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Abstract  Over the past 25 years, performance 
measurement has gained salience in higher education, and 
with the explosion of structured data and the impact of 
business analytics and intelligence systems, there are new 
angles by which big volumes of data can be analyzed. 
Using traditional analytical approaches, pairs of reciprocal 
cohorts are considered as two separate discrete entities; 
therefore, basis of analysis are individual pairs of values, 
using statistical measures such as average, mean or median, 
of the total population. Missing in traditional approaches is 
a holistic performance measure in which the shape of the 
comparable cohorts is being compared to the overall cohort 
population (vector-based analysis). The purpose of this 
research is to examine shape analysis, using a Cosine 
similarity measure to distil new perspectives on 
performance measures in higher education. Cosine 
similarity measures the angle between the two vectors, 
regardless of the impact of their magnitude. Therefore, the 
more similar behavior of the two comparing entities can be 
interpreted as more similar orientation or smaller angle 
between the two vectors. The efficacy of the proposed 
method is experimented on the three Colleges of RMIT 
University from 2011 to 2016, and analyzes the shape of 
different cohorts. The current research also compared the 
performance of Cosine similarity with two other distance 
measures: Euclidean and Manhattan distance. The 
experimental results, using vector-based techniques, 
provide new insights to analyzing patterns of student load 
distribution and provide additional angles by orientation 
instead of magnitude / volume comparison. 

Keywords  Student Load Pattern Distribution, 
Vector-based Analysis, Shape Analysis, Cosine Similarity 

1. Introduction
Australia’s higher education system has undertaken 

many successive market-driven reforms since the late 
1980s. These reforms together with the increased 
democratization of education both in terms of student 
participation and increased provision through institutional 

diversification has provided an impetus for greater 
utilization of the statistical information that institutions 
collect, and to better inform institutional decision making. 
Australia has had a robust and comprehensive data 
collection for many decades and that has enabled 
institutional researchers and planners undertake analysis of 
the vast amounts of data that is collected (Calderon 2015; 
Borden et al. 2013). 

With respect to the growth of stored structured data in 
educational organizations, specifically in higher education, 
the use of modern analytical tools that provide a holistic 
analysis of student load or headcount data is in increased 
demand due to competitive forces influencing higher 
education. For this analysis we make use of the term 
student load, and it is a measure that counts students in 
terms of full-time equivalence units (EFTSL). In the view 
of the Australian Department of Education an “EFTSL is 
an equivalent full-time student load for a year. It is a 
measure, in respect of a course of study, of the study load 
for a year of a student undertaking that course of study on a 
full-time basis’ (Department of Education and Training 
nd). 

Conventional student load analysis is basically 
comparing pairs of reciprocal cohorts which are 
summarized in the form of “Average” or “Sum” of series of 
data. The essence of such approaches is based on scalar 
interpretation which focuses on magnitude of results (Ma. 
Florecilla et al. 2017). However, scalar-interpretation 
analysis suffers from lack of vector information which 
represents the holistic similarity in distribution (shape) of 
compared data. As an example, trend analysis of 
educational load in consecutive years is useful to 
investigate the overall performance but does not represent 
the organizational load pattern. Or how to investigate the 
impact of policy changes in the performance of Colleges 
and schools, regardless of comparing their performance 
magnitude only. 

This research employed a mathematical concept for 
proposing a vector-based analysis, and looks at the series of 
data. Vectors have magnitude and directions and can help 
us to utilize a vector interpretation of data rather than 
conventional scalar interpretation which is based on 
magnitude only. However both are similar in format of data: 
a List (1-dimensional) or Tables (2-dimensional) of values. 
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Vector-based approach is utilized in image analysis to 
investigate the content-based similarity (distance) among 
the images. Images are 2-dimensional data in form of 
integer matrices. We applied a similar approach on 1- and 
2-dimensional data to investigate the similarity of 
performance in consecutive years or semesters. Shape 
analysis is a term which is applied to this approach in the 
current research.  

Two models are proposed in this research: Cosine 
similarity and Minkowsky distances (Euclidean and 
Manhattan). These two distance metrics are utilized in 
image analysis to investigate the similarity between 
content of images.  

The data utilized in this research is provided by RMIT 
University from 2010 to 2016. The total performance and 
shape analysis of a sample College of RMIT University is 
investigated in this research. 

In the next section, we introduce background and related 
works of the proposed method in detail. Methodology of 
shape analysis of load data is introduced in the third section. 
The fourth section is dedicated to the scalar versus vector 
analysis. The fifth Section is dedicated to analyzing the 
results and discussions for the two shape analysis models 
and finally the sixth section represents the conclusion of 
the current research. 

 

Figure 1.  Cosine similarity between two vectors: H1 and H2 by 
measuring the cosine of the Φ angle. The Euclidean and Manhattan 
distances between two points are shown in (b) & (c) respectively. 

This analysis provides an alternative lens by which 
institutional planners can further explain to decision 
makers’ changes in the student distribution as well as 
considering its effect on various cohorts. The other critical 
outcome of this research is that it challenges traditional 
approaches for examining student load distribution over 
time, and it suggests new possibilities that can be 
considered, e.g. where opportunities for growth in certain 
market segments have been inadvertently missed. 

2. Background and Related Works 
To measure the similarity between two vectors, 

measuring the cosine of the angles between the two vectors 
is a method known as cosine similarity (Huang 2008, Ye 
2011). The range of result is between -1 and 1. If the angle 
is zero, it shows the ultimate similarity between the two 
compared vectors, regardless of their magnitude, which the 
cosine similarity would be 1. Conversely when the two 

vectors are totally in opposite directions, the cosine angle 
would be -1. Two vertical vectors represent 0 similarities in 
this approach. Figure 1-a illustrates the cosine similarity 
between two vectors and Formula 1 shows how to calculate 
this similarity measure. 

𝐶𝐶𝐶𝐶𝐶𝐶(𝐻𝐻1,𝐻𝐻2) = 𝐻𝐻1.𝐻𝐻2
‖𝐻𝐻1‖.‖𝐻𝐻2‖

               

𝑆𝑆(𝐻𝐻1,𝐻𝐻2) = ∑ (𝐻𝐻1𝑖𝑖𝐻𝐻2𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�∑ 𝐻𝐻1𝑖𝑖
2𝑛𝑛

𝑖𝑖=1 �∑ 𝐻𝐻2𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

             (1)  

Formula 1 shows the cosine of the angle between two 
vectors H1 and H2 is equal to the dot product of the two 
vectors divided by the magnitude of them. The formula is 
expanded in S(H1, H2) where S represents the similarity of 
vectors H1 and H2. The components of the vectors are 
shown as H1i and H2i. 

There are other distance measures to investigate the 
similarity among two vectors (Rouhi 2015). Minkowski 
distance measures the distance between the two points or 
vectors. Two of the most popular Minkowski distances are 
Euclidean and Manhattan distance metrics (Huang 2008). 
To simplify the concept we can focus on the distance 
between two points in a 2-dimensional plane. Euclidean or 
L2 Norm, measures the straight line between the two points. 
Calculation of this distance is shown in Formula 2. 

 

Figure 2.  Content of an image in two modes; top in a colored 
image and bottom in a grey-level image 

𝐸𝐸𝐸𝐸(𝐻𝐻1,𝐻𝐻2) = �∑ (𝐻𝐻1𝑖𝑖 − 𝐻𝐻2𝑖𝑖)2𝑛𝑛
𝑖𝑖=1           (2) 

If H1 and H2 represent two vectors, the Ed (Euclidean 
distance) between the two vectors would be equal with the 
sum of squares of the differences of the corresponding 
components. The resulting value shows the straight 
distance between the two vectors or points. Figure 1-b 
shows Euclidean distance between two points: 1 and 2. 

For the same situation, the Manhattan distance 
represents the distance between the two vectors or 
points but strictly on horizontal and vertical paths, 
unlike Euclidean which utilizes the diagonal path. 
Figure 1-c and Formula 3 represent this distance. 

𝑀𝑀𝐸𝐸(𝐻𝐻1,𝐻𝐻2) = ∑ |(𝐻𝐻1𝑖𝑖 − 𝐻𝐻2𝑖𝑖) |𝑛𝑛
𝑖𝑖=1         (3) 

For H1 and H2 as two vectors, the Manhattan distance is 
defined as the sum of the absolute differences of the 
corresponding components of the two vectors. As can be 
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seen in Figure 1-c, the Manhattan distance is the simple 
sum of horizontal and vertical distances between two 
points in a 2-dimensional plane.  

One of the applications of cosine similarity and 
Minkowski distances are in content-based image 
processing (Russ 2016). Colored images are composed of 
three tables or matrices that contain integer values, 
representing the intensity of light for three basic color 
components: Red, Green and Blue. The same concept is 
used for grey-level images. The only difference is that grey 
level images utilize only a single matrix to store the 
intensity of light; 0 for black and 255 for white components 
which are known as pixels, unlike the colored images 
which are composed of three matrices. The integer values 
between 0 and 255 represent the different shades of grey 
(Hau 2015, Russ 2016). Figure 2 demonstrates the concept 
of colored (top) and grey-level (bottom) image. 

As depicted in Figure 2, an image is nothing more than 
matrices of integer values. Hence, the techniques that 
compare two images by calculating the similarity or 
distances between the two images can be used for any data 
which is represented as 2-dimensional vectors (tables). The 
authors of the current research utilized the idea from the 
content-based image similarity detection and implemented 
the models on educational student load data. The results 
show the cosine similarity can be utilized as a holistic 
performance measure or shape analysis tool in analysis of 
educational data. The details will be presented and 
discussed in the fifth section. 

3. Sample Applications 
As described in the previous section, a grey-level image 

is just an integer matrix. If similarity between the images 
can be implemented by help of mathematical distance 

measures, utilizing the same methods can therefore be 
implemented on any numeric matrices i.e. Actual student 
load, Target student load and Enrolment headcount of 
different cohorts in educational data warehouses. 

3.1. Student Load Analysis of a College/University 

To provide a platform for evaluating the proposed 
models for shape analysis, the performance of a college at 
RMIT University was selected as the pilot platform. A 
common approach is measuring the performance of the 
selected college by comparing scalar values representing 
student load (or headcount). However this approach is 
incapable of evaluating the similarity on load pattern 
distribution of the specified college which represents the 
college shape. 

To achieve this, the college student load data should be 
composed in the form of a matrix (table) for each year. The 
X-axis of the matrix can represent the Broad-levels of 
education (BLEVEL) or program codes and the Y-axis can 
represent the broad or narrow Fields of Education (FoEs). 
In such a composition, each element of the matrix 
represents the total student load of each Blevel or program 
by FoEs (narrow or broad). 

Providing the same matrix for each year of the college 
performance finally generate several matrices with similar 
number of rows and columns. It should be noted that if a 
FoE or Blevel or program does not exist in some years, it 
should appear in those matrices with zero values to make 
all matrices equal in size, similar number of rows and 
columns. Figure 3 illustrates student load distribution for a 
sample college in the two compositions; FoEs (narrow or 
broad) by programs (left) and FoEs (narrow or broad) by 
Blevels (right). The experiments conducted in the current 
research are based on narrow FoEs by Blevels. 

 

Figure 3.  Illustrating the performance of a sample college “A”, in two different years in matrix format. Two compositions are illustrated: narrow or 
broad FoEs by program codes and by broad-levels of education (BLEVEL). 
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Figure 4.  Conventional performance analysis of a sample college based on sum of load difference 

Table 1.  Total sum of student load for the sample college breakdown by Blevel and year 

Year RSCH PGRD UGRD Total(Year) 
2010 181 1542 4112 5835 
2011 215 1444 4699 6358 
2012 247 1361 4860 6468 
2013 290 1398 5425 7113 
2014 271 1347 5262 6880 
2015 315 1347 5048 6710 
2016 253 1407 5649 7309 

Total (Blevel) 1772 9846 35055  

Table 2.  Detailed load table of the sample college breakdown by narrow FoE, Blevel and year 

narrow 
FoE 

Year 2010 2011 … 2016 
Blevel RSCH PGRD UGRD RSCH PGRD UGRD RSCH PGRD UGRD RSCH PGRD UGRD 

010101 2 0 35 3 0 54 ... ... ... 0 0 34 
010103 0 20 14 1 30 23 ... ... ... 0 104 23 
010301 5 0 9 14 0 6 ... ... ... 21 19 8 

… … … … … … … … … … … … … 
061999 0 9 0 0 13 0 ... ... ... 0 7 0 
090799 0 7 0 0 17 0 … … … 3 7 213 
Total 181 1542 4112 215 1444 4699 … … … 253 1407 5649 

 

Figure 5.  Student load pattern distribution (shape) in two different models: a) 1-dimensional shape analysis by cosine similarity and, b) 2-dimensional 
shape analysis by Minkowski distances. Vectors are shown as H1 and H2. 
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3.1.1. Scalar- Versus Vector-based Student Load Analysis 
The student load (EFTSL) of a sample college at RMIT 

University has been selected to evaluate the proposed 
methods for shape analysis in different years. The three 
Blevels for each year are as follows: 
 Higher degree by research programs (RSCH) 
 Postgraduate by Coursework programs (PGRD) 

and 
 Undergraduate programs (UGRD). 

The original data is in the format of load by year and 
Blevel, presented in Table 1. Student load of each year is 
presented in format of a list (1-dimensional) of values in 
rows and columns. This format is normally used in 
conventional analysis models (Tinto 2006, Kuh 2008).  

The simple data structure in Table 1 is broken down by 
narrow FoEs and each year is represented as a matrix 
(2-dimensional) showing the load of FoEs by Blevels as 
shown in Table 2 partially. 

To investigate the performance of the specified college 
in each Blevel, the conventional model is comparing the 
sum of Blevels in each year. The graph shown in Figure 4 
illustrates the difference of the overall load, presented in 
Table 1, broken down by Blevels, by years. This approach 
can help us to analyze the trend and investigate about the 
performance growth rate. 

However conventional models are incapable of 
analyzing the student load based on the load pattern 
distribution. Such load distribution is demonstrated in 
Table 2 in the form of a list (colored columns) or sub-tables 

(tripled-line matrices) as well as in Figure 5. This 
characteristic is called Shape Analysis in this research and 
investigates the similarity of load pattern distribution in the 
columns or sub-tables of Table 2. Figure 5 depicts the 
student load distribution used for shape analysis in 
1-dimensional (4-a) and 2-dimensional (4-b) models. To 
compute shape analysis for Blevels, the cosine similarity, 
introduced in Formula 1, is used. In this approach each two 
comparable Blevels, i.e. 2010-RSCH and 2011-RSCH, are 
considered as two vectors: H1 and H2 which are 
highlighted in the same color in Table 2. Applying the 
cosine similarity provides the angle between the two 
vectors, regardless of their overall magnitude. 

The similarity in student load pattern is represented by 
similar increase or decrease of load in the corresponding 
pairs of FoEs, which finally represents similarity in the 
behavior of the specified college. The core competency of 
shape analysis is in vector interpretation of data which is 
independent of the overall magnitude of load in each 
category (scalar interpretation). 

3.1.2. Results and Discussion 

In this section a detailed comparison between the 
conventional and the proposed models is provided and 
discussed in two sub-sections. The first model provides a 
1-dimensional load analysis of the sample college on each 
Blevel. However the second model provides 2-dimensional 
load analyses of the college in a holistic approach including 
all the Blevels. 

 

Figure 6.  Shape analysis of a sample college based on cosine similarity. The similarity values are between -1 and 1, for minimum and maximum 
similarity in performance of the college. 
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3.1.2.1. Cosine-similarity Model for 1-dimensional 
Student Load Analysis 

The conventional student load analysis on Blevels is 
based on the difference of overall magnitude of Blevels on 
pairs of years. The results of this method are demonstrated 
in Figure 4 which is derived from the sum of loads 
provided in Table 1. As an example, for UGRD load 
analysis based on the conventional model, Figure 4 reveals 
that the maximum load reduction can be seen in the 
2014-15 years with negative growth of -214 EFTSL. 

Conversely for the same UGRD programs, the 
maximum increase of load can be seen in 2015-16 with 
positive growth of +614 EFTSL. Based on the 
conventional model, the most significant fluctuation of 
UGRD programs can be seen in these two pairs of years.  

The proposed model based on cosine similarity shown in 
Figure 6 reveals another aspect which does not conform to 
conventional load analysis shown in Figure 4. The graph in 
Fig (5) shows the UGRD programs in the same paired 
years (2014-15 and 2015-16), have a cosine similarity near 
to 1, which reveals the shape of the college has been almost 
identical in those pairs of years. The cosine similarity value 
for UGRD programs in 2014-15 and 2015-16, is 0.99 and 
0.98 respectively which shows the angle between the two 
vectors is almost zero, similarly for 2015-UGRD and 
2016-UGRD. From an analytical point of view, the higher 
values in cosine similarity represent the lower changes in 
distribution of load among compared pairs of cohorts. It 
shows that the college has similar pattern in increasing or 
decreasing of load among UGRD FoEs. In other words, the 
college behaves in similar shape for UGRD programs. 

 

Figure 7.  Comparing pairwise student load of a sample college by Euclidean (solid-bars) versus conventional sum of load (crossed-bars ) 
from 2010 to 2016. 

 

Figure 8.  Comparing pairwise load of a sample college by Manhattan (solid-bars) versus conventional sum of load (crossed-bars) fro m 
2010 to 2016. 
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Another example is the RSCH programs in 2013-14. The 
overall magnitude in RSCH programs, between 
RSCH-2013 and RSCH-2014 is -19 which is the lowest. 
Conversely the college shows the maximum change in its 
shape due to minimum value of cosine similarity: 0.64, 
compared to the previous and following years. This can be 
the result of offering new FoEs or significant load change 
in some of the research programs in the FoEs of these two 
years. 

As can be seen in Figure 5-a, this model analyzes the 
distribution of student load by Blevels individually and 
consequently the magnitude of load among Blevels does 
not skew the analysis results.  

The significant aspect of the proposed model is its 
independency of overall sum of load. Such tolerance 
against the load magnitude is the core competency of the 
proposed shape analysis based on cosine similarity. This 
model is general and can be applied on any cohorts such as 
analyzing the shape of load distribution of: 
 Low-SES versus other domestic students, 
 International versus domestic, 
 ATSI versus domestic and 
 Gender student load distributions. 

3.1.2.2. Minkowski-distances Models for 2-dimensional 
Student Load Analysis 

The experiments of this section are conducted on the 
same college used for cosine similarity. However instead 
of comparing the individual Blevels comparisons, we 
compared the holistic college performance on all the three 
Blevels for pairs of consecutive years. The results are 
shown in Figure 7 and 8. In both figures the overall load 
difference is compared with the Minkowski distances. 

Two Minkowski distance measures will be introduced in 
this section: Euclidean and Manhattan. Both distances have 
similar behavior and naturally show the same distribution 
of load but with different scales. The results of these 
distance measures are positive values and represent the 
distance among student load pattern distribution of the two 
compared entities. These measures are incapable of 
detecting which compared cohorts are higher or lower, but 
they can show how their shapes are following a similar 
load pattern distribution on FoEs. 

The conventional model shows the maximum student 
load difference of the college can be seen in 2012-13 (645), 
2015-16 (599) and 2010-11 (523). However, the proposed 
2-dimensional models focus on distribution of load within 
the matrices of each year as shown in Figure 5-b. These 
models show the largest distance between the shape (load 
pattern distribution on all narrow FoEs) of the college can 
be seen in 2013-14 while its magnitude in the conventional 
model is insignificant (-233). The reasons for such shape 
difference can be due to introducing new programs or 
fluctuation in FoEs load which can justify the larger 
Minkowski distances of 2013-14.  

This contrast between the conventional approach and the 
Minkowski distances helps decision makers better interpret 

and analyze holistic college performance. Similarly, these 
models can be applied on any cohorts as mentioned in the 
previous section. 

3.2. Analyzing the Process of Student Load Targeting 

Student load targeting for future years of a program is a 
routine procedure for those engaged in institutional 
planning in higher education. The procedure generally 
utilizes regression techniques over past several years of 
student load data and then generates targets for student load 
in each program for the following years. In this research 
two approaches were experimented as follows: 
 Pairwise analysis of actual versus actual loads of 

consecutive years plus the target load in  2018, and 
 Pairwise analysis of actual versus target load of the 

same years. 

Both approaches utilized cosine similarity method on 
student load (actual and target) to evaluate the two different 
aspects of load targeting process.  

3.2.1. Pairwise Analysis of Actual versus Actual Load of 
Consecutive Years 

To analyze the trend of student load in this approach, a 
dataset including 4 years of load data were provided. The 
dataset includes three years of actual student loads as well 
as target load of future year (2018). The loads are grouped 
by three cohorts (Blevels: UGRD, PGRD and RSCH) and 
are compared for two colleges (A, B). Figures 9, 10 and 11 
illustrate magnitude difference on actual load on pairs of 
years for the two sample college.  

To analyze the student load a pairwise comparison of 
subsequent years was implemented. This is done by 
comparing the pattern distribution of student loads, by each 
program in each cohort, to the same programs in the paired 
year, using cosine similarity. The similarity measures are 
shown in % with the orange line in the graphs. The higher 
similarity measure represents the more similar distribution 
of loads among pairs of identical programs on the two 
compared years.  

Since the charts represent the trend of the actual loads 
and target of the future year, they can potentially provide 
more insight for decision makers. The analytical finding 
for each cohort is provided as follows: 

3.2.1.1. Pairwise Analysis of Actual Student Loads for 
Research Programs (Figure 9) 

College_A shows a significant increase in research load 
in 2018 with a similar load pattern distribution to 2017. The 
load pattern distribution in research programs of college_A 
is identical from 2015 to 2018 (similarity measure %100). 
Conversely college_B shows an insignificant change in 
load of research programs in 2018 (magnitude difference 
almost 0) with an even decrease in load distribution on 
2017 programs (similarity measure %100). In 2017 this 
college showed an even increase in the research program, 
exactly opposite in 2018. 
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Figure 9.  Cosine similarity on magnitude of student load in research cohort of college_A and _B. The bars represent the actual load 
differences on pairs of years: 2015-16, 2016-17 and 2017-18 (2018 targets). 

 

Figure 10.  Cosine similarity on magnitude of student load in postgrad cohort of college A and B. The bars represent the actual load differences on pairs 
of years: 2015-16, 2016-17 and 2017-18 (2018 targets). 

3.2.1.2. Pairwise Analysis of Actual Student Loads for 
Postgraduate Programs (Figure 10) 

College_A shows a steady increase in load of 
postgraduate programs from 2015 onward. The increase of 
load in 2018 is not identical with 2017. 96% of the 
programs loads show similar increases in 2018 compared 
to 2017. College_B shows a steady increase in 
postgraduate programs from 2015 onward. The increase of 
load in 2018 is almost identical with 2017 (99%). However 
the load distribution did not evenly increase in 2015-16 and 
2016-17. It can be interpreted as satisfaction of college_B 
with the student load distribution in postgraduate programs 
in 2017 and just increasing their load magnitude identically 
for 2018 targets. 

 

3.2.1.3. Pairwise Analysis of Actual Student Loads for 
Undergraduate Programs (Figure 11) 

College_A shows a steady increase in undergraduate 
programs in 2018 with 99% similarity in the load pattern of 
the programs in 2017. This value indicates that college_A 
is satisfied with the load distribution in undergraduate 
programs in 2017 and follows the same pattern with an 
increase in each program for 2018 load targeting. College 
B shows an increase in undergraduate programs with 
identical load pattern in 2017. The college increased the 
program load evenly across the undergraduate programs 
from 2015 to 2017 and targets in 2018. The magnitude of 
load values also represents the increase in student loads in 
2016-2017 which is less than the other two pairs of years 
but follows the similar pattern. 
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Figure 11.  Cosine similarity on magnitude of student load in undergrad cohort of college_A and _B. The bars represent the actual load 
differences on pairs of years: 2015-16, 2016-17 and 2017-18 (2018 targets). 

 

Figure 12.  Cosine similarity on magnitude of actual and target student load of each year of research programs in two colleges: A and B.  
The solid bars represent actual and the grid bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads by 
programs in actual and target is shown by line chart. 

3.2.2. Pairwise Analysis of Actual versus Target Student 
Load of the Same Years 

The proposed similarity measure can be used as a tool to 
analyze the process of program load targeting. A set of 
historical data including pairs of actual and target load are 
provided for this analysis. The results are shown in the 
following graphs. Unlike the previous graphs which show 
single values representing the magnitude of the student 
load differences, these figures show a pair of values for 
each year: actual and target load. The cosine similarity 
measured the distance between the actual and target load 
for each year separately and are depicted by line charts.  

The dataset covers the actual and target load by 
programs from 2012 to 2017. The detailed student load 
data is summed into three major cohorts (Blevels: UGRD, 
PGRD and RSCH) and are compared for two colleges (A, 
B), similar to the previous analysis in 2-1. The results are 
shown in Figures: 12, 13 and 14. The analysis of the data 
for each cohort is as follows:  

3.2.2.1. Analysis of Actual versus Target Student Load in 
Research Programs (Figure 12) 

College_A shows a steady increase in target and actual 
load in research programs from 2012 to 2015. The 
distribution of student loads between actual and target 
program lists are not identical and show a similarity range 
from 93% to 96% which represents the improvement in 
load targeting of research program in college_A. The 
scenario changed in 2016 and 2017. In spite of a steady 
increase in target loads, the actual load decreased. However 
the load targeting process absolutely improved and shows 
100% similarity between distribution of target and actual 
load. An interpretation for such behavior in college A is 
improving the load targeting process in a way that actual 
and target load steadily improved from 93% to 100% from 
2012 to 2017, although with lower in actual student loads 
in the last two years. 

The analysis of research program in college_B shows a 
steady increase in both actual and target loads throughout 
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the 6 years. The significant phenomenon is the similarity in 
the distribution of student load between actual and target 
loads in 2014 which is almost 0%. Further investigation 
revealed that this phenomenon occurred due to massive 
research program code changes in 2014 in college_B. 
Consequently the new program codes in actual loads could 
not be matched with the student loads in the target list 
which was designed based on old program codes. The 
improvement in the targeting load process of research 
program can be seen in this college as well. 

3.2.2.2. Analysis of Actual versus Target Student Load in 
Postgraduate Programs (Figure 13) 

In college_A and _B a similar pattern can be seen in 

postgraduate programs, but in two different scale and time 
slices. College_A had an increase in actual loads from 2012 
to 2014, although the target loads for these years had not 
precisely predicted. The worst targeting process was in 
2014. However such significant dissimilarity forced the 
college_A team to optimize their student load targeting 
process and the results can be seen in the consequent years. 
The similarity between target load and actual load shows a 
steady increase from 2015 with 94% to almost 100% in 
2017. However the actual load in 2017 show more than that 
targeted but definitely in a similar pattern of student load. 
The same scenario can be seen on postgraduate programs 
of college_B. The only difference is in the time that the 
load targeting issue occurred. 

 

Figure 13.  Cosine similarity on magnitude of actual and target student load of each year of postgraduate programs in two colleges: A and 
B. The solid bars represent actual and the grid bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads by 
programs in actual and target is shown by line chart.  

 

Figure 14.  Cosine similarity on magnitude of actual and target student load of each year of undergraduate programs in two colleges: A and B. The 
solid bars represent actual and the grid bars represent target load on pairs of years: 2012 to 2017. The similarity of student loads by programs in actual 
and target is shown by line chart. 
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3.2.2.3. Analysis of Actual versus Target Student Load in 
Undergraduate Programs (Figure 14) 

College_A and _B show steady increases in target and 
actual student load in undergraduate programs from 2012 
to 2017. The load targeting process for undergraduate 
programs shows almost 100% similarities with actual loads. 
The only significant drop in similarity of actual and target 
student loads can be seen in college_A in 2014. Possible 
reason for such a drop can be because of minor program 
code changes or because of a deficiency in load targeting 
process in 2014. 

4. Conclusions 
The objective of this research is to introduce new models 

to analyze quantitative data in education systems. The 
proposed approach utilizes vector- instead of the 
scalar-based interpretation used in the conventional 
analysis models (Tinto 2006, Kuh 2008, Ye 2011, Ma. 
Florecilla et al. 2017).  

The utilized distance measures have been used in image 
processing to measure the content-based similarity among 
the images.  Since an image is a matrix of integer values 
(intensity of pixels), the idea inspired us to utilize the same 
techniques for analyzing the educational load data which is 
configured in the form of a matrix. 

Two models are introduced: Cosine similarity and 
Minkowski distances (Euclidean and Manhattan) for 
partial and holistic shape analysis. The efficacy of the 
methods was investigated on two applications:  
 Analysis of the student load data of a sample 

college in RMIT University from 2010 to 2016. 
The results show the capability of the proposed 
techniques in analyzing load pattern (shape) of the 
college by comparing the distribution of loads by 
Field of Educations (FoEs) and Broad-levels or 
Education (Blevels). 

  Analysis of target load data in two approaches. 
The actual and target student load data of two 
sample colleges in RMIT University was utilized 
for this section. The focus of the first approach was 
based on comparing the actual student loads on 
pairs of consecutive years including the target load 
of future year and comparing the similarities and 
magnitudes on pairs of years. The second approach 
compared the actual and target loads in each year 
and investigated the similarities between the load 
distributions on the two lists of each year. 

The proposed shape analysis models can help decision 
makers to answer some questions such as; how similar is 
the load pattern of an educational cohort to the other 
cohorts or compared to itself during the previous years, or 
how similar is the shape of actual student load data with 
target student load in educational organizations. Another 
application which is not investigated in this paper would be 

to investigate the similarity of a college or a University 
with other colleges or Universities. 

Analyzing the distribution of student load and measuring 
it with the proposed models, can help educational 
organizations to investigate their performance from a new 
angle and provide more insights to decision makers to 
develop more effective strategies. For example, the 
utilization of this approach could lead to a shift in student 
recruitment away from historical patterns to one where new 
possibilities are considered. For decision-makers this new 
approach could provide a new validation angle by which 
student load distribution data can be put to  
hypothesis-testing or forecasting. 
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