schools are 
“small” in that they have enrollments lower than the median 
of the traditional district high school and only two have 
student:teacher ratios lower than the state median. Indeed, 
the district schools are either large (School C)—which con-
flicts with the “small school” model that OSLN has sought 
to implement for platform schools—or small with high 
student:teacher ratios (Schools D and F). Indeed, these fig-
ures suggest that the financial benefits of being an OSLN-
platform STEM high school—the focus of this 
analysis—come in the form of equipment or access to com-
munity resources (including expertise from nearby universi-
ties, for example), as opposed to teacher labor.

In summary, although political actors have touted inclu-
sive STEM high schools as potential solutions to low student 
achievement in math and science—especially, achievement 
gaps in these subjects—case studies of these schools suggest 
that their focus is not generally on increasing student 
achievement in these subjects. Additionally, although there 
have been millions of dollars in public and private money 
spent on these schools, they do not generally invest more 
resources in the most important school-based educational 
input: teachers. These facts suggest that Ohio’s STEM 

platform schools are unlikely to generate large overall gains 
in student achievement and that any gains in STEM subjects 
(science and math) could come at the expense of achieve-
ment in non-STEM subjects. Finally, the variability in these 
schools’ designs, educational practices, and resources likely 
correlates with significant variability in their effectiveness 
when it comes to STEM instruction.

Data

The analysis employs student-level administrative data 
collected by the Ohio Department of Education from the 
2005–2006 (fiscal year [FY] 2006) to 2012–2013 (FY2013) 
school years. These data include standard student-level 
information on the building and district of attendance, demo-
graphics, and scale scores on state standardized tests. The 
tests are administered at the end of the school year in grades 
3–8 and grade 10. A passing grade on the 10th-grade tests is 
required for a high school diploma. Because all students are 
tested in both eighth and 10th grade, we focus on the estima-
tion of 2-year STEM high school treatment effects.6 The first 
STEM platform school admitted its first freshman class in 
FY2007, so the FY2006–FY2013 data allow us to track up 
to six cohorts of students at each platform school from eighth 
through 10th grade.

Table 2 displays summary statistics for the sample of 
STEM school students as well as the sample of feeder dis-
trict students—the control group in this study. For district 
STEM schools, the operating district is the feeder district,7 
whereas the independent STEM school feeder districts 
include all districts from which at least one student in a 
cohort is included in the sample of STEM students. Test 
scores presented in the table, as well as those used in the 
analysis below, have been normalized to have a mean of zero 
and a standard deviation of one within each grade, subject, 
and year. Additionally, the student sample on which the table 
is based is restricted to students for whom we had 10th-grade 
test scores across all subjects, as this restricted sample is the 
focus of the analysis below. However, the descriptive statis-
tics (and the results of the analysis) are similar for the full 
sample of students.

Following Tuttle, Teh, Nicholas-Barrer, Gill, and 
Gleason (2010), we use a quasi intent-to-treat approach for 
defining our samples of STEM and feeder district students. 
Specifically, any student who was enrolled in a STEM 
school in ninth grade is included in the STEM school sam-
ple regardless of whether she or he stayed through the end 
of 10th grade. Similarly, the sample of feeder district stu-
dents includes those who attended the feeder district in 
ninth grade regardless of whether they remained in the 
same school, transferred within the district, or transferred 
outside the district in 10th grade. This sample definition 
mitigates bias from differences in school attrition rates 
between STEM school and feeder district students. 
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TABLE 2
Descriptive Statistics for Student Sample Used in the Analysis

School A School B School C

 STEM Feeder STEM Feeder STEM Feeder

Mean eighth-grade math score (z score) 0.62 0.05 0.41 0.15 −0.61 −0.13
Mean eighth-grade reading score (z score) 0.60 0.03 0.41 0.14 −0.52 −0.06
Mean eighth-grade science score (z score) 0.58 0.00 0.59 0.09 −0.78 −0.28
Percentage female 0.46 0.50 0.34 0.51 0.61 0.56
Percentage African American 0.28 0.29 0.20 0.17 0.92 0.64
Percentage Hispanic 0.04 0.04 0.00 0.02 0.01 0.01
Percentage other non-White 0.11 0.07 0.12 0.07 0.02 0.06
Percentage economic disadvantage 0.42 0.40 0.27 0.32 0.86 0.57
Percentage limited English proficiency 0.04 0.05 0.00 0.01 0.04 0.02
Percentage disability 0.05 0.11 0.08 0.11 0.23 0.16
Percentage gifted 0.64 0.33 0.18 0.25 0.07 0.24
Percentage attended charter in eighth grade 0.05 0.01 0.30 0.02 0.04 0.04
Cumulative school attrition ratea 0.21 0.11 0.30 0.06 0.18 0.11
Student count, n 306 34,722 142 11,449 256 3,322

 School D School E School F

Mean eighth-grade math score (z score) −0.35 −0.65 0.67 0.05 0.06 0.01
Mean eighth-grade reading score (z score) −0.26 −0.56 0.57 0.09 0.13 0.07
Mean eighth-grade science score (z score) −0.46 −0.81 0.86 0.20 0.30 0.20
Percentage female 0.45 0.53 0.36 0.51 0.83 0.54
Percentage African American 0.73 0.71 0.26 0.39 0.46 0.37
Percentage Hispanic 0.12 0.12 0.02 0.02 0.02 0.02
Percentage other non-White 0.03 0.03 0.11 0.11 0.10 0.13
Percentage economic disadvantage 0.95 0.95 0.27 0.40 0.49 0.40
Percentage limited English proficiency 0.04 0.05 0.03 0.04 0.06 0.04
Percentage disability 0.11 0.18 0.05 0.13 0.05 0.13
Percentage gifted 0.28 0.14 0.0 0.18 0.27 0.22
Percentage attended charter in eighth grade 0.11 0.04 0.00 0.01 0.02 0.01
Cumulative school attrition ratea 0.21 0.29 0.11 0.12 0.19 0.09
Student count, n 130 7,096 188 318 63 182

Note. The table presents descriptive statistics for the restricted sample of students used to estimate the ordinary least squares models based on unmatched 
samples. Specifically, the sample is restricted to students for whom we had 10th-grade test scores in all four subjects and who attended the science, technol-
ogy, engineering, and mathematics (STEM) school or a school’s feeder district. The table presents the mean test scores (standardized by year, grade, and 
subject) in standard deviation units for all students who attended the STEM school or the traditional public school district in which STEM school students 
resided. It also reports the percentage of the STEM school or feeder district students who fit into the demographic categories and who previously attended 
charter schools.
aFor feeder district schools terminating in ninth grade, only out-of-district transfers are counted toward the school attrition rate. Schools E and F share a feeder 
district in which the primary district high school closed after fiscal year 2011. Therefore, only out-of-district transfers between fiscal years 2011 and 2012 
for students in this feeder are counted toward the school attrition rate.

Cumulative school attrition rates—defined as the percent-
age of students in the sample who did not attend the same 
school for two full academic years8 in ninth and 10th 
grade—are also displayed in Table 2. As the table indicates, 
Schools A, B, and C have significantly higher attrition 
rates than their feeder district schools, whereas School D’s 
attrition rate is significantly lower than that in its feeder 
district schools. These differences support the use of the 
quasi intent-to-treat approach.

Overall, Table 2 demonstrates that there are significant 
differences between the STEM school students and their 
counterparts in traditional public schools and that these dif-
ferences also vary significantly among the six schools. For 
example, the two independent STEM schools—Schools A 
and B—draw from numerous districts, which is why there 
are many feeder district students for comparison; in addi-
tion, their students—as well as students who attended dis-
trict Schools D and E—have significantly higher prior test 
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scores than their counterparts attending traditional public 
schools in their districts of residence. However, the students 
at School C—a district STEM school that, unlike the others, 
is more of a neighborhood school than a choice school—
tend to have lower eighth-grade test scores, are more eco-
nomically disadvantaged, are more likely to be African 
American, are more likely to be female, and are less likely to 
be labeled gifted when compared with their feeder district 
counterparts.9 Finally, students attending independent STEM 
schools, as well as district School D, were more likely than 
their traditional district counterparts to have attended charter 
schools.

It is important to note that the analysis is based on only a 
subset of students attending the STEM schools and feeder 
districts. In particular, the sample of STEM school students 
included in the regressions is only about three-fifths of the 
sample of attendees due to the combination of unmatched 
eighth-grade records and missing test scores and demo-
graphic information. The data are particularly limited for 
Schools C and D, as only 50% of their students are included 
in the analysis. This raises legitimate concerns about the 
accuracy of the information in the data set and the external 
validity of our findings. To the extent that data are inaccurate 
or not missing at random, our results may not reflect the 
impact of the STEM schools across the entire population of 
attendees. Given recent concerns about data manipulation in 
Ohio,10 omission of poorly performing students is a particu-
lar concern. However, Schools C and D, for which the data 
are most limited, also exhibit the poorest performance, 
which mitigates the concern that poorly performing students 
were systematically excluded from the data.

Empirical Methods

Our empirical strategy consists of estimating student 
growth models comparing the achievement of students who 
attended one of the six STEM schools with students who 
attended traditional public schools in the feeder districts. 
Specifically, the analysis entails the estimation of models 
that include all feeder district students (with some restric-
tions) as well as models estimated with a smaller, matched 
sample. We also used an instrumental variables approach to 
estimate the impact of STEM school attendance for one of 
the six schools. This section reviews the procedures that we 
used to conduct these analyses.

Student Achievement Model

We primarily employ growth models to address potential 
selection bias and to identify STEM school treatment effects. 
Specifically, the treatment effect estimates are based on the 
following model of student achievement:

y Dig ig ig ig ig= + + + +−     2β λ β γ ε0 y x ,

where yig is student i’s test score in 10th grade and yig−2 is 
a vector of eighth-grade test scores.11 The vector xig repre-
sents observable student-level characteristics and includes 
indicators for gender, race, economic disadvantage, limited 
English proficiency, disability status, gifted status, and char-
ter school attendance in eighth grade, as well as cohort by 
district of residence fixed effects. Dig indicates whether or 
not a student attended a STEM school, and εig is a random 
error term. The parameter of interest is the STEM school 
treatment effect, γ. Essentially, students in these models are 
exactly matched according to their cohort and district of 
residence. The lagged test scores control for the pretreatment 
effects of observable inputs and the time-constant effect of 
the unobservable initial endowment that affects student 
achievement levels. Treatment effects are identified under 
the assumption of common trends conditional on 
observables.

To evaluate heterogeneity in school effectiveness, school-
specific treatment effects are estimated with a slightly modi-
fied version of the model:

yig ig ig
s

ig
s

ig= + + + +−     2β λ β γ ε0 y x D ,

where Dig
s  is a vector of dummy variables indicating 

attendance at each of the STEM high schools (or at one of 
two STEM school types, depending on the analysis) and 
where γs is a vector of treatment effects by school (or by 
school type, depending on the analysis). In subsequent anal-
yses, we also estimated all models using student samples 
restricted by race and gender to examine how STEM school 
attendance affected the achievement of student groups that 
are thought to benefit from inclusive STEM schools. Finally, 
we estimated STEM school achievement trends over time 
using models that estimate a linear trend in STEM school 
performance.

The STEM school students included in the first set of 
models are those who attended one of the six STEM schools 
and for whom we had 10th-grade test scores in all subjects. 
The feeder district students included in these models are 
those attending a traditional public school in ninth grade in a 
district where at least one resident in their cohort attended a 
STEM school and for whom we had 10th-grade test scores in 
all subjects. More explicitly, following Angrist et al. (2013), 
feeder district students are restricted to those enrolled in tra-
ditional public schools—not charter schools—in their 
respective districts of residence. The results are similar if the 
samples are not restricted to students with all four test scores.

Matching Analysis

The sample of feeder district students described above 
may not be an appropriate control group for evaluating 
STEM school performance, because STEM school students 
are not representative of their respective cohorts and districts 



Gnagey and Lavertu

8

of residence. We conducted additional analyses based on 
matched samples to address this potential problem. Because 
matching improves balance in the distribution of student 
characteristics across treatment and control groups, we mini-
mize the implicit extrapolation of treatment effects to dis-
similar groups of students.

In general, the identifying assumptions underlying match-
ing techniques are very similar to those underlying simple 
OLS regression (Angrist & Pishke, 2009). As such, match-
ing is an effective strategy for addressing bias due to selec-
tion on observable characteristics. We employ lagged test 
scores as matching variables and in subsequent regressions 
on matched samples, so the matching treatment effect esti-
mates presented below also are primarily identified under 
the assumption of common trends conditional on 
observables.

A broad array of matching techniques can be applied in 
program evaluation contexts. Two of these techniques, exact 
and propensity score matching, are particularly common in 
the school choice literature (Angrist et al., 2013; Dobbie & 
Fryer, 2013; Tuttle et al., 2010; Woodworth, David, Guha, 
Haiwen, & Lopez-Torkos, 2008). We report the results based 
on propensity score–matching techniques because the 
dimensionality problem associated with exact matching 
required us to drop many student observations. Propensity 
score matching entails matching observations on their prob-
ability of selecting into treatment (i.e., their propensity 
score) rather than on vectors of covariates and relying on the 
balancing property of the propensity score to achieve desir-
able sample balance.

After matching and evaluating the balance of matched 
samples, we estimated treatment effects based on these 
matched samples using the models described above. We also 
weighted these samples to account for imbalance in the 
number of students in the treatment and control groups.

Procedure for Matching Based on Propensity Scores

First, we estimated probit models of STEM school atten-
dance that are some variant of the following form:

π

θ θ θ
i ig ig ig

ig ig

D x= =( )
= + +

−

−

 Pr  1  

  

2

1 2 2

| ,

( ),

y

y xΦ 0

where Φ represents the normal cumulative distribution 
function. Due to the heterogeneity of the student populations 
across the six platform STEM high schools and their respec-
tive feeder districts, we estimated separate probit propensity 
score models for each STEM high school. As in the achieve-
ment model, the demographic variables (xig) include indica-
tors for gender, race, economic disadvantage, limited English 
proficiency, disability status, and gifted status, as well as an 
indicator of charter school attendance in eighth grade. 
Finally, models also include cohort by district of residence 

fixed effects if schools drew from multiple districts or had 
multiple cohorts tested in 10th grade.

The analysis based on the larger, unmatched sample of 
students indicates that it is important to control for baseline 
test scores in math, reading, and science. For this reason we 
included all of these test scores in the propensity score mod-
els when possible.12 Additionally, we obtained the greatest 
balance when we modified the above model by interacting 
all test score variables with one another, including the square 
of each test score variable and by interacting demographic 
characteristics with one another. We also estimated propen-
sity scores using models with no interaction terms, using 
linear probability models, and using separate models for 
each school-cohort combination. We selected the propensity 
score model presented here because it provides superior 
covariate balance. (The results of the probit propensity score 
models are presented in Appendix A.)

We used two techniques to match students on the basis of 
their propensity scores—1:1 nearest-neighbor matching 
within caliper and radius matching, both with replacement. 
Specifically, we first matched students exactly on cohort and 
district of residence and then applied the two matching tech-
niques within these exactly matched subgroups. To ensure 
common support over the range of propensity scores among 
treatment and control groups, we required matched controls 
to fall within a specified caliper around the estimated pro-
pensity score of the treatment observation to which it is 
matched. Specifically, given the results from Cochran and 
Rubin (1973) and following Rosenbaum and Rubin (1985), 
we specified a caliper equal to 0.25 standard deviations of 
the pooled standard deviation of the estimated propensity 
scores across treatment and control students.

Following Heckman, Ichimura, and Todd (1997) and 
Heckman, Ichimura, Smith, and Todd (1998), we calculated 
balance statistics separately for each propensity score model. 
We evaluated covariate balance according to the standardized 
bias in covariate values between pre- and postmatching treat-
ment and control groups (see Rosenbaum & Rubin, 1985; 
Stuart, 2010). (The procedure and balancing results are pre-
sented in Appendix B.) Additionally, because radius match-
ing is one to many and because both matching techniques 
involve replacement (as some STEM schools draw from the 
same districts), balance statistics and subsequent regressions 
are calculated with weights for the matched control group 
where each control student i is given a weight, wi, equal to

w
Ni

m

M

m

i

=
=
∑
1

1
,

where Mi is the total number of treatment observations to 
which control student i is matched and where Nm is the total 
number of control students matched to the mth treatment stu-
dent to which control student i is matched. This makes the 
total weight of the matched control sample equal to the num-
ber of students in the matched treatment sample.
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Using Lottery Results as an Instrument

We were able to obtain data on admission lotteries for one 
of the schools (School A). Thus, for this school, we also esti-
mated the average effect of attending School A for those stu-
dents who attended as a result of winning the lottery. We used 
a two-stage least squares regression in which lottery outcomes 
served as an instrument for STEM school attendance (see 
Angrist & Imbens, 1994). Specifically, restricting the analysis 
to students who applied to attend this school—some of whom 
won a seat and some of whom did not—in the first stage, we 
regressed STEM school attendance on the lottery outcome 
and the full battery of covariates from the models described 
above. We then used the estimated probability of attendance 
for lottery winners and losers in the second stage, along with 
all covariates, to estimate the impact of STEM school atten-
dance across the three cohorts for which we had admission 
data. Standard errors are corrected for the fact that the proba-
bility of attendance is estimated rather than measured directly.

The primary threat to internal validity is that admissions 
were not in fact random. To test for this possibility, we 
regressed each pretreatment covariate on the lottery outcome. 
None of the regressions yielded a coefficient estimate with a 
magnitude of 0.04, and none of the coefficients approached 
conventional levels of statistical significance. These tests sup-
port the internal validity of this design. Thus, this limited 
analysis’s internal validity complements the analysis that we 
describe above, which has superior external validity.

Results

The results presented in this section are from models lim-
ited to students for whom we have 10th-grade test scores 
across all four subjects. We report only these results so that 
we can compare outcomes across subjects and because they 
are broadly similar to those that we obtained using all avail-
able student data across all specifications. First, we present 
results from the OLS models that employ the larger, 
unmatched sample of students, followed by a similar analy-
sis based on samples created with the two propensity score–
matching techniques described above. We then present the 
results of models estimated individually for males, females, 
African Americans, and Caucasians, as well as by student 
cohort within each school.

OLS Models Based on Unmatched Sample

Table 3 presents the estimated impact of STEM school 
attendance on achievement in math, science, reading, and 
social studies using the larger, unmatched sample of students. 
Each column presents the estimated effects from three separate 
OLS regressions: one that estimates a single STEM school 
effect (“all STEM schools”), one that estimates separate 
parameters for independent and district STEM schools (“dis-
aggregated by STEM school type”), and one that estimates 

separate parameters for each STEM school. Odd-numbered 
columns include prior test scores in math and reading. Even-
numbered columns include prior test scores in math, reading, 
and science. Heteroskedasticity-robust standard errors are 
reported in parentheses below the regression coefficients. 
Bolded coefficients are significant at the following levels for a 
two-tailed test: *p < .05 or ^p < .10.

The first row of Table 3 reveals that, overall, 2 years of 
attendance at the STEM schools had a negative impact on 
student achievement in 10th grade. This negative impact is 
more pronounced when models include students’ eighth-
grade test scores in science13—and the negative impact is 
substantively significant in the non-STEM fields, for which 
STEM school attendance is associated with a disadvantage of 
around 0.11 standard deviations in reading and 0.15 standard 
deviations in social studies. As the propensity score model 
results in Appendix A reveal, students with higher test scores 
in science are more likely to attend five of the six STEM 
schools—all else held equal—so accounting for prior science 
scores addresses selection bias in models of STEM school 
achievement.

Table 3 also reveals significant heterogeneity across 
schools. For example, independent STEM schools have 
null effects in math and reading (which appear positive 
when models include lags only for math and reading 
scores), a positive impact in science, and a negative 
impact on social studies. District STEM schools, how-
ever, have substantively significant negative impacts 
across all subjects. Finally, the schools within these two 
categories also have impacts that vary significantly. For 
example, one independent STEM school has null effects 
across all subjects, whereas the other has a positive impact 
on science achievement (0.15 standard deviations) and a 
negative impact on achievement in social studies (−0.09 
standard deviations). Additionally, the substantial nega-
tive impact of district STEM schools is driven in large 
part by two schools—Schools C and D. Indeed, district 
STEM School E has a positive impact on science achieve-
ment, but like the independent STEM school with such an 
impact, this impact is countered by a negative impact in 
social studies.

There are a couple of general takeaways. First, when one 
accounts for students’ prior test scores in science, only two 
schools have a positive impact on achievement—both in sci-
ence only—and this significant impact in science appears to 
come at the expense of achievement in social studies. 
Second, the results indicate that two of the four district 
STEM schools have significant negative impacts.

OLS Models Estimated With Matched Samples

Table 4 presents the results of student growth models esti-
mated with the matched samples. For each subject, we pres-
ent the results of models estimated via 1:1 “nearest neighbor” 
and 1:N radius propensity score–matching methods. Once 
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again, each column presents the estimated effects from three 
separate regressions: “all STEM schools,” “disaggregated 
by STEM school type,” and “disaggregated by school.” 
Unlike the previous table, however, all models account for 
prior test scores in math, reading, and science; the regres-
sions are weighted to account for matching with replace-
ment; and nonrobust standard errors are reported below the 
regression coefficients.

Table 4 reveals that models estimated with the matched 
samples yield results similar to those presented in Table 3. 
That the impacts are broadly similar lends us additional con-
fidence that the results of the models based on the larger, 
unmatched sample are valid.

OLS Models by Race and Gender

The six STEM platform schools in this study are inclu-
sive high schools that, to some extent, are meant to address 
STEM interest, achievement, and attainment gaps by race 

and gender. Although the descriptive statistics in Table 2 
(and the propensity score model in Appendix A) clearly 
indicate that students who do well on science exams (and 
who are therefore less likely to be female, African American, 
or Hispanic) are more likely to enroll, the geographic loca-
tions and inclusive policies of these schools seem to expand 
access to a STEM-focused curriculum. Given the purpose 
of these STEM schools, it may also be that their impact var-
ies by gender and race. In Tables 5 and 6, we present the 
results of the OLS models based on the unmatched samples 
(as in Table 3) but restricted to male, female, Caucasian, or 
African American student samples. (There are too few 
Hispanic students to estimate these models.) Once again, all 
models account for prior test scores in math, reading, and 
science, and robust standard errors are reported below the 
regression coefficients.

Table 5 reveals that for math and science, the negative 
STEM school effects had a disproportionate impact on 
African American students. The results for Caucasian 

TABLE 3
Estimates of STEM School Effects: Unmatched Sample

Math Science Reading Social Studies

 Lag: M, R Lag: M, R, S Lag: M, R Lag: M, R, S Lag: M, R Lag: M, R, S Lag: M, R Lag: M, R, S

 (1) (2) (3) (4) (5) (6) (7) (8)

All STEM schools −0.03^ −0.06* −0.01 −0.06* −0.07* −0.11* −0.11* −0.15*

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Independent STEM 0.08* 0.04 0.11* 0.04^ 0.07* 0.00 0.00 −0.06*

 (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03)
District STEM −0.14* −0.15* −0.13* −0.14* −0.19* −0.20* −0.21* −0.22*

 (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
A. Independent STEM 0.09* 0.04 0.05^ −0.01 0.06* 0.00 0.00 −0.04
 (0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
B. Independent STEM 0.07* 0.02 0.29* 0.15* 0.07^ 0.01 0.00 −0.09*

 (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.05) (0.04)
C. District STEM −0.23* −0.23* −0.27* −0.26* −0.30* −0.29* −0.26* −0.25*

 (0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04)
D. District STEM −0.11* −0.12* −0.11* −0.14* −0.17* −0.19* −0.16* −0.19*

 (0.04) (0.04) (0.06) (0.05) (0.06) (0.06) (0.05) (0.04)
E. District STEM −0.04 −0.05 0.13* 0.09* −0.05 −0.08 −0.21* −0.25*

 (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) (0.05) (0.05)
F. District STEM 0.07 0.05 −0.05 −0.10 −0.01 −0.03 −0.07 −0.10
 (0.07) (0.06) (0.07) (0.06) (0.07) (0.07) (0.08) (0.07)
Students, n  
 Treated 1,140 1,085 1,140 1,085 1,140 1,085 1,140 1,085
 Control 64,316 56,907 64,316 56,907 64,316 56,907 64,316 56,907
 Total 65,456 57,992 65,456 57,992 65,456 57,992 65,456 57,992

Note. Each column presents the estimated treatment effects from three separate ordinary least squares regressions: all science, technology, engineering, and 
mathematics (STEM) schools; disaggregated by STEM school type; and disaggregated by school. Odd-numbered columns include prior test scores in math 
(M) and reading (R); even-numbered columns include prior test scores in math, reading, and science (S). Robust standard errors are reported below the 
regression coefficients. Bolded coefficients are significant at the following levels for a two-tailed test: *p < .05. ^p < .10.
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students are null. Males appear to be more negatively 
affected in math than women, but both genders experi-
enced negative impacts in science. As Table 6 illustrates, 
the results for reading are similar to those for science, but 
it appears that STEM school attendance also harms the 
achievement of Caucasian students in social studies—
though to a lesser extent than it harms African American 
students. One reason for this differential impact by race 
appears to be that the very worst, district-run STEM 
schools disproportionately serve African American 
students.

OLS Models With Time Trends

The estimates presented above to a significant extent 
are based on student performance data from these schools’ 
early years of operation. Indeed, if it takes 3 to 5 years for 
schools to get established (e.g., see Bifulco & Ladd 2006; 

Hanushek et al. 2007; Sass 2006; Zimmer et al., 2009), 
then only two schools were “established” when the latest 
cohorts that we analyze took the 10th-grade tests at the 
end of the 2012–2013 school year. To examine whether the 
negative results that we unearthed are attributable to these 
schools’ growing pains, we estimated linear time trends in 
STEM school performance for each of the four subjects. 
For each STEM school, the time trend variable takes the 
value of zero in the year in which the school’s first cohort 
entered 10th grade and increases by one in each subse-
quent year. School F is omitted because only a single 
cohort was observed.

Table 7 presents the results for our time trend analysis. 
Among the STEM subjects, there are no statistically sig-
nificant trends. Outside the STEM subjects, there is a 
negative trend in reading at School A and negative trends 
in social studies at Schools A and E. The only positive 
trend is observed at School C in social studies, but its 

TABLE 4
Estimates of STEM School Effects: Matched Sample

Math Science Reading Social Studies

 1:1 NN Radius 1:1 NN Radius 1:1 NN Radius 1:1 NN Radius

 (1) (2) (3) (4) (5) (6) (7) (8)

All STEM Schools −0.08* −0.07* −0.06* −0.07* −0.07* −0.10* −0.15* −0.17*

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)
Independent STEM 0.00 0.01 0.01 0.01 0.01 −0.02 −0.07 −0.08*

 (0.03) (0.04) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04)
District STEM −0.13* −0.13* −0.11* −0.12* −0.13* −0.16* −0.21* −0.24*

 (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)
A. Independent STEM 0.00 0.01 −0.04 −0.05 0.01 −0.04 −0.04 −0.07
 (0.04) (0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
B. Independent STEM 0.03 0.04 0.16* 0.17* −0.02 0.03 −0.14^ −0.12
 (0.06) (0.08) (0.08) (0.07) (0.07) 0.07 (0.07) (0.09)
C. District STEM −0.22* −0.21* −0.26* −0.25* −0.27* −0.29* −0.27* −0.25*

 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06)
D. District STEM −0.15* −0.17* −0.22* −0.17* −0.22* −0.21* −0.22* −0.22*

 (0.06) (0.07) (0.07) (0.06) (0.07) (0.07) (0.07) (0.07)
E. District STEM −0.03 −0.07 0.15* 0.09^ 0.06 0.01 −0.19* −0.27*

 (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.06) (0.06)
F. District STEM 0.02 0.03 −0.06 −0.12 0.03 −0.01 −0.01 −0.08
 (0.08) (0.08) (0.08) (0.08) (0.09) (0.08) (0.09) (0.09)
Students (weighted), n  
 Treated 1,051 1,051 1,051 1,051 1,051 1,051 1,051 1,051
 Control 1,051 1,051 1,051 1,051 1,051 1,051 1,051 1,051
 Total 2,102 2,102 2,102 2,102 2,102 2,102 2,102 2,102

Note. The table presents the estimated science, technology, engineering, and mathematics (STEM) school effects from ordinary least squares regressions with 
samples based on the 1:1 “nearest neighbor” (NN) matching methods (odd-numbered columns) and radius matching methods (even-numbered columns). 
Each column presents the estimated effects from three separate regressions: all STEM schools, disaggregated by STEM school type, and disaggregated by 
school. All models account for prior test scores in math, reading, and science. Standard errors appear in parentheses below the regression coefficients. Bolded 
coefficients are significant at the following levels for a two-tailed test: *p < .05. ^p < .10.
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TABLE 5
Estimates of STEM School Effects by Gender and Race: Unmatched Sample

Math Science

 Male Female White Black Male Female White Black

 (1) (2) (3) (4) (5) (6) (7) (8)

All STEM schools −0.09* −0.03 −0.01 −0.11* −0.04* −0.08* 0.02 −0.13*

 (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
Independent STEM 0.02 0.06 0.02 0.08 0.05 0.02 0.03 0.08^

 (0.04) (0.04) (0.03) (0.05) (0.03) (0.03) (0.03) (0.05)
District STEM −0.20* −0.10* −0.09^ −0.17* −0.13* −0.15* 0.01 −0.20*

 (0.03) (0.03) (0.05) (0.03) (0.04) (0.03) (0.05) (0.03)
A. Independent STEM 0.02 0.07 0.02 0.11* −0.02 0.00 −0.03 0.05
 (0.05) (0.05) (0.05) (0.06) (0.04) (0.04) (0.04) (0.05)
B. Independent STEM 0.01 0.05 0.03 0.01 0.18* 0.09 0.12* 0.17^

 (0.05) (0.07) (0.05) (0.09) (0.06) (0.07) (0.05) (0.10)
C. District STEM −0.31* −0.17* −0.52* −0.21* −0.27* −0.25* −0.31^ −0.25*

 (0.06) (0.05) (0.19) (0.04) (0.06) (0.04) (0.18) (0.04)
D. District STEM −0.15 −0.10^ 0.00 −0.14* −0.16* −0.12* 0.04 −0.18*

 (0.05) (0.05) (0.11) (0.04) (0.07) (0.06) (0.11) (0.06)
E. District STEM −0.10* 0.05 −0.06 −0.10 0.09 0.12^ 0.10^ 0.03
 (0.05) (0.07) (0.05) (0.07) (0.06) (0.07) (0.06) (0.07)
F. District STEM 0.04 0.04 0.06 −0.04 0.05 −0.15* −0.10 −0.09
 (0.12) (0.08) (0.12) (0.07) (0.14) (0.07) (0.10) (0.09)
Students, n  
 Treated 564 521 441 524 564 521 441 524
 Control 26,104 21,748 29,305 16,626 26,104 21,748 29,305 16,626
 Total 26,668 22,269 29,746 17,150 26,668 22,269 29,746 17,150

Note. Each column presents the estimated effects from three separate ordinary least squares regressions: all science, technology, engineering, and mathemat-
ics (STEM) schools; disaggregated by STEM school type; and disaggregated by school. The regressions for each subject are restricted to samples of male, 
female, White, or Black students. All models account for prior test scores in math, reading, and science. Robust standard errors are report below the regres-
sion coefficients. Bolded coefficients are significant at the following levels for a two-tailed test: *p < .05. ^p < .10.

TABLE 6
Estimates of STEM School Effects by Gender and Race: Unmatched Sample

Reading Social Studies

 Male Female White Black Male Female White Black

 (1) (2) (3) (4) (5) (6) (7) (8)

All STEM Schools −0.11* −0.10* −0.02 −0.19* −0.13* −0.16* −0.12* −0.20*

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Independent STEM 0.00 0.00 0.02 −0.04 −0.06 −0.06 −0.07 −0.12*

 (0.03) (0.04) (0.03) (0.05) (0.04) (0.04) (0.04) (0.05)
District STEM −0.23* −0.17* −0.12* −0.24* −0.21* −0.23* −0.24* −0.23*

 (0.04) (0.04) (0.05) (0.03) (0.03) (0.04) (0.05) (0.03)
A. Independent STEM −0.01 0.00 0.02 −0.06 −0.06 −0.01 −0.05 −0.09^

 (0.04) (0.04) (0.04) (0.06) (0.05) (0.05) (0.05) (0.05)
B. Independent STEM 0.02 0.01 0.02 0.01 −0.05 −0.19* −0.11* −0.20*

 (0.05) (0.07) (0.05) (0.07) (0.06) (0.08) (0.06) (0.09)

(continued)
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social studies scores remain very low relative to the com-
parison group.14 Given that a linear trend is a strong 
assumption, we also estimated models with school by 
cohort dummy variables to examine trends over time, but 
no additional trends were discernable. These results are 
presented in Table C1. These results do not preclude 
these schools from improving going forward, but for the 
five schools with multiple cohorts—particularly the 
established independent STEM schools—it is clear that 
the results of this study are not due to typical achieve-
ment trajectories for newly established schools.

Two-Stage Least Squares Models for School A

School A is the only school from which we could obtain 
admission data. The school provided sufficiently informa-
tive lottery data for three student cohorts. Table 8 presents 
the second-stage results of the two-stage least squares mod-
els that include all covariates but prior science scores so that 
we can include the first cohort in the analysis. As the table 
indicates, the coefficient estimates for math and science are 
somewhat more positive, and the estimate for social studies 
is somewhat less negative than the estimates in Table 3 that 
account for prior science scores. However, the coefficient 
for reading achievement is quite a bit larger in magnitude. 
Unfortunately, the models lack statistical power, as standard 
errors are often 3 times as large as those in Table 3. Thus, 
we cannot be sure that the null results are due to there being 
no substantively significant effects. That the coefficients 
are roughly comparable to those in Table 3 is nonetheless 
reassuring.

Reading Social Studies

 Male Female White Black Male Female White Black

 (1) (2) (3) (4) (5) (6) (7) (8)

C. District STEM −0.38* −0.22* −0.45* −0.27* −0.25* −0.24* −0.34^ −0.24*

 (0.06) (0.05) (0.19) (0.04) (0.06) (0.06) (0.19) (0.04)
D. District STEM −0.16* −0.22* 0.03 −0.26* −0.19* −0.18* −0.07 −0.22*

 (0.07) (0.10) (0.15) (0.07) (0.06) (0.06) (0.09) (0.05)
E. District STEM −0.11* 0.02 −0.11^ −0.07 −0.23* −0.28* −0.29* −0.26*

 (0.06) (0.10) (0.06) (0.08) (0.06) (0.09) (0.06) (0.07)
F. District STEM 0.05 −0.07 −0.03 −0.04 0.17 −0.16* −0.16 −0.02
 (0.12) (0.08) (0.11) (0.10) (0.15) (0.08) (0.11) (0.10)
Students, n  
 Treated 564 521 441 524 564 521 441 425
 Control 26,104 21,748 29,305 16,626 26,104 21,748 29,305 14,078
 Total 26,668 22,269 29,746 17,150 26,668 22,269 29,746 14,503

Note. Each column presents the estimated effects from three separate ordinary least squares regressions: all science, technology, engineering, and mathemat-
ics (STEM) schools; disaggregated by STEM school type; and disaggregated by school. The regressions for each subject are restricted to samples of male, 
female, White, or Black students. All models account for prior test scores in math, reading, and science. Robust standard errors are report below the regres-
sion coefficients. Bolded coefficients are significant at the following levels for a two-tailed test: *p < .05. ^p < .10.

TABLE 7
Estimates of STEM School Trends Over Time

Math Science Reading Social Studies

A. Independent STEM 0.02 −0.04 0.15* 0.15^

 (0.07) (0.06) (0.07) (0.08)
 A × Time Trend 0.01 0.01 −0.05* −0.07*

 (0.02) (0.02) (0.02) (0.02)
B. Independent STEM −0.03 0.10 0.04 −0.11
 (0.07) (0.07) (0.06) (0.07)
 B × Time Trend 0.06 0.05 −0.03 0.03
 (0.05) (0.05) (0.04) (0.05)
C. District STEM −0.30* −0.18* −0.28* −0.39*

 (0.06) (0.06) (0.08) (0.08)
 C × Time Trend 0.07 −0.07 −0.01 0.13*

 (0.05) (0.05) (0.05) (0.06)
D. District STEM 0.01 −0.07 0.02 −0.17*

 (0.09) (0.09) (0.13) (0.08)
 D × Time Trend −0.06 −0.04 −0.11^ −0.01
 (0.04) (0.04) (0.06) (0.04)
E. District STEM 0.00 0.06 −0.15 −0.18*

 (0.06) (0.05) (0.05) (0.05)
 E × Time Trend −0.10 0.05 0.14 −0.12
 (0.08) (0.08) (0.09) (0.09)
Students, n  
 Treated 1,022 1,022 1,022 1,022
 Control 56,907 56,907 56,907 56,907
 Total 57,929 57,929 57,929 57,929

Note. This table presents estimated science, technology, engineering, and mathematics 
(STEM) school and time trend effects from ordinary least squares regressions. Each 
column presents the effects from a single regression disaggregated by school. Robust 
standard errors are reported below the regression coefficients. Bolded coefficients are 
significant at the following levels for a two-tailed test: *p < .05. ^p < .10.

TABLE 6 (CONTINUED)
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Conclusion

The results suggest that, overall, the first 2 years of atten-
dance at Ohio’s STEM platform high schools have had a 
negative impact on student achievement in STEM and, espe-
cially, non-STEM subjects. There is considerable heteroge-
neity in effects across the six schools, but only two schools 
can claim to boost achievement in any subject (science). 
Generally, student achievement suffered most in non-STEM 
subjects and among African Americans. One should not 
evaluate these schools solely on the basis of 10th-grade 
achievement tests, of course. These schools focus on prob-
lem-solving skills and group work that standardized 
exams—particularly Ohio’s graduation tests—may not cap-
ture, for example. Indeed, if some of these schools simply 
help foster student interest and attainment in STEM fields 
(via early college opportunities, for example), they may very 
well achieve their goals of improving and broadening the 
STEM workforce pipeline in spite of comparable or lower 
student achievement.

However, promoters of these schools have long claimed 
that they improve achievement, citing student test scores as 
evidence that they help traditionally underserved popula-
tions beat the odds. Despite the limitations of test scores dis-
cussed above, standardized tests—particularly Ohio’s 
graduation tests—do provide a useful barometer for gauging 
knowledge of basic concepts and principles. Regardless of 
other possible benefits of Ohio’s STEM schools, it is clear 
that the STEM schools studied here do not, on average, 
improve achievement in these basic content areas. The con-
sequences of this might be particularly significant because 
the purpose of these platform schools is to identify best prac-
tices and disseminate them.

These results may not be all that surprising. The Ohio 
STEM schools studied here, like their counterparts across 
the nation, may not emphasize math and science content 

as much as observers assume. They tend to focus on 
problem-based and individualized learning, which does 
not inherently favor STEM fields. Moreover, although 
these schools have received state and private funds as 
part of STEM initiatives, their student counts and stu-
dent-teacher ratios are highly variable and do not suggest 
a clear advantage in terms of instructional resources. 
Indeed, some have very high student-teacher ratios as 
compared with non-STEM public high schools. It is per-
haps unsurprising, therefore, that the two schools that 
have a positive impact on science achievement are also 
associated with a negative impact in social studies 
achievement.

The results presented here force us to reconsider both 
the definition of a high-quality STEM education and the 
ability of contemporary standardized tests to evaluate 
STEM education quality. Additionally, they illustrate how 
an analysis of achievement growth can lead to mistaken 
impressions if researchers account only for one prior year 
of reading and math achievement, as they often do. 
Accounting for prior science achievement appears to be 
important for controlling for self-selection into STEM 
schools, and studies that fail to do so may overestimate 
STEM school impacts.

Appendix A: Propensity Score Models

We estimated separate propensity score models for each 
school. Table A1 presents the results of these models. The 
sample in each model includes all students in the unmatched 
regression analysis, except for those with characteristics that 
perfectly predict non-STEM school attendance. As the 
results indicate, the characteristics that predict selection into 
treatment, as well as the nature of the relationships between 
particular characteristics and probability of treatment, vary 
by school.

TABLE 8
Two-Stage Least Squares Estimates of Attending STEM School A

Math Science Reading Social Studies

 (1) (2) (3) (4)

STEM school attendance 0.05 (0.11) 0.02 (0.11) −0.11 (0.12) −0.03 (0.13)
n 212 211 211 211
Wald χ2 462.62* 400.24* 285.60* 279.09*

R2 0.69 0.65 0.57 0.57
Applicants, n 212 211 211 211
Lottery winners, n 153 152 153 152
Attendees (2 years), n 123 122 123 122

Note. The table presents two-stage least squares estimates of the effect of attending School A on academic achievement. The model is based on only three of 
the six cohorts. Standard errors are reported in parentheses. *p < .05 (two-tailed test). STEM = science, technology, engineering, and mathematics.
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Appendix B: Procedure for Evaluating Balance

Simple t tests on the differences in mean characteristics 
between treatment and control groups can be misleading 

because the dissipation of significant differences that result 
from matching may simply be due to loss of statistical power 
rather than to improvements in sample balance. Thus, we 
examined balance by calculating standardized bias using the 
following formula:

x x

s s

t c

tu cu

−( )
+2 2

2

,

where stu
2  is the sample variance of variable x in the 

unmatched treatment group and where scu
2  is the sample 

variance of variable x in the unmatched control group. The 
differences in means across treatment and control groups for 
variable x is given by x xt c−( ). We calculated this differ-
ence in means for both the unmatched and the matched sam-
ples, and the matched and unmatched mean differences are 

respectively divided by the same denominator, s stu cu
2 2

2

+ . 

This provides a standardized measure of covariate balance in 
units of pooled unmatched sample standard deviations, with 
zero indicating perfect balance and larger deviations from 
zero, either positive or negative, indicating larger imbal-
ances. This measure is not influenced by sample size and can 
be compared across the matched and unmatched samples 
(Stuart, 2010).

Table B1 presents standardized bias calculations. Bolded 
figures indicate a standardized bias above an absolute value 
of 10: a threshold above which some researchers consider 
bias to be elevated. The postmatching sample includes only 
those treatment and control observations that were success-
fully matched. A significant drawback of evaluating balance 
via standardized bias is that, unlike t tests, there is no well-
established threshold for distinguishing between acceptable 
and unacceptable levels of standardized bias. Nevertheless, 
Table B1 shows that both matching methods significantly 
reduce average absolute standardized bias across the covari-
ates for each school. The overall mean of the absolute bias 
across all characteristics for each school go from a range of 
13.1–30.8 for the unmatched samples to 1.9–16.0 for 1:1 
matched samples and 2.2–10.9 for the radius-matched sam-
ples. Of particular importance, there are large reductions in 
the standardized bias across eighth-grade test scores.
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TABLE C1

Estimates of STEM School Effects Over Time

Math Science Reading Social Studies

A: Cohort 2 0.10 0.06 0.05 0.02
 (0.07) (0.06) (0.07) (0.07)
A: Cohort 3 −0.03 −0.14* 0.13^ 0.17*

 (0.07) (0.06) (0.07) (0.08)
A: Cohort 4 −0.02 0.00 0.01 0.03
 (0.09) (0.07) (0.08) (0.07)
A: Cohort 5 0.03 −0.09 −0.15* −0.29*

 (0.08) (0.07) (0.07) (0.06)
A: Cohort 6 0.11^ 0.09 −0.10 −0.17*

 (0.07) (0.06) (0.06) (0.07)
B: Cohort 1 0.01 0.18* 0.09 −0.08
 (0.07) (0.07) (0.07) (0.08)
B: Cohort 2 −0.10 −0.06 −0.11 −0.19*

 (0.08) (0.07) (0.07) (0.05)
B: Cohort 3 0.12^ 0.28* 0.02 −0.03
 (0.07) (0.07) (0.06) (0.07)
C: Cohort 1 −0.30* −0.20* −0.39* −0.47*

 (0.06) (0.07) (0.09) (0.10)
C: Cohort 2 −0.24* −0.22* −0.15* −0.16*

 (0.06) (0.05) (0.07) (0.06)
C: Cohort 3 −0.16* −0.34* −0.38* −0.19*

 (0.07) (0.06) (0.07) (0.06)
D: Cohort 1 −0.02 −0.01 0.16 −0.12
 (0.17) (0.07) (0.26) (0.12)
D: Cohort 2 −0.04 −0.02 −0.10 −0.20*

 (0.07) (0.09) (0.09) (0.07)
D: Cohort 3 −0.15* −0.35* −0.25* −0.19*

 (0.07) (0.10) (0.09) (0.09)
D: Cohort 4 −0.18* −0.10 −0.27* −0.19*

 (0.06) (0.07) (0.10) (0.07)
E: Cohort 1 0.00 0.06 −0.15* −0.18*

 (0.06) (0.05) (0.05) (0.05)
E: Cohort 2 −0.10^ 0.11^ −0.02 −0.30*

 (0.05) (0.06) (0.08) (0.07)
F: Cohort 1 0.03 −0.09 −0.15 −0.12^

 (0.07) (0.06) (0.05) (0.07)
Students, n  
 Treated 1,085 1,085 1,085 1,085
 Control 56,907 56,907 56,907 56,907
 Total 57,992 57,992 57,992 57,992

Note. This table presents estimated cohort fixed effects for each school from 
ordinary least squares regressions. Each column presents the effects from 
a single regression disaggregated by school. Robust standard errors are 
reported below the regression coefficients. Bolded coefficients are signifi-
cant at the following levels for a two-tailed test: *p < .05. ^p < .10.



Gnagey and Lavertu

20

authors alone are responsible for the design and execution of the 
analysis and for the contents of this article. Some of the results 
presented here will be disseminated via an OERC policy brief.

Notes

 1. Young, House, Wang, Singleton, and Klopfenstein (2011) 
evaluated the impact of the first 31 inclusive science, technology, 
engineering, and mathematics (STEM) schools established by 
the Texas High School Project’s T-STEM initiative. The authors 
employed school-level data and used statistical techniques to match 
STEM high schools to observationally similar traditional public 
high schools. Their regression analysis indicates that T-STEM high 
schools were associated with greater achievement in math and sci-
ence than that of the matched traditional public schools.

 2. Deming (2014) showed that bias is nonexistent if mul-
tiple years of prior test data are used but that there is some bias 
if only one prior year of test scores is used. But this may be due 
to his not accounting for other covariates in that specification. As 
Abdulkadiroğlu, Angrist, Dynarski, Kane, and Pathak (2011) and 
Angrist, Pathak, and Walters (2013) revealed in their study of 
charter schools, one baseline score may be sufficient if one also 
accounts for baseline demographics, as we do.

 3. We excluded one district school because its implementation 
of a STEM program was difficult to determine and because the 
Ohio Auditor of State determined that it had manipulated its data.

 4. For example, one STEM school is on a university campus. 
In addition to the building provided by the university, the school 
benefits from having direct access to various campus resources, 
such as faculty and their courses.

 5. Our calculations are based on data publicly available on the 
Ohio Department of Education website.

 6. Some have raised concerns about our using the results of 
the Ohio Graduation Test to examine student achievement growth, 
citing potentially insufficient “stretch” in the assessment that might 
impede our ability to estimate effects—particularly for students on 
the high end of the achievement distribution.

 7. We omitted from the analysis the few students who attended 
a district STEM school by taking advantage of district open 
enrollment.

 8. A full academic year for high school students during all years 
in the study period refers to continuous enrollment from the end of 
the first week in October through the administration of the Ohio 
Graduation Test in mid-March as defined in the Ohio Department 
of Education’s annually published data reporting instructions, the 
Education Management Information System manuals (fiscal year 
2007–2013 editions).

 9. School C seems to have adopted the STEM model in an 
effort to turnaround a low-performing high school, so it is qualita-
tively different from the other schools in our study.

10. The Ohio Department of Education requires that a test score 
report be submitted for each enrolled student regardless of whether 
or not the student took the test. Test score reports for untested stu-
dents should include a code indicating the reason why the student 
did not take the test (fiscal year 2007–2013 editions). The missing 
10th-grade test scores at Schools C and D are largely due to missing 
test score reports rather than existing test score reports indicating 
untested students. A statewide audit of K−12 data reporting for the 
2010–2011 school year found evidence of improper record keeping 
at nine school districts across Ohio (Yost, 2013).

11. We do not include math and reading test scores from prior 
grades, to protect our sample size. Additionally, we exclude prior 
scores on social studies tests because they were not administered 
for much of our panel. Finally, because our preferred specifica-
tions include eighth-grade test scores in science—and because 
the eighth-grade science test was not administered to the first 
cohort in our panel—we present results primarily from models 
estimated without the first year of data from School A. As we 
mention later, models that are not restricted in these ways yield 
similar results.

12. Grade 8 test scores in science are not available for the first 
cohort of one of the platform schools. To include this cohort in 
the analysis, we estimated a separate propensity score model that 
includes lagged test scores only in math and reading. However, 
to make the results that we present comparable across the various 
modeling approaches, we report the results of models that exclude 
this cohort from the analysis.

13. In results not presented here, we estimated models that 
control only for lagged math and reading test scores but that also 
exclude Cohort 1 from the sample. We find evidence that change 
in the estimated STEM school effects between the models that lag 
only math and reading scores and the models that also lag science 
scores are, in fact, driven by the inclusion of the additional lagged 
test scores and not by the exclusion of Cohort 1.

14. Given that School C is essentially a neighborhood school 
that converted to STEM school as part of what is ostensibly a turn-
around effort, the trend analysis is particularly helpful because it 
shows that the STEM focus has not led to improvements over time.
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