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Often, when testing for shift in location, researchers will utilize nonparametric statistical tests in place 
of their parametric counterparts when there is evidence or belief that the assumptions of the 
parametric test are not met (i.e., normally distributed dependent variables). An underlying and often 
unattended to assumption of nonparametric tests of location is that of identical distributions. The 
assumption of identical distributions requires that distributions conform to one another in terms of 
variability and shape (i.e., variance, skew and kurtosis). The purpose of the current study is to 
demonstrate, via the use of Monte Carlo simulation, the assumption of identical distribution using 
the Wilcoxon-Mann-Whitney (WMW) test and the Student t-test for comparison. For each of the 
conditions, there are several levels of sample size, variance ratio, group sample size ratio, and degree 
of skew in the parent distribution. Empirical Type I error rates are compared to nominal Type I error 
rates to determine the validity of the result for each run of the simulation. Violation of the assumption 
of identical distributions lead to bias in the result of the WMW test and the Student t-test. Practical 
implications are also discussed. 

The purpose of the current paper is to bring to bear 
an issue that occurs in current statistical practices related 
to educational, behavioral and social science research. 
Often, when testing for shift in location (i.e., differences 
in means or medians), researchers will utilize rank-based 
nonparametric statistical tests in place of their 
parametric counterparts when there is evidence or belief 
that the assumptions of the parametric test have not 
been met (i.e., normally distributed dependent variables). 
The utilization of rank-based nonparametric tests have 
been widely recommended to replace parametric tests 
for at least 50 years (e.g., Siegel, 1956) and these practices 
have become entrenched in current statistical 
methodologies. There is, however, a potential for bias in 
nonparametric analyses when distributional forms of 
data are not attended to appropriately in terms of 
meeting the statistical assumptions related to the test 
used.  

Statistical hypothesis testing models were 
developed using a location shift model. That is, 
differences between groups are viewed as differences 
between the central tendency of the distributions (e.g., 
means or medians). In order to determine the 
effectiveness of treatments, an additive shift model was 
adopted. In an additive shift model, treatment effect, or 
alternatively effect size, is determined via calculating the 
distance between the central tendencies of the 
distributions that are being compared. For example, if 
X1 represents the mean or median of the control or 
comparison group and X2 represents the mean or the 
median of the treatment group, the treatment effect is 
determined by calculating X1 +/- c; where c represents 
the distance between X1 and X2. It is implied that the 
only difference between the groups is their mean or 
median. Figure 1 provides an illustration of this, where 
the distribution on the left would be X1 (control or 
comparison group) and the distribution on the right 



Practical Assessment, Research & Evaluation, Vol 23 No 3 Page 2 
Nordstokke & Colp, Identical Distributions for Nonparametric Tests of Location 
                          
would be X2 (treatment group). The vertical dotted line 
in the middle of each of the distributions represents the 
central tendency (e.g., mean or median – in the case of a 
normal distribution, the mean and median would be the 
same). The horizontal arrow indicates the shift in 
location (i.e., difference between means or medians) and 
represents the treatment effect. 

 

Figure 1. Illustration of shift in location for the two-
group case in hypothesis testing 

 

When testing for differences between groups, 
nonparametric tests come with a set of assumptions 
related to the nature of the data from where samples are 
drawn. For nonparametric tests the assumptions are that 
data are independent and identically distributed. The 
assumption of independence requires that any data point 
will have an influence on no other data point. This 
assumption is a requirement of both parametric and 
nonparametric tests and will not be discussed further. 
The assumption of identical distributions will be the 
focus of this paper. The assumption of identical 
distributions for nonparametric tests is inherently related 
to the nature of the distributions of all groups involved 
and is often misunderstood or not attended to by 
researchers and data analysts. The misunderstanding 
relates to the requirements of the distributional features 
of the data used in the analysis and is often 
misrepresented or ignored. The assumption of identical 
distributions states that when comparing samples for 
differences in their central tendency (i.e., means or 
medians) they must have identically shaped population 
distributions in terms of variance, skew, and kurtosis. 
This assumption applies to all nonparametric test that 
test for group differences; however, for the purpose of 
the current simulation study, the Wilcoxon-Mann-
Whitney (WMW) test will be used. Traditionally, the 

WMW is a test of identical distributions; however, if the 
assumption of identical distributions is applied in 
conjunction with this test, it can be used as a test of 
difference in medians, as a rejection of the null 
hypotheses indicates a difference in the central 
tendencies of the distributions.  

In research, situations can arise where distributional 
forms are different between groups that are to be 
compared. In experimental designs, groups are formed 
by sampling from a single population, thus it is likely that 
groups will possess very similar distributions; however, 
this is not guaranteed as treatments may interact with the 
dependent variable resulting in a change in the treatment 
group’s distribution. This is generally referred to as the 
Behrens-Fisher problem (Scheffé, 1970). In non-
experimental designs, data are not sampled from a single 
population but instead from two or more populations 
(e.g., gender), where there may exist substantial domain 
differences between groups that are sampled from these 
populations. When using non-experimental approaches, 
there is an increased likelihood that distributions have 
different shapes. 

In the case where distributions possess equal 
shapes, the WMW test is generally robust against non-
normality and demonstrates high power when compared 
with other tests (Fagerland & Sandvik, 2009). A potential 
issue arises when the two distributions used in the 
WMW test are not identical in terms of shape (i.e., 
variance, skew, or kurtosis) as this violates the 
assumption of identical distributions, thus entering bias 
(i.e., increased Type I and Type II error rates) into the 
between-groups analysis resulting in tests being either 
too conservative or too liberal. To exacerbate this issue, 
many statistical textbooks reviewed by the authors do 
not state the necessity of the assumption of identical 
distributions (e.g., Brace et al., 2012; Corder & Foreman, 
2009; Aron et al., 2013; Pagano, 2001; Primavera, 2012). 
Many of these textbooks are designed to cater towards 
psychology and the behavioral sciences, thus creating 
generations of researchers who do not fully understand 
the application or implications of using and interpreting 
the result of nonparametric tests that may be biased 
leading to inappropriate inferences based on the result 
of these tests. It is difficult to determine how frequently 
the WMW is used in lieu of the Student t-test in daily 
statistical practice, but it can certainly be argued that it is 
widely recommended in textbooks.  
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Thus, the purpose of the current study is to 
demonstrate, using Monte Carlo simulation, the 
robustness of the WMW test under conditions where the 
assumption of identical distribution has been violated to 
varying degrees. In addition, the parametric counterpart 
of the WMW, the Student t-test, will be included as a 
comparison as parametric tests of central tendency are 
impacted by unequal distributions as well (i.e., equality 
of variances). It is expected that when both the WMW 
test and Student t-test are applied to groups with varied 
distributional forms, the Type I error rate of the test will 
be impacted. 

Method 

Data Generation 

Standard simulation methodology was utilized to 
perform the current Monte Carlo simulation (e.g., 
Nordstokke & Zumbo, 2010; Nordstokke & Colp, 2014; 
Zimmerman, 1987; 2004). Population distributions were 
generated and the statistical procedures were carried out 
using the statistical software package for the social 
sciences, SPSS 24. A pseudo random number sampling 
strategy with the initial seed selected randomly was 
utilized to generate χ2 distributions. The design of the 
current investigation is a 7 X 2 X 3 completely crossed 
design with: (a) seven levels of skew (-3, -2, -1, 0, 1, 2, 3), 
(b) two levels of total sample size (24, 48), and (c) three 
levels of sample size ratios (1-1, 2-1, and 3-1). These 
sample sizes and sample size ratios were selected to 
provide an array of conditions that attempt to represent 
real world research conditions. Clearly, every eventuality 
cannot be simulated; however, utilizing the current 
design will at least give an indication of a variety of 
research possibilities. The outcome of interest in this 
simulation study is the proportion of rejections of the 
null hypothesis in each cell of the design. That is, the 
Type I error rate of the test for each given cell in the 
design. Variances in the current simulation were fixed to 
be equivalent throughout all of the simulations as the 
Type I error rates of the two tests under investigation are 
the outcome of interest.  

Statistical tests 

The WMW test used in the current set of 
simulations is calculated as follows. The combined data 
from both groups are sorted and ranks assigned to all 
cases, with average rank being used in the case of ties. 
The test statistic is: 

The Student t-test used in the current set of 
simulations is calculated using the following equation: 

Distributional forms 

 Four levels of skew (0, 1, 2 & 3) are investigated 
in the current simulation. It should be noted that the 
population skew was determined empirically for large 
sample sizes of 240,000 and 480,000 values with 1,000, 
7.4, 2.2, and .83 degrees of freedom resulting in skew 
values of .03, 1.03, 1.92 and 3.06 respectively; because 
the degrees of freedom are not whole numbers and the 
resulting distributions are simply approximations. The 

mathematical relation is γ1 ൌ 	ඥ8/݂݀. The negative 
skew population distribution was created by 1) 
simulating a positive skew population distribution, 2) 
finding the largest score in the positive skew population 
distribution, and 3) subtracting the largest score, plus 1, 
from each score in the positive skew population 
distribution (Tabachnik & Fidell, 2013). Once the 
negative skew population distribution was created, a 
correction was applied to ensure the reflection 
procedure did not change the simulated population 
mean. This correction process involved 1) subtracting 
the negative skew population distribution mean by the 
positive skew population mean, 2) obtaining the 
difference score, and 3) subtracting each value of the 
negative skew population distribution by the obtained 
difference score. This minor correction resulted in 
negative skew and positive skew population 
distributions having identical mean values and reflected 
skew values. Population distributions were generated for 
each cell of the design then manipulated to fit the 
condition for that given cell.  

Determining Type I error rates 

 To assess the performance of each of the two 
tests used in the current simulation, the frequency of the 
Type I errors for each cell in the design was used. To 
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briefly review the methodology used, the following will 
describe one cell in the design. In this example, samples 
will be drawn from two distributions with skew values in 
the opposite direction (e.g., -3; 3). To begin, two 
distributions are generated with respective skew values 
(e.g., 3). Once distributions are generated, one of the 
distributions (e.g., the second distribution) are reflected 
using the technique described above resulting in 
distributions whose skew values are opposite from one 
another (i.e., -3; 3). After the distributions have been 
generated, samples are drawn from each of the 
distributions. For this example, each group consisted of 
12. This results in 10,000 sets of groups that each test 
will be conducted upon. That is, each set consist of one 
group from each of the distributions, and each of these 
sets represents one draw of the distributions. Hence, 
there were 10,000 draws used in each cell of the design 
in the current simulation. Once the groups have been 
determined, the WMW and Student t-test are performed 
on each of the sets and the Type I error rates for each 
test is recorded. To determine whether tests are 
operating within an acceptable level, a nominal alpha 
level of .05 (± .025) was selected. The nominal Type I 
error rate was determined based on Bradley’s (1978) 
description of liberal robustness. The reason for using 
the most liberal criterion is that this represents the 
situation where the tests have the best chance of not 
being biased and thus may possess some utility in non-
experimental research designs. In the current study, 
power is not reported as the Type I error is used solely 
to determine the validity of the two tests under the 
simulated conditions.  

Results 

The Type I error rate for the Student t-test and 
WMW for the first simulation condition where N = 24, 
and sample size ratio for the two groups was 1/1 are 
reported in Table 1. Table 1 has seven rows and columns 
that represent the various sample size ratios that were 
simulated in the design. As well, within each of the 
column/row combinations there are two columns that 
report the Type I error rate of the Student t-test and the 
WMW respectively. For example, the first cell of Table 
1 illustrates the condition where the skew of each 
distribution is -3, N = 24 and the sample size ratio is 1/1. 
The Type I error rate of the Student t-test in this cell is 
.041 and the Type I error rate of the WMW is .057. When 
taking the entire set of results for this condition into 
consideration, it should be noted that when the parent 
distributions were both normal (i.e., skew = 0) and the 
variances of the distributions were equal, the Type I 
error rates of both tests were maintained. In fact, when 
distributions were similar (e.g., both have a skew = -3), 
the Type I error rates of both tests were maintained 
within an acceptable level. When the distributions 
differed and the variances were equal, both tests had 
elevated Type I error rates with the WMW possessing 
higher degrees of error. For example, when the 
distributions possessed opposite skew (i.e., 3/-3), the 
Type I error rates of the Student t-test and WMW were 
.108 and .253 respectively.  

The Type error rates of the two tests for the second 
simulation condition where N = 48, and the sample size 
ratio of the two groups are 1/1 are reported in Table 2. 
When distributions are similar (i.e., equal amount of 

Table 1. Type I Error Rates of Student t-test and WMW for the First Simulation Condition 
N=24 (12/12), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT  MW TT MW TT MW TT  MW  TT MW

‐3  .041  .057  .058  .124  .066  .108 .060 .135 .071 .120 .087  .171  .108 .253

‐2  .057  .126  .045  .050  .055  .074 .068 .128 .061 .091 .075  .128  .089 .171

‐1  .065  .112  .053  .075  .049  .053 .062 .108 .061 .082 .070  .101  .072 .118

0  .059  .134  .059  .121  .062  .112 .049 .051 .058 .113 .061  .125  .060 .133

1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .061 .107 .048 .052 .055  .076  .065 .104

2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .060 .124 .057 .080 .049  .054  .053 .122

3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .067 .137 .068 .110 .060  .125  .042 .051

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test
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skew), the Type I error rates of both tests are generally 
maintained. For example, in the condition where the 
skew of each distribution was equal to -3, the Type I 
error rates of the Student t-test and the WMW were .044 
and .05 respectively. Similar to the conditions where 
N=24 and the group sizes were equal when distributions 
were skewed in opposite directions, the Type I error rate 
of both tests were inflated. For example, in the case 
where the skew was 3/-3 and the variances were equal, 
the Type I error rates of the Student t-test and WMW 
were .087 and .413 respectively.  

Table 3 illustrates the third simulation conditions 
where N=24, the group ratios were 2 to 1 (i.e., 8/16). 
Again, when the distributions were similar, the Type I 
error rates of both tests was generally maintained but 
perhaps slightly conservative. For example, in the 
condition where N=24 and skew values were -3/-3, the 
Type I error of the Student t-test and WMW were .036 
and .040 respectively. Notably, when the distributional 
form of the two sampling distributions are not identical, 
the Type I error rates deviate from the nominal Type I 

error rate in terms of being both liberal and conservative. 
For example, referring to Table 3, in the condition where 
N=24, variance ratio 1/1, and skew values were -3/0, 
the Type I error rates of the Student t-test and WMW 
were conservative with values of .009 and .024 
respectively. Conversely, when N=24, variance ratio 
1/1, and skew values were -3/3, the Type I error rate of 
the Student t-test and WMW were liberal with values of 
.104 and .215 respectively. 

Table 4 illustrates the fourth simulation condition 
where N=48 and the group sample size ratios 2/1 (i.e., 
8/16). In line with the other results, when the 
distributional forms were similar, the Type I error rates 
of both tests were maintained. For example, where 
N=48 and the skew values were -3/-3, the Type I error 
rates for the Student t-test and WMW were .042 and .057 
respectively, but as the distributional forms deviated 
from one another the Type I error rate increased for 
both tests. For example, when N=48 and the skew for 
each of the parent distributions are 3/-3, the Type I error 
rates of the Student t-test and WMW are .085 and .373 

Table 2. Type I Error Rates of Student t-test and WMW for the Second Simulation Condition 
N=48 (24/24), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT  MW TT MW TT MW TT  MW  TT MW
‐3  .044  .050  .053  .177  .059  .137 .056 .114 .063 .151 .070  .259  .087 .413
‐2  .052  .174  .048  .050  .051  .089 .055 .107 .057 .117 .063  .188  .072 .263
‐1  .058  .135  .051  .086  .053  .052 .057 .098 .057 .091 .055  .121  .061 .145
0  .054  .111  .055  .109  .058  .094 .050 .048 .059 .098 .059  .105  .057 .124
1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .052 .094 .046 .045 .054  .088  .055 .132
2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .058 .108 .051 .083 .046  .049  .052 .175
3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .057 .121 .060 .131 .052  .179  .042 .047

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test

Table 3. Type I Error Rates of Student t-test and WMW for the Third Simulation Condition 
N=24 (8/16), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT  MW TT MW TT MW TT  MW  TT MW
‐3  .036  .040  .031  .070  .019  .049 .010 .027 .019 .056 .050  .119  .104 .215
‐2  .104  .141  .044  .044  .025  .039 .009 .026 .030 .056 .073  .113  .128 .163
‐1  .160  .139  .112  .099  .046  .044 .009 .030 .058 .063 .119  .108  .158 .137
0  .199  .082  .196  .094  .198  .106 .048 .043 .191 .106 .198  .095  .194 .081
1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .009 .029 .051 .046 .109  .099  .164 .141
2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .010 .028 .023 .040 .045  .045  .104 .148
3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .011 .028 .019 .050 .030  .067  .037 .043

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test
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respectively. Once again, the findings demonstrate the 
impact of differential distributions on the Type I error 
rates of the two tests. 

Table 5 illustrates the results from the fifth 
simulation condition where N=24 and the group sample 
size ratio is 1/3 (i.e., 6/18). Once again, when samples 
are drawn from similar distributions the Type I error 
rates of both tests are maintained. For example, when 
N=24 and skew values are -3/-3, the Type I error rate 
of the Student t-test and WMW tests are .041 and .042 
respectively, but once the distributional forms are 
different, Type I error rates are elevated. For example, 
when N=24 and skew values are 3/-3, the Type I error 
rates of the Student t-test and WMW are .102 and .197 
respectively. 

Table 6 shows the Type I error rates from the sixth 
simulation condition where N=48 and the group sample 
size ratio is 1/3 (i.e., 6/18). When data were drawn from 
distributions that were the same, the Type I error rates 
of both tests were once again maintained. For example, 
when N=48 and skew values are 3/-3, the Type one 
error rates of the Student t-test and WMW are .043 and 

.052 respectively. Once again, as distributional forms 
become more disparate, the Type I error rates of both 
tests were elevated. For example, when N=48 and skew 
is 3/-3, the Type I error rates of the Student t-test and 
WMW are .081 and .33 respectively.  

Discussion 

The main purpose of the current series of 
simulations was to investigate the impact of conducting 
the Student t-test and WMW on data that have been 
sampled from populations with differing distributional 
forms as can occur in many non-experimental designs. 
It is evident from the results of the simulation that when 
distributional forms are not identical, the Type I error 
rates of both the WMW test and Student t-test can 
become either elevated or conservative far beyond what 
is considered acceptable. Elevated Type I error rate 
result in very liberal tests where the null hypothesis is 
incorrectly rejected. Alternatively, conservative tests 
reject the null hypothesis at a very low frequency, thus 
resulting in tests with very low power to detect 
differences in the central tendency of the distributions.  

Table 4. Type I Error Rates of Student t-test and WMW for the Fourth Simulation Condition 
N=48 (16/32), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT  MW TT MW TT MW TT  MW  TT MW
‐3  .042  .057  .028  .131  .014  .083 .006 .047 .016 .102 .042  .224  .085 .373
‐2  .105  .208  .045  .048  .025  .055 .009 .045 .025 .090 .060  .175  .108 .260
‐1  .145  .165  .106  .119  .051  .050 .008 .045 .057 .092 .116  .150  .148 .182
0  .183  .198  .179  .169  .177  .160 .048 .050 .178 .160 .172  .175  .178 .198
1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .008 .041 .050 .050 .101  .114  .149 .173
2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .007 .044 .019 .048 .049  .051  .097 .206
3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .009 .053 .014 .084 .025  .126  .043 .047

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test

Table 5. Type I Error Rates of Student t-test and WMW for the Fifth Simulation Condition 
N=24 (6/18), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT MW TT MW TT MW TT  MW TT MW

‐3  .041  .042  .024  .048  .010 .027 .002 .025 .009 .037 .039  .105 .102 .197

‐2  .132  .155  .043  .044  .013 .024 .002 .020 .017 .041 .067  .104 .157 .167

‐1  .236  .164  .157  .123  .047 .047 .002 .017 .055 .063 .160  .125 .243 .178

0  .304  .215  .302  .206  .291 .192 .050 .049 .292 .195 .302  .211 .310 .221

1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ ‐‐‐ .003 .018 .051 .049 .154  .121 .234 .165

2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ ‐‐‐ .002 .022 .016 .027 .048  .050 .140 .156

3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ ‐‐‐ .002 .026 .009 .027 .024  .042 .043 .046

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test



Practical Assessment, Research & Evaluation, Vol 23 No 3 Page 7 
Nordstokke & Colp, Identical Distributions for Nonparametric Tests of Location 
                          

It is imperative that researchers attend to the nature 
of the distributions of their data when using 
nonparametric statistical approaches to investigating 
group differences. A potential source of this problem 
relates to the nomenclature often used to refer to 
nonparametric statistics, that is that they are ‘distribution 
free’. These techniques are often referred to as 
‘distribution free’ because they do not require the 
assumption of normality; however, as Kendall and 
Sundrum (1953) point out that, 

…the term distribution free is not perfect for this 
reason: it means that the test is free of a parent 
distribution, but not that the test-statistic itself has 
no distribution. The statistic, of course, must have 
a distribution because otherwise no probabilistic 
inference would be possible. Provided that this 
point is understood, the term gives rise to no 
difficulty. (p. 127) 

This quote illustrates the potential problem with 
using a term such as ‘distribution free’ when referring to 
rank-based techniques in that ‘distribution free’ suggests 
that there are no distributional requirement for utilizing 
the test. This is not the case, and data analysts and 
researchers must acknowledge that there are 
distributional requirements associated with using 
nonparametric tests. Therefore, it is important to keep 
in mind that even though there is no requirement for a 
specific distributional form, like in parametric tests, there 
is the requirement that whatever the distributional form 
is, it must be the same for each group used in the 
analysis. 

Implications for Data Analysis 

 Researchers and data analysts must recognize the 
importance of gaining insight and understanding 
pertaining to the nature of the distributions of the 
populations that they are working with, as well as an 
understanding that this is equally as important when 
using either parametric or nonparametric methods. With 
an understanding of the shape of population 
distributions, researchers and data analysts will be able 
to make informed decisions related to the type of 
statistical approach they choose to use for their analysis. 
A major point that needs highlighting here relates to 
experimental versus nonexperimental designs. When 
using an experimental design, groups are sampled from 
the same population, thus there is an increased 
likelihood that the distributions utilized in the analysis 
will have quite similar shapes; whereas, when a 
nonexperimental design is utilized, groups are sampled 
from different populations (e.g., gender), and thus the 
likelihood of distributions being equivalent between the 
groups is greatly diminished. Researchers and data 
analysts must recognize this distinction between 
experimental and nonexperimental designs and take 
steps to address this. When utilizing nonexperimental 
designs, the use of nonparametric tests is not 
recommended unless there is evidence that the 
assumption of identical distributions has been satisfied.  

Future research should investigate techniques for 
demonstrating the equivalence of distributional forms. 
One suggestion is to employ a combination of graphical 
and descriptive statistical techniques to help determine 
whether distributional forms are sufficiently identical to 
conduct analysis with the data; however, prior to 

Table 6. Type I Error Rates of Student t-test and WMW for the Sixth Simulation Condition 
N=48 (12/36), Variance Ratio = 1/1

Skew  ‐3  ‐2  ‐1 0 1 2  3

N1/N2  TT  MW  TT  MW  TT  MW TT MW TT MW TT  MW  TT MW

‐3  .043  .052  .017  .083  .009 .048 .001 .024 .007 .064 .023  .177  .081 .330

‐2  .125  .197  .046  .047  .012 .034 .001 .021 .014 .066 .064  .157  .143 .249

‐1  .214  .187  .138  .129  .050 .051 .002 .016 .055 .079 .137  .138  .223 .194

0  .291  .159  .278  .160  .282 .164 .051 .051 .276 .160 .287  .162  .282 .158

1  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .001 .019 .051 .048 .149  .129  .219 .186

2  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .001 .020 .015 .033 .051  .049  .122 .200

3  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐  ‐‐‐ .002 .025 .006 .048 .021  .085  .046 .049

* Note TT = Student t‐test; MW = Wilcoxon‐Mann‐Whitney test
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employing this type of approach, simulation studies that 
explore the bounds of the validity of nonparametric tests 
when the assumption of identical distributions is 
violated must be conducted. The current study provides 
some insight into this, but further simulations are needed 
to explore these bounds in more depth. Another 
suggestion is to perform a test of equivalence (e.g., 
Levene’s median test) as a preliminary test prior to 
employing a nonparametric analysis of group 
differences. This would involve a two-step procedure, 
much like when testing for equality of variances when 
utilizing parametric tests for groups differences (e.g., a 
Student t-test). This approach might provide some 
protection against elevated Type I errors when testing 
for group differences; however, simulation studies 
should be conducted to test this prior to implementing 
this strategy in daily research practices.  

The take away message from this simulation study 
is that researchers and data analysts need to be cautious 
when utilizing nonparametric tests for group differences 
as violations of the assumption of identical distributions, 
as demonstrated in the current simulation study, lead to 
seriously inflated Type I error rates. It is important to 
note that both parametric and nonparametric tests are 
impacted by non-identical distributions and the 
‘nonparametric’ nature of the test does not make up for 
this assumption. What this means is that researchers and 
data analysts need to attend to the nature of the 
population distributions and the research design that 
they employ (i.e., experimental versus nonexperimental) 
to reduce biasing the analyses they are conducting. 
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