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The standard deviation (SD) of a random sample is defined as the 
square-root of the sample variance, which is the ‘mean’ squared deviation 
of the sample observations from the sample mean. Here, we interpret the 
sample SD as the square-root of twice the mean square of all pairwise 
half deviations between any two sample observations. This interpretation 
leads to a geometric visualization of the sample SD, and a more 
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elementary explanation as to why the denominator in the sample variance 
is one less than the sample size. 
  
 To summarize the values of a variable measured on a 
set of units randomly selected from a population, we 
oftentimes record the sample mean as a measure of center, 
and the sample standard deviation (SD) as a measure of 
spread. The sample mean is used to estimate the population 
mean and the sample SD is used to the population SD. 
Needless to say, the mean and the SD are the two most 
frequently used summary measures in probability and 
statistics (Lesser, Wagler, & Abormegah, 2014). Now-a-days 
these quantities are introduced to students as early as in 
middle school (National Governors’ Association, 2010).  

For the readers’ benefit, we recall the definitions of 
these quantities. Suppose that we have a sample of n numbers

nxxx ,...,, 21 . The sample mean (denoted by x ) is defined as 
the sum of the values divided by the number of values; that 
is, 
        
                                                                    (1)   

The sample variance (denoted by )2s  is the ‘mean’1 
squared deviation of the sample observations from the 
sample mean x , and is defined by 
          
                                                                               (2)         
 
which simplifies to 
 
 
 

                                
1 Whereas mean involves a division by the sample size, we write 
‘mean’ when the division is by one less than the sample size. 
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The sample SD (denoted by s) is the positive square-root of the 
sample variance given by 
 
 
                                                                                          (3)   
     

 
One interpretation of the sample mean x  as the 

center of gravity is well known: If the entire dataset is viewed 
as a dot plot, with the dots representing heavy balls on a 
weightless number line, then the mean can be thought of as 
the location of a fulcrum that would keep the balls in balance. 
An alternative geometric interpretation of the mean, as a 
vertical line that equalizes the areas of two regions formed by 
the empirical cumulative distribution function of the sample, 
is given in Sarkar and Rashid (2015a).  

We found some visual representations of the sample 
SD in the literature. See, for example, Maverick (1932), and 
Embse and Engebretsen (1996). However, these are only 
depictions of the sample SD after it has been calculated 
numerically. There is no obvious way to verify the correctness 
of these depictions except by computing the sample SD 
numerically once again!  

The interpretation of the sample SD s is not as 
straight-forward as that of the sample mean x . Some authors 
skip the interpretation of the sample SD, and only discuss its 
usefulness. Other authors, perhaps in haste, have interpreted 
the sample SD as a ‘typical distance’ of each observation from 
the sample mean, causing conflict with the notion of the 
mean (absolute) deviation.2 The correct interpretation of the 

                                
2 Mean (absolute) deviation is defined by  
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sample SD, as the square-root of the ‘mean’ squared 
deviation (RMSD) from the sample mean leaves unanswered 
why the denominator in (2) is (𝑛𝑛 − 1) instead of the naturally 
anticipated n. Typical explanations involve the concepts of 
“unbiased estimation” (see, for example, Ugarte, Militino, & 
Arnholt, 2008, pp. 247), or “degrees of freedom” (df) (see 
Martin, 2003). In other words, we choose the denominator in 
(2) to be (n-1) so that the bias involved in estimating the 
population variance is eliminated (and the bias involved in 
estimating the population SD is reduced) from what they 
would be if the denominator were chosen to be n. 
Alternatively, since one df is used up to estimate the 
population mean there remain (n-1) df to estimate the 
population variance. However, more often than not, students 
are not familiar with the concepts of estimation and df.  

In Section 2, we provide an alternative, but 
equivalent, expression for the sample SD. Utilizing this result, 
in Section 3, we construct a geometric object that represents 
the sample SD based on all pairwise deviations, and hence 
can be visualized. Suggestions for other geometric objects 
which help visualize the sample SD, based on deviations from 
the mean, can be found in Sarkar and Rashid (2015b). 
Furthermore, our equivalent expression for the sample SD 
yields an elementary explanation as to why the denominator 
in (2) is (𝑛𝑛 − 1). 

 
An Equivalent Expression for the Sample Variance 

Let us begin with the notion of deviation3 between 
two numbers a and b given by |𝑎𝑎 − 𝑏𝑏|. Likewise, the deviation 
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It measures the mean distance of each observation from the sample 
mean. 
3 We use the word ‘deviation’ to mean ‘absolute difference.’ 
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of each number a and b from their average (𝑎𝑎 + 𝑏𝑏)/2, is given 
by the half-deviation between them, or |𝑎𝑎 − 𝑏𝑏|/2. Given a 
random sample of size    𝑛𝑛 > 2, how can we combine all 

 
                             �𝑛𝑛2� = 𝑛𝑛(𝑛𝑛 − 1)/2  
 

pairwise deviations (PD) (or pairwise half-deviations, PHD) 
into one single measure of spread?  
 We can calculate either the mean or the mean 
square of these pairwise deviations (or half-deviations). For 
example, the mean of pairwise deviations (MPD), the mean 
of pairwise half-deviations (MPHD), the mean square of 
pairwise deviations (MS-PD), and the mean square of 
pairwise half-deviations (MS-PHD) are given below. 
 
MPD = ∑ �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� /(𝑛𝑛2)𝑛𝑛

𝑖𝑖=1 ,             MPHD = ∑ (|𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗|

2
) / �𝑛𝑛2� ,𝑛𝑛

𝑖𝑖=1   

MS-PD = ∑ �|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|�2/ �𝑛𝑛2�
𝑛𝑛
𝑖𝑖=1 , MS-PHD = ∑ �

�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2
�
2

/ �𝑛𝑛2�
𝑛𝑛
𝑖𝑖=1

 (4) 
  

It is easy to verify that MPHD = MPD/2 and MS-
PHD = MS-PD/4. It turns out that MS-PD is exactly twice 
the sample variance! Hence, the square root of MS-PD 
(RMS-PD) is 2  times the sample SD; that is,  

                                  RMS-PD= s2 .  
 

Equivalently, MS-PHD is half the sample variance, which we 
state in Proposition 1 below. Interested readers may see a 
proof in the Appendix. Here, we only give an example to 
illustrate the result. 
 
Proposition 1. The MS-PHD given in (4) equals half the 
sample variance given in (2); that is, 
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Example 1.  Suppose that our data consist of 𝑛𝑛 = 4 values 
(sorted from the smallest to the largest): 11, 20, 22, 35. Then 
the sample mean is 224/)35222011( =+++=x . The 
deviations of the x-values from x  are: 11, 2, 0, 13; and so the 
sample variance is 983/2943/)130211( 2222 ==+++ . The �4

2� = 6 
pairwise deviations are: 9, 11, 24, 2, 15, 13. These PD’s may 
be sorted as: 2, 9, 11, 13, 15, 24. Hence, we have MS-PD = 

1966/11766/)2415131192( 222222 ==+++++ , which is twice 
the sample variance. Consequently, MS-PHD = MS-PD/4 = 49, 
or half the sample variance, as Proposition 1 states. 

In view of Proposition 1, the sample variance is twice 
the MS-PHD, and the sample SD is the square-root of twice 
the MS-PHD. Furthermore, there is no ambiguity about the 
division by �𝑛𝑛2� on the left hand side (LHS) of (5), since there 
are �𝑛𝑛2� = 𝑛𝑛(𝑛𝑛 − 1)/2 possible pairwise half-deviations (though 
not all are distinct). The proof of Proposition 1 reveals that 
the numerator on the LHS of (5) also has a factor n , which 
cancels with that in the denominator, leaving the other factor 
(𝑛𝑛 − 1) in the denominator. This explains why the 
denominator in (2) is (𝑛𝑛 − 1). 

 
Geometric Visualization of the Sample SD 

Proposition 1 lends itself to the construction of a geometric 
object that represents the sample SD, thereby making it 
possible to visualize the sample SD. We will describe the 
construction in five steps. But first, let us give a geometric 
meaning to a typical term on the LHS of (5). Suppose that we 
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have a right isosceles triangle4 (RIT) whose hypotenuse equals 
any typical PD, say  || ji xxh −= . Then the area of such an 
RIT is  
 

                                    
22
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 ji xxh .  

 
See Fig. 1(a). When this RIT is translated in the three-
dimensional space orthogonally to itself through a distance of 
𝑤𝑤 = 1/ �𝑛𝑛2�, it generates a right prism whose volume equals 
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See Fig. 1(b). Moreover, note that the bottom face of the 
right prism so generated is a rectangle of size 
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4 A right isosceles triangle is a three-sided plane figure which has one 
right angle (90º) and two legs (sides adjacent to the right angle) that are 
of equal length. 
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                          (a) Area of an RIT of                         
                                    = hypotenuse h is  (h/2)2  

(b) Volume of a right prism, of 
thickness w and cross-section in 
the shape of an RIT of   
hypotenuse h, is (h/2)2 w 

Figure 1. Area of a right isosceles triangle (RIT) and volume of a 
right prism. 

 
Steps to construct the sample SD geometrically 

The method of construction of a geometric object that helps 
visualize the sample SD is described below and illustrated in 
Figures 2-4. Let us first assume that the given sample consists 
of n distinct values. See Fig. 2, which uses the data in Example 
1, and also Fig. 3, which uses another data set. Thereafter, 
Remark 1 explains how to handle ties, which is illustrated in 
Fig. 4, using a third data set. 
 
Step 0 (Preliminary preparation). Given the dot plot of x, 

showing the random sample of n distinct values, draw a 
vertical reference line  given by 𝑥𝑥 = 𝑥𝑥min, and a 
horizontal reference line (just below the dot plot of x) to 
the right of  with all other x-values marked on it and 
surrounded by tiny circles. From each of these marked 
points draw a line with slope 1 (or the so-called 45º line) 
that intersects   at some point, from which draw a 
horizontal line to the right of  . Mark and surround with 
a tiny circle every point of intersection so generated which 
are not on  . Then counting row by row, there will be 
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exactly (𝑛𝑛 − 1) + (𝑛𝑛 − 2) + ⋯+ 2 + 1 = �𝑛𝑛2� marked points, each 
representing a PD in terms of its distance from  .  

 
Step 1 (Dot plot of PD). Projecting the marked points 

(surrounded by tiny circles) vertically up, we construct the 
dot plot of PD, which we depict just above the given dot 
plot of x. Note that even though the marked points are 
distinct, some of them may be vertically aligned (as in Fig. 
3). Hence, these �𝑛𝑛2� PD’s need not be distinct.  

 
Step 2 (CDF of PD). Suppose that the distinct values of the 

PD’s are 0 < 𝑑𝑑1 <  𝑑𝑑2 <  … <  𝑑𝑑𝐾𝐾 with associated 
frequencies 𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝐾𝐾. Clearly then, 𝑓𝑓1 + 𝑓𝑓2 + … + 𝑓𝑓𝐾𝐾 = �𝑛𝑛2�. 
Draw the cumulative distribution function (CDF) of the 
PD’s: It is a step function of the form 𝑦𝑦 = 𝐺𝐺(𝑑𝑑), which 
begins at height 𝑦𝑦 = 0 for 𝑑𝑑 ≤ 0, has jumps of magnitude 
𝑓𝑓𝑘𝑘/ �𝑛𝑛2� occurring at 𝑑𝑑𝑘𝑘 for 𝑘𝑘 = 1, 2, … ,𝐾𝐾; and ends at 
height 𝑦𝑦 = 1 for 𝑑𝑑 ≥ 𝑑𝑑𝐾𝐾.  

 
Step 3 (Erect right prisms). If we superimpose on the 

graph of the CDF of PD horizontal lines 𝑦𝑦 = 𝑡𝑡/ �𝑛𝑛2� for 
𝑡𝑡 = 1, 2, … , �𝑛𝑛2�, stretching from   to the CDF, we see �𝑛𝑛2� 
rectangles corresponding to the �𝑛𝑛2� PD’s. Each rectangle 
has width given by a PD and height 1/ �𝑛𝑛2�. Using each of 
these �𝑛𝑛2� rectangles as the xy-face, we erect a right prism 
of y-thickness 1/ �𝑛𝑛2� and xz-cross-section given by an RIT 
whose hypotenuse equals the width of the rectangle (or 
the corresponding PD). Prisms with identical xz-cross-
sections may be blended together, as done in Fig. 3. Then 
the total volume 𝑉𝑉+ of all �𝑛𝑛2� such right prisms is precisely 
the LHS expression in (5), or the MS-PHD. Therefore, in 
view of Proposition 1, the total volume 𝑉𝑉+ also equals half 
the sample variance.  
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Step 4 (Search for a composite right prism). Consider a 

single composite right prism having y-thickness 1 and a 
xz-cross-section in the shape of an RIT. Allow the size of 
this RIT to vary by changing the x-size until we find a 
suitable size such that the volume of the single composite 
right prism equals 𝑉𝑉+. Then each leg of that RIT equals 
the sample SD, and the hypotenuse of that RIT is √2 
times the sample SD, or the RMS-PD.  
 
Remark 1. When the x-values are not all distinct, as in 

Fig. 4, additional care must be taken to determine the 
multiplicity of each intersection point, described in Step 1 
above, representing a possible value of PD: (0) We must also 
consider the intersection points on   and circle them if their 
multiplicity is non-zero; (1) The intersection point on  , 
corresponding to a given observation u with frequency 𝑓𝑓𝑢𝑢, 
must be assigned a multiplicity of �𝑓𝑓𝑢𝑢 

2
�; and (2) The 

intersection point not on  , corresponding to two given 
observations u and v with respective frequencies 𝑓𝑓𝑢𝑢 and 𝑓𝑓𝑣𝑣, 
must be assigned a multiplicity of 𝑓𝑓𝑢𝑢  𝑓𝑓𝑣𝑣.  

Remark 2. In Step 2, we can further draw a vertical line 
that equalizes the areas of the shaded regions (see Fig. 2-4.  
See below). This line depicts the MPD. See details in Sarkar 
and Rashid (2015a). 

Remark 3. From Fig. 2-4, we note that MPD ≤ RMS-PD =
√2 𝑠𝑠. This is, in fact, a general result which follows from the 
celebrated Cauchy-Swartz inequality. Interested readers may 
see Bellman (1997, pp. 126). For our purpose in this paper, 
this inequality provides a nice check in our visualization of 
the sample SD.  
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Figure 2. A geometric construction of the sample SD when the 
given numbers are distinct and the PD’s are also distinct. 
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                                                                                        Figure 3. A                       
                                                                                    geometric con-                           
                                                                               struction of the  
                                                                         sample SD when the  
                                                                      given numbers are  
                                                                 distinct, but the PD’s have  
                                                            ties among them. Adjacent  
                                                        prisms with identical xz-cross- 
                                                    sections may be blended together. 
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Figure 4. A geometric construction of the sample SD when the 
given numbers (and hence the PD’s) are tied. The frequency of 
each distinct value of a PD is determined as explained in Remark 1 
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above. In particular, the frequency of PD=0 is ∑ �𝒇𝒇𝒙𝒙

𝟐𝟐
�𝒙𝒙 , where 𝐟𝐟𝒙𝒙 is 

the frequency of each distinct x-value. 
Discussion 

In this paper we have interpreted the sample variance as twice 
the mean square of all pairwise half-deviations. Thereby we 
provided a geometric way to visualize the sample SD. We also 
found a direct explanation of why the denominator in the 
definition of sample variance is one less than the sample size, 
without referring to unbiasedness or df. However, we must 
admit that this alternative interpretation is not the 
recommended way to compute the sample variance, since 
instead of the n deviations we must now deal with �𝑛𝑛 

2� 
pairwise half-deviations. 

In fact, one can visualize the RMSD based on the all 
deviations from the sample mean in a manner analogous to 
that based on all pairwise half-deviations. Recall that the 
RMSD is defined by 
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Note that 2~s  is the correct mean square deviation from the 
sample mean, where both uses of the word “mean” involve 
division by n. 

To visualize the RMSD based on the n deviations, of 
course, Step 0 is not needed. Working with the n deviations, 
we follow Steps 1-4. Then the hypotenuse of the composite 
RIT, obtained in Step 4, equals the RMSD. Finally, we must 
implement one more step to obtain the sample SD as follows. 

 
Step 5 (Modify the composite right prism). Replace the 

composite right prism having volume 𝑉𝑉+, y-thickness 1 
and a xz-cross-section in the shape of an RIT by another 
composite right prism having the same volume 𝑉𝑉+, but a 
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smaller y-thickness (1 − 1/𝑛𝑛) and a xz-cross-section in the 
shape of an RIT. Then the base of this new composite 
RIT equals the sample SD. 

 
The method is demonstrated in Fig. 5 using the data 

of Example 1. Recall that the sample variance is 98, and the 
MSD is .5.734/)130211( 2222 =+++  

Figure 5. A geometric construction of the RMSD s~ and the sample 
SD s based on the deviations from the sample mean. 
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We contend that our geometric way of viewing the 
sample SD (and also the RMSD) will help readers develop a 
better intuition about these concepts. We plan to test this 
hypothesis in a statistically designed experiment. 
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