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In 2011, the Institute of Education Sciences (IES), the 
research branch of the U.S. Department of Education, and the 
National Science Foundation (NSF) came together to create a 
joint committee to “establish cross-agency guidelines for 
improving the quality, coherence, and pace of knowledge 
development in science, technology, engineering and mathe-
matics (STEM) education” (IES & NSF, 2011, p. 4). Two 
years later, the Common Guidelines for Education Research 
and Development were released, hereafter referred to as sim-
ply the Guidelines. Overall, the ultimate goal of the Guidelines 
is to create a common set of expectations for studies that will 
help streamline education research and development and 
contribute to an accumulation of knowledge that will ulti-
mately improve student outcomes (IES & NSF, 2011).

The Guidelines identify six types of research, including 
(a) foundational research, (b) early-stage or exploratory 
research, (c) design and development research, (d) efficacy 
research, (e) effectiveness research, and (f) scale-up research. 
These six types are combined into three categories of 
research: research aimed at contributing to core knowledge 
(types [a] and [b]), research aimed at developing solutions to 
improve learning (type [c]), and research aimed at contribut-
ing to evidence of impact (types [d], [e], and [f]). Each 

category of studies is critical to knowledge generation, from 
basic research to the development of interventions to testing 
the effectiveness of these interventions for improving stu-
dent outcomes. However, the focus of this article is on the 
third category, impact research.

According to the Guidelines, the goal of impact research 
is to generate “reliable estimates of the ability of a fully-
developed intervention or strategy to achieve its intended 
outcomes” (IES & NSF, 2011, p. 9). Stated differently, the 
goal is to identify “what works” or what interventions 
improve student outcomes. The three types of impact research 
differ in terms of “the conditions under which the interven-
tion is implemented and the populations to which the find-
ings generalize” (IES & NSF, 2011, p. 9). Efficacy research 
focuses on testing an intervention under ideal conditions, 
often in one population, and may include higher-than-normal 
levels of support from the program developers. Effectiveness 
research focuses on testing an intervention under typical con-
ditions, often in a limited number of populations, and with 
normal levels of support from the program developers. 
Scale-up research focuses on testing an intervention across a 
broad array of contexts, in multiple populations, and “with-
out substantial developer involvement in implementation or 
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evaluation” (IES & NSF, 2011, p. 9). In short, these types of 
impact studies differ in their intent to generalize effects 
across populations, contexts, and levels of authenticity in the 
implementation conditions. Across all three types of impact 
studies, the most common designs are the randomized con-
trol trial (RCT) and the quasiexperimental design (QED).

In the past decade, we have seen an increase in the num-
ber of impact studies that utilize RCTs and QEDs across the 
field of education. For example, since 2002, IES has funded 
over 175 impact studies that employ RCTs (www.ies.gov). 
The majority of these studies focus on reading and mathe-
matics interventions, with only a small percentage focused 
on science interventions. However, a recent systematic 
review by Slavin, Lake, Hanley, and Thurston (2014) pro-
vides evidence that there has been a shift in recent years 
toward more impact studies in science education. Slavin 
et al. found in their review of studies starting in 1980 that 
only 23 of the 332 identified studies met inclusion criteria 
for rigorous designs, which included strong QEDs and 
RCTs, and that most qualifying studies were published in 
2006 or later. More specifically, one qualifying study was 
published in 2006, five in 2007, and 11 in 2009 or later, for 
a total of 17 of the 23 studies being published in 2006 or later 
and only six studies being published between 1980 and 
2005.

The role of large-scale impact studies in science educa-
tion research has generated a lot of attention in the past few 
years. In 2012, the Journal of Research in Science Teaching 
dedicated a special issue to the topic, raising awareness 
within the science education research community about the 
issues associated with large-scale impact studies and the 
importance of addressing these issues as more of these stud-
ies are conducted. The articles included in the special issue 
focused on challenges associated with implementing impact 
studies (Lee & Krajcik, 2012; Lynch, Pyke, & Grafton, 
2012), limitations of these studies (Penuel & Fishman, 
2012), and results from impact studies (Heller, Daehler, 
Wong, Shinohara, & Miratrix 2012; Plass et al. 2012). In 
2013, Taylor, Kowalski, Wilson, Getty, and Carlson added to 
this dialogue by discussing the specific methodological 
trade-offs to conducting large-scale impact studies in sci-
ence education. They pointed out the importance of balanc-
ing rigorous research designs with the interests and needs of 
the districts and schools to implement high-quality impact 
studies. As the field expands to include more impact studies 
of science interventions, it is important to be aware of these 
challenges and trade-offs in the design and implementation 
of these studies. Although design and implementation are 
both critical, in this article we focus on the design of impact 
studies.

In order for these impact studies to generate high-quality 
and rigorous evidence of the effectiveness of the interven-
tion, the study must have a strong research design. According 
to the Guidelines, this means a research plan that provides 

detailed discussion of the following six components: (a) the 
study design, (b) outcomes of interest and size of impact that 
is important for each outcome, (c) setting and population of 
interest, (d) sample and statistical power associated with the 
sample and design, (e) plan for data collection, and (f) plan 
for analyses and reporting. All six of these components are 
crucial to planning a rigorous impact study. However, in this 
article we focus on the sample and statistical power associ-
ated with impact studies of science interventions.

As noted above, the most common designs in impact stud-
ies are RCTs and QEDs. Although the statistical power con-
siderations for QEDs are the same as those of RCT, we frame 
our presentation from the perspective of designing RCTs as 
this preference is consistent with the Guidelines document, 
which in referring to researchers indicates that “generally and 
when feasible, they should use designs in which treatment 
and comparison groups are randomly assigned” (IES & NSF, 
2011, p. 21). This preference is rooted in a specific threat to 
the internal validity of a QED—selection bias (Shadish, 
Cook, & Campbell, 2002). That is, QEDs are faced with the 
increased likelihood that the groups being compared will be 
more different on observed and unobserved variables than 
had the groups been formed randomly. Moreover, we focus 
on improving the a priori statistical power calculations for 
impact studies that utilize a specific type of RCT design, the 
cluster randomized trial (CRT) or, synonymously, the group 
randomized trial (GRT). In a CRT, entire clusters, such as 
schools, are assigned to a condition. Given the nested struc-
ture of schools, with students nested within teachers nested 
within schools, and the fact that educational programs and 
interventions are often delivered at the school level, CRTs are 
common in education impact studies (Spybrook & 
Raudenbush, 2009). The results from the Slavin et al. (2014) 
review also suggest CRTs are more common than RCTs that 
randomly assign individuals to groups for studies of science 
interventions. Of the seven studies in the review that are 
RCTs, all of them used clusters as the unit of random assign-
ment and thus are categorized as CRTs.

Statistical Power for CRTs

The nested structure of the data in a CRT necessarily 
makes the a priori power analysis more complex. The power 
for a two-level CRT with randomization at the school level 
depends on the following: the alpha level, the number of stu-
dents per school, the total number of schools, the effect size, 
the intraclass correlation (ICC), and the percentage of vari-
ance explained by the covariate(s) (R2). The ICC is the per-
centage of total variance in the outcome, science test scores, 
that is between schools. For example, if the ICC is 0.15, then 
15% of the variance in science test scores is between schools 
and 85% of the variance in science test scores is within 
schools. Higher values of the ICC suggest more variance 
between schools, which leads to a need for a larger number 
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of schools in order to be able to detect the effect if it is pres-
ent. For example, holding all other parameters constant, if 
25% of the variance in science test scores is between schools, 
more schools will be required to detect the same size effect 
than if only 15% of the variance is between schools. We dis-
cuss how to estimate values for the ICC in the next section. 
The R2 is the percentage of the variance in the outcome, sci-
ence test scores, that is explained by a covariate or covari-
ates. The stronger the relationship between the covariate(s) 
and the outcome, the greater the R2. Inclusion of a covariate 
with a larger R2 value serves to reduce the unexplained vari-
ance in student outcomes and thereby reduce the total num-
ber of schools necessary to power a study, holding all other 
parameters constant.

Conducting an a priori power analysis is critical because 
it allows the researcher to determine the necessary sample 
size to detect an effect of a particular magnitude. If there are 
too few schools, an effective intervention may be deemed as 
having no effect when in reality the study was simply under-
powered to detect the effect. If there are too many schools, 
the study may be overpowered, which means more money 
was spent than necessary. Because impact studies with 
schools as the unit of assignment tend to be large and very 
costly, from a financial perspective, it is critical to use accu-
rate estimates of design parameters for planning science 
education CRTs.

Design Parameters for Science CRTs

ICCs and R2s are context specific and vary from study to 
study, which makes them challenging to estimate (Westine, 
Spybrook, & Taylor, 2013). There are three common strate-
gies for estimating ICCs and R2s for planning CRTs. One 
strategy is to conduct a pilot study with a similar set of schools 
and estimate the design parameters from the pilot data. A sec-
ond strategy is to consult the literature for similar studies that 
report design parameters. A third strategy is using large data-
bases to estimate the design parameters. This is a more recent 
development that has emerged as a result of the increase in 
CRTs in educational impact studies, particularly around read-
ing and mathematics achievement. For example, research 
teams have started to compile empirical estimates of ICCs and 
R2 values for two- and three-level models using individual 
districts’ databases (Bloom, Bos, & Lee, 1999; Bloom, 
Richburg-Hayes, & Black; 2007), study databases (Jacob, 
Zhu, & Bloom, 2010; Schochet, 2008; Zhu, Jacob, Bloom, & 
Xu; 2012), national databases (Hedges & Hedberg, 2007), and 
state databases (Brandon, Harrison, & Lawton, 2013; Hedberg 
& Hedges, 2014; Hedges & Hedberg, 2013; Westine et al., 
2013; Xu & Nichols, 2010; Zhu et al., 2012). These studies 
are an excellent resource for teams planning CRTs.

However, the challenge for teams designing impact studies 
focused on science outcomes is that the majority of the studies 
providing empirical estimates are focused on mathematics 

and reading outcomes. This leaves science education research-
ers with few options but to borrow ICC and R2 estimates from 
those associated with reading and mathematics outcomes. 
However, this is problematic for several reasons. First, ICCs 
for reading and mathematics outcomes are not identical 
(Westine et al., 2013). For example, Hedges and Hedberg 
(2007) reported ICCs for fifth graders using the National 
Educational Longitudinal Study 1988. For mathematics, they 
reported an ICC of 0.216, and for reading, they reported an 
ICC of 0.263. Even this difference could have a significant 
influence on study size, and it is unclear which value is more 
closely associated with the ICC for science outcomes.

Second, unlike reading and mathematics, science is not 
tested annually in most states. Hence the set of covariates 
available for reading and mathematics outcomes is not nec-
essarily the same for science outcomes (Westine et al., 
2013). For example, for reading and mathematics outcomes, 
the covariate set that yields the greatest explanatory power is 
the student-level pretest in the same subject (Bloom et al., 
2007) lagged just 1 year before the posttest. Given that in 
science, students are not typically tested in consecutive 
years, a science student-level pretest lagged just 1 year is not 
an option, and the explanatory power of other covariate sets 
must be explored.

Finally, it is uncertain to what extent science design 
parameters vary depending on location. Although recently a 
small number of empirical investigations of design parame-
ters for science outcomes have emerged (Westine et al., 
2013; Xu & Nichols, 2010, Zhu et al., 2012), these studies 
have not considered the variability across location (e.g., 
across state boundaries). The findings we present in this 
article represent the largest cross-state compilation and com-
parison of ICCs and R2s specifically for science outcomes.

This comparative work functions as a critical next step 
toward building a comprehensive resource of empirical esti-
mates of design parameters for science education outcomes 
that we anticipate will help improve the quality of power 
analyses for CRTs of science education impact studies so 
that these studies have the capacity to provide rigorous evi-
dence of impact. Specifically, the purpose of this article is to 
provide and compare empirical estimates of the following:

1. Intraclass correlations for science outcomes from 
three states for
a. Elementary, middle, and high school grades and
b. Two- and three-level nested (hierarchical) designs.

2. Percentage of variance explained in science out-
comes for
a. Individual-level covariates and
b. Cluster-level covariates.

The remainder of this article is organized as follows. First 
we describe the data, models, and analyses. Then, we pres-
ent the results, followed by several applications of the 
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empirically estimated design parameters. We conclude with 
a discussion and suggestions for future research.

Data

The data for this study come from three states: Texas, 
Wisconsin, and Michigan. In each state, we obtained data for 
multiple academic years: 5 years for Texas starting in the 
2006-2007 academic year, 6 years for Wisconsin starting in 
the 2005-2006 academic year, and 4 years for Michigan 
starting in the 2007-2008 academic year. In each state, the 
data included student-level achievement data from the state 
test for science, mathematics, and reading. The state tests 
include the Texas Assessment of Knowledge and Skills 
(TAKS), the Wisconsin Knowledge and Concepts 
Examination (WKCE), and the Michigan Educational 
Assessment Program (MEAP) for Grades 3 through 8 and 
Michigan Merit Exam (MME) for Grades 9 through 12. 
Students were linked to schools and districts within each 
state. The grade in which a subject was tested varies across 
states and is displayed in Table 1. Note that as expected, 
across the three states, science is tested much less frequently 
than mathematics and reading.

We prepared each state data set following a similar protocol 
in order to obtain a consistent set of usable data across years 
and states. In each state, and for all years of data, we generated 
indicator variables from a set of demographic variables, includ-
ing gender, ethnicity, free or reduced-price lunch as a proxy for 
socioeconomic status (SES), and limited English proficiency 
(LEP) status. Collectively, the indicator variables for gender, 
ethnicity, SES, and LEP make up the set of demographic 
covariates. Students with nonvalid or duplicate student identi-
fication numbers, as well as students requiring a testing accom-
modation (standard or nonstandard) or that were marked as 
unethical, were removed from the sample. Students with dis-
abilities or identified as receiving special education were also 
removed. The percentage of data removed for each state during 
this cleaning process is provided in Table 2. Note that in Texas, 
the sample size was also reduced by the masking process. In 

schools with fewer than five individuals in any single demo-
graphic group, achievement scores were masked for all stu-
dents in that group.

Models

We empirically estimate ICCs and R2s using two models. 
First, we use a two-level hierarchical model with students 
nested within schools. Next, we use a three-level hierarchi-
cal model with students nested within schools nested within 
districts.

The design parameter estimates from the two models 
serve to inform different designs. Estimates from the two-
level model directly inform the design of a schoolwide inter-
vention study where students are nested within schools and 
whole schools are randomly assigned to treatment condi-
tions. Estimates from the three-level model directly inform 
the design of a districtwide intervention study where stu-
dents are nested within schools that are nested within dis-
tricts and whole districts are randomly assigned.

We first present the unconditional two- and three-level 
models, which do not include covariates, to show the ICC 
calculations. This is followed by an example of the two-level 
conditional models, which include covariates, to show the 
calculations for the R2s. The three-level model with covari-
ates is a direct extension of the two-level model and is there-
fore not included.

Two-Level Unconditional Model

For each grade and data set, we begin with an uncondi-
tional model. Following the Raudenbush and Bryk (2002) 
notation, the Level 1 model is

Y r r Nij j ij ij= + ( )β σ0 0, ~ , ,2  (1)

for i ∈ {1, 2, . . . , n} persons per cluster j ∈ {1, 2, . . . , J} 
clusters, where Yij is the outcome for person i in cluster j, β0j 
is the mean for cluster j, rij is the error associated with each 

TABLE 1
Grades in Which Assessments Are Conducted, by Subject and State

Achievement outcome

Science Reading Math

Region Assessment Timing 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12

MI MEAP Fall X X X X X X X X X X X X X X  
 MME Spring X X X  
TX TAKS Spring X X X X X X X X X X X X X X X X X X X X X X  
WI WKCE Fall X X X X X X X X X X X X X X X X X  

Note. MI = Michigan; TX = Texas; WI = Wisconsin; MEAP = Michigan Educational Assessment Program; MME = Michigan Merit Exam; TAKS = Texas 
Assessment of Knowledge and Skills; WKCE = Wisconsin Knowledge and Concepts Exam.
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person, and σ2 is the within-cluster variance. The Level 2 
model, or cluster-level model, is

β γ τ0 00 0 0 000j j ju u N= + ( ), ~ , ,  (2)

where γ00 is the grand mean, u0j is the random effect asso-
ciated with each cluster, and τ00 is the variance between clus-
ters. The mixed model is

Y u r u N r Nij j ij j ij= + + ( ) ( )γ τ σ00 0 0 000 0, ~ , , ~ , .2  (3)

The ICC (ρ) and corresponding standard error for a large, 
balanced (i.e., an equal number of students per school) sam-
ple are

ρ
τ

τ σ
ρ

ρ

σ τ
=

+
( ) ( )

( )
00

00
2

SE =
- v

+

1
2
2

2
00

2  (4)

where v2 is the variance of the estimate of τ00 (Donner & 
Koval, 1982; Hedges, Hedberg, & Kuyper, 2012).

Three-Level Unconditional Model

The three-level model is a natural extension of the two-
level model; hence, we omit the presentation of each level 
individually and present only the mixed model. The uncon-
ditional mixed model is

Y u r e

u N r N e N

ijk k jk ijk

k jk ijk

= + + +

( ) ( )
γ

τ τβ π

000 00 0

00 00 0 0

,

~ , , ~ , , ~ ,, .σ2( )  (5)

Note that in a three-level model, there are two ICCs 
because there are three variance components. Following 
Hedges et al. (2012), the Level 2 and Level 3 ICC and cor-
responding standard error—assuming a large, balanced (i.e., 
an equal number of students per school) sample—are
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where v2 and v3 are the variances of the estimate of τπ and 
τβ, respectively, and J is the harmonic mean number of 
schools per district.

Two-Level Conditional Models

In order to explain the variance in the outcome and obtain 
a more precise estimate of the treatment effect, we include 
covariates. Depending on the availability of data, covariates 
can occur at Level 1 or Level 2. In this study we consider 
covariates at both Level 1 and Level 2. We do not center the 
covariates in our models as the choice of centering will not 
impact the estimates of the variance components in the mod-
els we consider. However, it is important to note that in anal-
yses that seek to estimate the effect of an intervention, 
centering does impact the coefficients and interpretation of 
these estimates. In cases when we use a student-level covari-
ate, the aggregated covariate at the school level (school 
mean) is also included. The Level 1 covariates we consider 
include student-level pretests and student-level demograph-
ics, such as gender or free/reduced-price lunch status. We 
also explored cases with no Level 1 covariate and only a 
Level 2 covariate, such as school mean scores from the pre-
vious year, as a previous year’s school mean is a common 
covariate used in the design of CRTs (Bloom, Richburg-
Hayes, & Rebeck-Black, 2007).

For illustration purposes, we provide the models that include 
both student-level covariates at Level 1 and the corresponding 
aggregate school-level covariates at Level 2. The models easily 
extend to cases with covariates at only higher levels and to 
three-level models. Building from Equation (1), the Level 1 
model with student-level covariates can be written as

Y = + r , r ~ N( , )ij j ij ij |XQ
β β0

20q qj qijX +∑ σ  (8)

for i ∈ {1, 2, . . . , n} persons per cluster j ∈ {1, 2, . . . , J}, 
clusters, where Yij is the outcome for person i in cluster j, β0j 
is the adjusted mean for cluster j, Xqij is the value of the qth 
student-level covariate for student i in school j, βqj is the 
coefficient associated with the qth covariate for school j, rij is 
the residual error associated with each person conditional on 
the Q covariates, and σ|XQ

2  is the residual within-cluster 
variance.

The new Level 2 model, or cluster-level model, is

β γ γ τ0 00 0 0 0j j j |W= + u u ~ N( , )
ss s sjW0 +∑  (9)

β γqj q= 0

where γ00 is the adjusted grand mean, Wsj is the value of 
the sth school-level covariate for school j, γ0s is the coeffi-
cient associated with the sth school-level covariate; u0j is the 
residual error associated with each cluster conditional on the 
S covariates, and τ|Ws

is the residual variance between 
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clusters. Note that we assume the Level 1 covariates are 
fixed and γq0 represents the mean coefficient associated with 
the qth covariate.

We calculate the proportion of variance explained at 
Level 1 (R2

L1) and at Level 2 (R2
L2). The R2 values are esti-

mated following the procedure of Hedges and Hedberg 
(2007):

R =
-

R =
-

L

|X

L
|WQ S

1
2

2 2

2 2
2 00

00

and
σ σ

σ

τ τ

τ
 (10)

Note that if a covariate is included only at Level 2, for 
example, last year’s school mean, there is no R2

L1 because 
the Level 1 variance will not be reduced if there is only a 
Level 2 covariate.

Analyses

As noted in Table 1, each state has its own pattern for test-
ing science. Wisconsin is the only state in our data set that 
tested in Grade 4. For all other grades, there are a minimum 
of two states represented, with the exception of Grade 8, in 
which all three states are applicable. We estimate ICCs for 
the two-level and three-level models for each data set in each 

grade. Within each state and grade, we perform a simple 
average on the ICC estimates and standard errors across the 
number of years available in the state database.

The R2s we are able to estimate are partially dependent on 
the specific testing pattern within a state. Table 3 displays 
the potential covariate sets we explore and identifies the spe-
cific data sets that are applicable in each case. For each grade 
and data set in which we have science test scores, we exam-
ine the explanatory power of the set of student demograph-
ics, the 1-year lag school-level science scores, the 1-year lag 
school-level reading scores, and the 1-year lag school-level 
mathematics scores. Although we could also access the 2- or 
3-year school-level lag scores, we do not go beyond the 
1-year lag scores since recent work suggests that the strength 
of the covariates decreases over time (Bloom et al., 2007). 
Thus, if the 1-year lag school-level scores are available, we 
do not proceed to the 2-year lag scores. However, for the 
student-level lag scores, we do not always have a 1-year lag 
score available and, thus, opt for the most recent student-
level lag scores. For the student-level lag scores in a differ-
ent subject, reading or mathematics, 1-year lag scores are 
available for Grades 4, 5, and 8 for the states that test in these 
grades. This is because students are tested in reading and 
mathematics in the previous grade in each of these cases. 

TABLE 3
States in Which Covariate Models for Science Achievement Are Estimated by Grade

Grade

Covariate Years lagged 4 5 8 10 11

Demographics 0 WIf MId, TXe MId, TXe, WIf TXe, WIf MId, TXe

Most recent school-level pretest  
 Science 1 WIe MIc, TXd MIc, TXd, WIe TXd, WIe MIc, TXd

 Reading 1 WIe MIc, TXd MIc, TXd, WIe TXd, WIe MIc, TXd

 Math 1 WIe MIc, TXd MIc, TXd, WIe TXd, WIe MIc, TXd

Most recent student-level pretest  
 Science 1 TXd

 2 TXc, WId  
 3 MIa, TXb MIa

 4 WIb  
 Reading 1 WIe MIc, TXd MIc, TXd, WIe TXd TXd

 2 WId  
 3 MIa

 Math 1 WIe MIc, TXd MIc, TXd, WIe TXd TXd

 2 WId  
 3 MIa

Note. MI = Michigan; TX = Texas; WI = Wisconsin.
aAvailable for the outcome year 2010-2011.
bAvailable for the two outcome years 2009-2010 and 2010-2011.
cAvailable for the three outcome years 2008-2009 to 2010-2011.
dAvailable for the four outcome years 2007-2008 to 2010-2011.
eAvailable for the five outcome years 2006-2007 to 2010-2011.
fAvailable for the six outcome years 2005-2006 to 2010-2011.
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However, for the upper grades, 10 and 11, this is not always 
the case. In Grade 10, the most recent student-level mathe-
matics or reading pretest is a 2-year lag. In Texas, for Grade 
11, there is a 1-year student-level lag available in reading 
and mathematics, since each subject is also tested in Grade 
10. In Michigan, the most recent student-level lag using 
reading or mathematics is a 3-year lag.

Similar to the ICC analyses, we present a simple average 
on the R2 estimates across the years of data available within 
each data set. From other empirical work, we would imagine 
that the 1-year lagged student-level science score would be 
the strongest covariate (Hedges & Hedberg, 2007). However, 
this option is available only for Texas at Grade 11. In all 
other combinations of grades and data sets, the most recent 
lag science scores is either 2 years (Texas and Wisconsin), 3 
years (Michigan and Texas Grade 8), or 4 years (Wisconsin 
Grade 8) or does not exist (Grades 4 and 5 for any state). 
Although we considered the model with both demographics 
and pretests, the additional value of having both was mini-
mal, so in the interest of space, we do not present these 
results.

Results

We begin with the ICCs for the two- and three-level 
unconditional models followed by the R2 for the different 
covariate sets.

Intraclass Correlations

Table 4 reports the ICCs for the two-level models for sci-
ence outcomes. The ICC ranges from a low of 0.172 (Texas 
Grade 8) to a high of 0.312 (Michigan Grade 11). In other 
words, in Texas Grade 8, 17% of the variance in science test 
scores is between schools, whereas it is much higher in 

Michigan Grade 11, at 31%. In general, the ICC is lower in 
Texas than in Michigan and Wisconsin for grades in which 
the three states tested science. Another way of stating this is 
that there is less variability in science achievement between 
schools in Texas. We can also look for trends across the 
grades. In Michigan and Wisconsin, there appears to be 
more variance between schools (higher ICC estimates) for 
middle and high school grades than for the elementary 
grades. However, for Texas, the ICCs were similar across all 
grades.

The unconditional ICCs for the three-level models, stu-
dents nested in schools nested in districts, are reported in 
Table 5. The pattern in the ICCs for Texas and Wisconsin is 
similar. In both states, the school-level variance is always 
larger than the district-level variance, ranging from almost 
twice as large to nearly 3 times as large. For example, in 
Texas in Grade 5, the results suggest that approximately 8% 
of the variance in science test scores is between districts, 
12% is between schools within districts, and the remaining 
80% is between students within schools. That is, there is 
more variability in science achievement between schools 
within a district than between districts. However, the pattern 
differs in Michigan. In Grade 5, the ICC at the district level 
is nearly twice as large as that at the school level, suggesting 
there is more variability between districts in Michigan than 
within districts. In Grade 8, the school-level variance and the 
district-level variance are very similar. And at Grade 11, 
similar to the other states, there is more variance at the 
school level than at the district level. However, the order of 
magnitude is much larger than in other states.

Percentage of Variance Explained

As identified in Table 3, we examined the strength of the 
following three sets of covariates: demographics, school-
level pretests, and student-level pretests. We present the 
results in this order since demographics are available for all 
grades and data sets, school-level pretests are available for 
all grades, and student-level pretests are less available across 
the grades and states. The results for the two-level and three-
level models are presented in this section.

Table 6 presents the R2 values for the set of demographic 
covariates. Across all grades, databases, and both models, 
less than 15% of the variance in students’ science test scores 
within schools is explained by the demographics. In essence, 
student demographics do not explain a large percentage of 
the variation in student outcomes within a school. In the 
two-level model, the explanatory power of the demograph-
ics is much larger at the school level. However, the magni-
tude of the variance explained at the school level seems to 
vary across states. In Michigan and Wisconsin, the percent-
age of variance explained by demographics is generally 
larger than in Texas. In general, within each state, the 
explanatory power of the demographic covariates does not 

TABLE 4
Unconditional School-Level ICC Averages for Science 
Achievement Outcomes by Grade and State: Two-Level Model

Michigana Texasb Wisconsinc

Grade ICC SE ICC SE ICC SE

 4 .190 .007
 5 .261 .007 .191 .004  
 8 .261 .009 .172 .005 .256 .012
10 .196 .007 .251 .013
11 .312 .011 .191 .007  

Note. ICC = intraclass correlation.
aUnconditional ICCs for Michigan are averages across 4 years of data 
(2007-2008 through 2010-2011).
bUnconditional ICCs for Texas are averages across 5 years of data (2006-
2007 through 2010-2011).
cUnconditional ICCs for Wisconsin are averages across 6 years of data 
(2005-2006 through 2010-2011).
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vary much across grades. A similar pattern holds for the 
results from the three-level model. In general, there appears 
to be more consistency across grades within a state and more 
variability across states with respect to the explanatory 
power of demographics at the school and district levels.

We present the results for the school-level pretests for sci-
ence, reading, and mathematics in Table 7. Note that because 
these are school-level covariates, variation at the student 
level cannot be explained. We begin by comparing the results 
by subject of the pretest for the two-level model. For exam-
ple, in Grade 5 in Michigan, the percentage of variance 
explained by the school-level science pretest is higher than 
for the reading or mathematics pretest. In fact, in every grade 
within each of the three states, the science pretest explains 
more variability than either the reading or mathematics pre-
test. This holds in the three-level model as well, where the 

explanatory power of the school-level science pretest 
exceeds any other subject pretest at both the school and dis-
trict level. These findings are similar to recent work that 
found that same-subject pretests are more powerful than pre-
tests from another subject (Bloom et al., 2007). There also 
appear to be some trends by state. In each within-grade com-
parison, the explanatory power of the school-level pretest in 
Texas, regardless of subject, is less than that of Michigan or 
Wisconsin, although the magnitude of the difference is small 
in some cases (i.e., Grade 8 Michigan and Texas.)

The results for the most recent student-level pretest from 
each of the three subjects are in Table 8. It is important to 
keep in mind that the lag on the pretest may be 1, 2, 3, or even 
4 years depending upon the specific state, grade, and pretest 
of interest. Thus, we cannot do a simple comparison within 
each state or within a grade, as we did in previous tables. 

TABLE 5
Unconditional School-Level and District-Level ICC Averages for Science Achievement Outcomes by Grade and State: Three-Level 
Model

Michigana Texasb Wisconsinc

Grade ICCL2 SE ICCL3 SE ICCL2 SE ICCL3 SE ICCL2 SE ICCL3 SE

 4 .095 .005 .037 .005
 5 .076 .004 .146 .010 .118 .003 .079 .007  
 8 .102 .009 .117 .011 .104 .005 .060 .007 .107 .008 .036 .006
10 .136 .008 .055 .008 .079 .008 .042 .006
11 .270 .013 .031 .008 .127 .008 .059 .008     

Note. ICC = intraclass correlation.
aUnconditional ICCs for Michigan are averages across 4 years of data (2007-2008 through 2010-2011).
bUnconditional ICCs for Texas are averages across 5 years of data (2006-2007 through 2010-2011).
cUnconditional ICCs for Wisconsin are averages across 6 years of data (2005-2006 through 2010-2011).

TABLE 6
Average R2 Values for Demographics Covariates in Two-Level and Three-Level Models by Grade and State

Two-level HLMd Three-level HLMe

 Michigana Texasb Wisconsinc Michigana Texasb Wisconsinc

Grade R2
L1 R2

L2 R2
L1 R2

L2 R2
L1 R2

L2 R2
L1 R2

L2 R2
L3 R2

L1 R2
L2 R2

L3 R2
L1 R2

L2 R2
L3

 4 .079 .798 .079 .638 .815
 5 .068 .799 .103 .527 .069 .499 .883 .103 .507 .498  
 8 .073 .782 .134 .615 .106 .842 .073 .554 .885 .134 .663 .458 .107 .625 .889
10 .128 .615 .117 .856 .128 .609 .665 .118 .559 .875
11 .069 .645 .130 .598 .069 .635 .950 .130 .616 .618  

Note. HLM = hierarchical linear model.
aR2 for demographics covariates for Michigan are averages across 4 years of data (2007-2008 through 2010-2011).
bR2 for demographics covariates for Texas are averages across 5 years of data (2006-2007 through 2010-2011).
cR2 for demographics covariates for Wisconsin are averages across 6 years of data (2005-2006 through 2010-2011).
dThe two-level model refers to a conditional HLM with students nested in schools. Student demographic covariate variable set is included at Level 1 and 
aggregated at Level 2.
eThe three-level model refers to a conditional HLM with students nested in schools nested in districts. Student demographic covariate variable set is included 
at Level 1 and aggregated at Level 2 and Level 3.
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However, there are several comparisons to consider. First, we 
can examine the R2 for the different subjects with the same-
length lag. For example, in Michigan in Grade 11, a 3-year 
lag is the first available student-level lag for science, reading, 
and mathematics. For each subject in the two- and three-level 
models, the science pretest explains more variability than the 
reading or mathematics pretest at the student, school, and dis-
trict levels. The pattern can also be tested by examining the 
1-year lag for Texas at Grade 11, which is available for all 
subject areas, as well as the 2-year lag for Wisconsin at Grade 
10. In each of these cases, the science pretest explains more 
variance at the top level of the model than the pretest in any 
other subject. It is also important to note that for the first 
grade science is tested, typically Grade 4 or 5, a student-level 
science pretest will not be available.

It is also interesting to examine the explanatory power in 
the case when the time lag for a science pretest is greater than 
the time lag for a reading or mathematics pretest. For exam-
ple, in Grade 8 in Michigan and Texas, the first available time 
lag for a science pretest is 3 years. However, the mathematics 
and reading pretests for Grade 8 are available at 1 year. In the 

majority of the cases, the 1-year lag mathematics or reading 
pretest options explained more variation at the student, 
school, or district level than the 3-year lag science pretest. 
Given that in many cases the 1-year lag from a different sub-
ject had more explanatory power and may be more accessible 
than the 3-year lag of the same subject, it seems reasonable to 
consider the shorter lag for a different subject pretest as a 
viable covariate to increase the power of a study.

Looking Across Covariate Sets

We presented R2 values from three different types of 
covariate sets: demographics, school-level pretests, and stu-
dent-level pretests. Looking across Tables 6 through 8, we 
can compare the explanatory power of the different covariate 
sets. In the one case in which a 1-year lag student-level sci-
ence pretest was available (Texas in Grade 11), it explains 
more variance than any other covariate set at the school level 
and district level (in the case of the three-level model). In all 
other cases, the explanatory power of the 1-year lag school-
level science pretest was greater than any other student-level 

TABLE 7
Average R2 Values for Most Recent School-Level Pretest Covariates in Two-Level and Three-Level Models by Subject, Grade, and State

Two-level HLMd Three-level HLMe

 Michigana Texasb Wisconsinc Michigana Texasb Wisconsinc

Grade R2
L2 R2

L2 R2
L2 R2

L2 R2
L3 R2

L2 R2
L3 R2

L2 R2
L3

Science  
  4 .821 .682 .880
  5 .832 .675 .541 .971 .546 .917  
  8 .837 .802 .908 .642 .946 .739 .856 .817 .844
 10 .868 .916 .858 .859 .818 .798
 11 .934 .866 .942 .844 .865 .836  
Reading  
  4 .770 .619 .818
  5 .764 .582 .416 .918 .472 .713  
  8 .693 .658 .843 .467 .857 .619 .623 .749 .688
 10 .629 .850 .634 .525 .753 .639
 11 .876 .584 .893 .743 .583 .586  
Mathematics  
  4 .699 .575 .609
  5 .622 .569 .396 .657 .440 .755  
  8 .717 .671 .782 .509 .780 .630 .617 .682 .567
 10 .761 .859 .797 .581 .789 .632
 11 .904 .783 .928 .692 .803 .679  

Note. HLM = hierarchical linear model
aR2 for 1-year lagged school-level pretest covariates for Michigan are averages across 3 years of data (2008-2009 through 2010-2011).
bR2 for 1-year lagged school-level pretest covariates for Texas are averages across 4 years of data (2007-2008 through 2010-2011).
cR2 for 1-year lagged school-level pretest covariates for Wisconsin are averages across 5 years of data (2006-2007 through 2010-2011).
dThe two-level model refers to a conditional HLM with students nested in schools. School mean pretest covariates are included at Level 2.
eThe three-level model refers to a conditional HLM with students nested in schools nested in districts. School mean pretest covariates are included at Level 
2 and aggregated at Level 3.
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pretest or the set of demographics. Given the fact that science 
is not typically tested annually and hence it is rare that there 
is a 1-year lag student-level science pretest available, the 
1-year lag school-level science pretest is often the best option.

In addition to the empirical estimates of the R2, which sup-
port the use of the 1-year lag school-level science pretest, 
there are other factors that also lead to this covariate set as a 
strong option. First, although the student-level pretest does 
explain variation at the student level, the key variation in a 

CRT that needs to be explained to increase the power of the 
study is at the level of randomization. Hence, more weight 
should be given to the covariate set that explains the most 
variation at Level 2 in a two-level design or Level 3 in a 
three-level design, unless the number of units at this level is 
small. Konstantopoulos (2012) notes that the decrease in 
degrees of freedom resulting from adding a covariate at the 
level of randomization can reduce statistical power. Second, 
individual students’ past-year test scores and demographics 

TABLE 8
R2 Values for Most Recent Student-Level Pretest Covariates in Two-Level and Three-Level Models by Subject, Grade, and State

Two-level HLMd Three-level HLMe

 Michigana Texasb Wisconsinc Michigana Texasb Wisconsinc

Grade R2
L1 R2

L2 R2
L1 R2

L2 R2
L1 R2

L2 R2
L1 R2

L2 R2
L3 R2

L1 R2
L2 R2

L3 R2
L1 R2

L2 R2
L3

Science  
 4  
 5  
 8 .413 .797 .297 .640 .418 .868 .413 .693 .783 .297 .630 .565 .418 .789 .744
 10 .470 .806 .537 .899 .470 .817 .740 .537 .803 .777
 11 .450 .881 .505 .912 .450 .904 .774 .505 .903 .922  
Reading  
 4 .526 .836 .527 .727 .875
 5 .429 .846 .268 .634 .429 .598 .944 .268 .558 .713  
 8 .419 .835 .319 .745 .515 .911 .419 .677 .895 .319 .758 .605 .515 .829 .830
 10 .167 .664 .377 .682 .167 .688 .550 .446 .804 .634
 11 .273 .815 .191 .707 .273 .825 .761 .191 .678 .729  
Mathematics  
 4 .453 .760 .453 .662 .676
 5 .400 .736 .270 .628 .400 .529 .789 .270 .522 .747  
 8 .441 .761 .413 .754 .436 .828 .441 .580 .784 .413 .714 .741 .436 .763 .560
 10 .439 .839 .368 .643 .439 .865 .718 .462 .758 .532
 11 .419 .832 .445 .817 .419 .873 .654 .445 .827 .758  

Note. HLM = hierarchical linear model.
aMost recent student-level science pretest covariate for science achievement outcome in Grades 8 and 11 for Michigan is a 3-year lag; R2 represents 1 year of 
data (2010-2011). Most recent student-level reading and mathematics pretest covariates for science achievement outcomes in Grades 5 and 8 for Michigan 
are a 1-year lag; R2 represents an average of 3 years of data (2008-2009 through 2010-2011). Most recent student-level reading and mathematics pretest 
covariates for science achievement outcome in Grade 11 for Michigan are a 2-year lag; R2 represents an average of 2 years of data (2009-2010 through 
2010-2011).
bMost recent student-level science pretest covariate for science achievement outcome in Grade 8 for Texas is a 3-year lag; R2 represents average across 2 
years of data (2009-2010 through 2010-2011). Most recent student-level science pretest covariate for science achievement outcome in Grade 10 for Texas 
is a 2-year lag; R2 represents average across 3 years of data (2008-2009 through 2010-2011). Most recent student-level science pretest covariate for sci-
ence achievement outcome in Grade 11 for Texas is a 1-year lag; R2 represents average across 4 years of data (2007-2008 through 2010-2011). Most recent 
student-level reading and mathematics pretest covariates for science achievement outcomes in Grades 5, 8, and 11 for Texas are a 1-year lag; R2 represents 
average across 4 years of data (2007-2008 through 2010-2011).
cMost recent student-level science pretest covariate for science achievement outcomes in Grade 8 for Wisconsin is a 4-year lag; R2 represents average across 3 
years of data (2008-2009 through 2010-2011). Most recent student-level science pretest covariate for science achievement outcome in Grade 10 for Wiscon-
sin is a 2-year lag; R2 represents averages across 5 years of data (2007-2008 through 2010-2011). Most recent student-level reading and mathematics pretest 
covariates for science achievement outcomes in Grades 5 and 8 for Wisconsin are a 1-year lag; R2 represents averages across 6 years of data (2006-2007 
through 2010-2011). Most recent student-level reading and mathematics pretest covariates for science achievement outcome in Grade 10 for Wisconsin is a 
2-year lag; R2 represents averages across 5 years of data (2007-2008 through 2010-2011).
dThe two-level model refers to a conditional HLM with students nested in schools. Student-level pretest covariate is included at Level 1 and aggregated at 
Level 2.
eThe three-level model refers to a conditional HLM with students nested in schools nested in districts. Student-level pretest covariate is included at Level 1 
and aggregated at Level 2 and Level 3.
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may be costly to obtain, whereas school-level pretest scores 
may be more readily available from the school administrators 
or a website. This will help reduce costs, a critical factor, 
since CRTs are often very expensive (Konstantopoulos, 
2009). Next we provide two applications of how these empir-
ical estimates can be used in the design of a two-level CRT.

Applications

The design parameters in Tables 4 through 8 can be used 
in planning science impact studies. Suppose that a team of 
science researchers are designing a study to test the efficacy 
of a new science curriculum for fifth graders in the state of 
Michigan. They plan to randomly assign entire schools to 
either the new curriculum or the current curriculum. There 
are approximately 125 fifth graders per school. Given the 
budgetary constraints of the project, the team is limited to 40 
schools and plans to randomly assign half to treatment and 
half to the comparison group. The team has a fixed number 
of schools, which is common in practice, given access to 
schools and budgetary constraints (Taylor et al., 2013). 
Hence the goal of the power analysis is to determine the 
smallest effect than has an 80% chance of being found to be 
statistically significant, also known as the minimum detect-
able effect size (MDES; Bloom, 1995). Then the team can 
evaluate whether the MDES is reasonable, given the inter-
vention being tested.

Determining whether the MDES is appropriate is not an 
easy task. Based on a review of 76 meta-analyses of studies 
of educational interventions, Hill, Bloom, Rebeck-Black, 
and Lipsey (2008) found mean treatment effect sizes in the 
0.20-to-0.30 range. For science interventions, the Slavin 
et al. (2014) review of elementary science programs found 
average treatment effects ranging from 0.03 to 0.42. 
Although larger effect sizes are appealing to researchers 
because they require fewer clusters, it is important to think 
through the ramifications of designing a study with too large 
of an MDES. For example, suppose that a study is designed 
to detect an MDES of 0.40. This means that the study has 
adequate power to detect an effect of 0.40 or higher, but it is 
not powered to detect an effect smaller than 0.40. Hence if 
the true effect is in the range noted by Hill et al., the study 
would be underpowered and the researchers may incorrectly 
conclude that the treatment had no effect.

For the power analysis, assume that the researchers use 
Optimal Design Plus (OD Plus; Raudenbush et al., 2011) to 
calculate the MDES. Estimates of the ICC and R2 are neces-
sary input parameters for calculating the MDES. Given that 
they are working with fifth graders in Michigan and the 
results in Table 4 include estimates for a two-level model for 
fifth graders from Michigan, they estimate an ICC of 0.261. 
Next, the researchers must choose which covariate set they 
plan to use. Looking through Tables 6 through 8 for specific 
estimates for Michigan Grade 5, the options include student 

demographics; 1-year lag school-level pretest for science, 
reading, or mathematics; and 1-year lag student-level pretest 
for mathematics or reading. The explanatory power of the 
covariate sets at the school level for the different options 
range from 0.622 up to 0.846. Note that the higher the 
explanatory power of the covariate(s), the smaller the 
MDES. However, differences in the MDES for a covariate 
that explains 82% of the variance compared to 84% of the 
variance will be minimal, and other factors should also be 
considered. In this case, approximately 83.2% of the vari-
ance in science test scores can be explained with the previ-
ous year’s school-level pretest. The only covariate set with 
greater explanatory power is the 1-year lag student-level 
reading test at 84.6%. The difference in explanatory power 
of these two covariates is small compared to the potential 
difference in the cost of obtaining these two sets of covari-
ates. School-level science scores from the previous year are 
likely available via a website or very quickly from a school 
administrator. Individual student test score data from the 
previous year may be much more time-consuming and costly 
to obtain for all schools, if available at all. Thus, from a sta-
tistical and practical perspective, it makes sense to use the 
1-year lag school-level science scores. Using OD Plus, 
assuming 20 schools per condition, 125 students per school, 
an ICC of 0.261, and an R2 of 0.832, the MDES is 0.202. In 
other words, the study is powered at 0.80 to detect an effect 
of 0.202, at the lower end of the range suggested by Hill 
et al. (2008).

In the first application, the study location and the study 
design matched exactly to the information provided by our 
analyses. Naturally, this will not always be the case. In other 
scenarios, the desired design may be different. For example, 
the classroom level may be included in the study, making the 
levels of nesting different, or schools may be blocked by dis-
trict, resulting in a multisite cluster randomized trial 
(MSCRT) with districts as sites. Similarly, a different state 
or specific subset of schools within a specific state may be 
included in the study. The study may also involve a different 
grade that our current estimates do not cover. Although our 
results will not directly match the needs of every impact 
study design, we argue they can still provide useful informa-
tion for evaluating estimates of design parameters. Without 
estimates that align exactly with the proposed study, it is 
incumbent upon the researcher to cautiously utilize any 
available information to craft the best argument possible for 
selecting design parameter estimates.

For example, suppose that the new fifth-grade science 
curriculum also had an eighth-grade curriculum. The 
research team wants to test the efficacy of the eighth-grade 
curriculum and plans to conduct a two-level CRT with stu-
dents nested within schools. The budget allows for a total of 
30 schools, 15 in the treatment condition and 15 continuing 
with the current science curriculum, and 300 kids per school. 
The team plans to recruit schools from the state of Ohio. The 
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researchers want to know the MDES, given the current size 
of the study.

In this case, the estimates of the design parameters in 
Tables 4 through 8 do not directly match since the estimates 
for Ohio are not included in the tables. However, the design 
parameters can still be used to guide the estimates. One 
option is to examine the student population in Ohio and the 
configuration of the schools and districts to try to determine 
if Ohio is more similar to any of the three states included in 
our analyses. This might include an examination of things 
like average district size, prior achievement, percentage 
free/reduced-price lunch, percentage minority, and so on. In 
many cases, these data are available through state-specific 
websites or the Common Core of Data (www.ncer.ed.gov/
ccd/). If Ohio seems similar to any of the three states in the 
tables, the research team could make a case to use empirical 
estimates from that state. However, caution is advised, as 
without further examples of estimates from other states, it is 
unknown which factors are the most essential to consider 
when comparing states. An additional option is to use a point 
estimate (e.g., the mean, weighted mean, median, or lower/
upper bound of the estimated confidence interval) across 
states of the design parameters presented in this article. In 
this scenario, it is important to consider the representative-
ness of these three states, as it is unknown, for example, 
whether any of the three states constitutes an extreme case. 
For illustrative purposes, we will select the (simple) mean 
ICC value, 0.230, for our example power calculation.

The choice of covariate sets also needs to be considered. 
Looking across Tables 6 through 8 at Grade 8, it appears that 
the percentage of variance explained by the student-level 
pretests is very similar to that of the school-level science 
pretests. Given the additional time and cost to collect stu-
dent-level pretests, we proceed with the previous year’s 
school-level science scores (Table 7). Similar to the ICC, we 
might choose to justify a point estimate for the percentage of 
variance explained by the school-level pretest. Across the 
three states, the mean value is 0.849. Combining the mean 
ICC with the mean percentage of variance explained by the 
school-level pretest, we can calculate the MDES. In this 
case, the MDES estimate is 0.205.

Discussion

Across education, there is an emphasis on rigorous 
research to test the impact of programs and practices. Some 
argue that science education lags behind other fields in 
responding to this call (e.g., Minner, Levy, & Century, 2010; 
Slavin et al., 2014). However, given the recent release of the 
Guidelines and the federal emphasis on impact studies for 
determining the effectiveness of educational interventions, 
we expect that we will continue to see more science educa-
tion impact studies. It is critical that all impact studies be 
well designed and adequately powered to yield high-quality 

evidence of program effectiveness. In order to design ade-
quately powered impact studies of science interventions, 
teams planning these studies must estimate design parame-
ters to use in the power analyses. This article seeks to 
improve the accuracy of the power calculations by providing 
empirical estimates of design parameters for impact studies 
with science education outcomes. In this article, we focused 
on the decomposition of the variance in science test scores 
between districts and schools and the explanatory power for 
different covariate sets for planning two- and three-level 
CRTs.

In terms of the variance in science test scores between 
schools and districts, the empirical estimates suggest these 
estimates vary across states. On average, the estimates of the 
between-school and between-district variance from Texas 
were lower than both Wisconsin and Michigan. The variance 
between schools and between districts also appeared to vary 
across grades, with higher grades tending to have higher val-
ues. However, this pattern was not consistent across all 
states, and adding more states to the database would be help-
ful in testing this pattern.

We examined the empirical estimates of the percentage of 
variance explained along three dimensions: demographics, 
school-level pretests, and student-level pretests. In general, 
the explanatory power of the 1-year lag school-level science 
pretest was the highest. Given that school-level pretests are 
much less expensive and easier to obtain than student-level 
demographics or pretests, we suggest use of the 1-year lag 
school-level science scores.

The empirical estimates of design parameters provided in 
this article are meant to serve as a resource and a guide to 
designing impact studies. In any particular study, the true val-
ues of the design parameters may be different than the esti-
mated values. For example, the estimates for each state take 
into account all schools in the state. However, if the schools 
were selected from one large district within a state, the 
schools within that district may be more homogeneous than 
the schools across the entire state. Hence, characteristics of 
the sample of schools and the design itself should be consid-
ered when selecting the most appropriate design parameters.

The extant empirical work into design parameters for sci-
ence education impact studies is minimal compared to that 
focused on reading and mathematics education outcomes. 
Yet impact studies focused on science education outcomes 
are held to the same standards as those focused on reading 
and mathematics education outcomes. If rigorous evidence 
of the impact of science education interventions is to accu-
mulate and accumulate quickly, as suggested in the 
Guidelines document, science education researchers should 
seek to design studies that can detect substantively important 
effects. Hence, building a resource of design parameters spe-
cific to science education is a critical step toward moving 
forward the agenda to improve the rigor of impact studies in 
the field.

www.ncer.ed.gov/ccd/
www.ncer.ed.gov/ccd/
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Future Directions

To date, the current article represents the largest set of 
design parameters for teams planning impact studies focused 
on improving science outcomes. We see this as the begin-
ning of a resource for science education researchers plan-
ning such studies. However, there are several ways this 
resource can continue to grow.

One strategy is to encourage research teams to report the 
variance components and percentage of variance explained 
from covariate sets. Coupled with details on the sample of 
schools in the study, this may provide a useful resource for a 
team planning a similar study with a similar set of schools.

A second strategy is to update the design parameter esti-
mates with additional states and databases. Adding states 
and other databases may help elucidate the between-state 
patterns and clarify the potential trend toward more between 
school variance in the upper grades.

A third extension is to consider additional designs. In sci-
ence education, it is becoming more common to design stud-
ies to involve the teacher level. This includes three-level 
CRTs with students nested within teachers nested within 
schools and treatment assigned at the school level as well as 
MSCRTs with students nested within teachers and teachers 
assigned to treatment within schools (Heller et al., 2012). 
Hence, estimating design parameters that include the teacher 
level is important.

With the emergence of three-level CRTs that include a 
teacher level, estimating design parameter for studies with 
teacher outcomes of knowledge or practice become a fourth 
possible research focus in their own right. Recently, Kelcey 
and Phelps (2013) estimated design parameters for teacher 
outcomes related to mathematics and reading content knowl-
edge and practice and found they differed from student out-
comes. In fact, there was more clustering for teacher-level 
outcomes than for student-level outcomes. However, to date, 
there are no studies reporting design parameters relative to 
teacher-level outcomes for science.

Finally, the literature base would be enriched by future 
studies that explore why clustering effects can be quite strong 
and what variables might cause them to differ. For example, it 
is somewhat intuitive to posit that between-state differences in 
the percentage of variance at the school and district levels 
could be related to the fact that “neighborhood effects” are 
stronger in some states than others—more specifically, that 
student or school demographics are clustered differently 
across states (e.g., as a result of the state or local political, 
cultural, or economic conditions) and those demographic 
variables are strongly associated with outcomes. However, 
this explanation is not consistent with our observation that 
there is more variance between schools on science outcomes 
at high school than at elementary school. If the neighborhood 
effect were the only factor at play, then we might expect 
greater between-school variance for elementary schools than 
for high schools, as elementary schools tend to draw from a 

small number of adjacent neighborhoods and high schools 
tend to draw from a larger number of scattered neighborhoods 
with presumably more demographic diversity. This was not 
the case in this study. Perhaps there is a factor related to the 
high school curriculum or culture that results in students being 
more similar in achievement to their classmates than to other 
high school students, and this factor is less pronounced in 
elementary schools. Furthermore, it seems possible that dif-
ferences in the psychometric properties associated with the 
various state tests (across or even within states) could account 
for some of the variability in design parameters that we find 
across populations and grades. In summary, we suspect that 
the design of CRTs would benefit greatly from a set of rigor-
ous explorations of these interrelated phenomena.
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