
www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 3

Predictors of Errors of Novice Java Programmers

Rex P. Bringula (Corresponding author)

College of Computer Studies and Systems, University of the East

2219 C. M. Recto Avenue, Manila, Philippines

Tel: 632-735-54-71 to 82 loc. 425 E-mail: rex_bringula@yahoo.com

Geecee Maybelline A. Manabat

College of Computer Studies and Systems, University of the East

2219 C. M. Recto Avenue, Manila, Philippines

Tel: 632-735-54-71 to 82 loc. 425 E-mail: gcee91805@yahoo.com.ph

Miguel Angelo A. Tolentino

College of Computer Studies and Systems, University of the East

2219 C. M. Recto Avenue, Manila, Philippines

Tel: 632-735-54-71 to 82 loc. 425 E-mail: miguelangelotolentino@yahoo.com

Edmon L.Torres

College of Computer Studies and Systems, University of the East

2219 C. M. Recto Avenue, Manila, Philippines

Tel: 632-735-54-71 to 82 loc. 425 E-mail: emon.torres@gmail.com

Received: October 15, 2011 Accepted: November 12, 2011 Published: February 1, 2012

doi:10.5430/wje.v2n1p3 URL: http://dx.doi.org/10.5430/wje.v2n1p3

This paper is funded by the University of the East.

Abstract

This descriptive study determined which of the sources of errors would predict the errors committed by novice Java

programmers. Descriptive statistics revealed that the respondents perceived that they committed the identified eighteen

errors infrequently. Thought error was perceived to be the main source of error during the laboratory programming

exercises. Factor analysis showed that there were five categories for the types of errors committed. Four of them were

symbol- or keyword-related errors (Invalid symbols or keywords, Mismatched symbols, Missing symbols, and

Excessive symbols) and the fifth one was Naming-related error (Inappropriate naming error). Regression analysis

showed that Sensorimotor and Habit errors, together with Knowledge error, were found to predict Mismatched symbols

and Missing symbols errors, respectively. Knowledge error was found to be the consistent source of the five types of

errors. Thus, the null hypothesis stating that sources of errors do not predict errors committed by novice Java

programmers is partially rejected. The implications of the findings were also discussed.

Keywords: Error, Java educator, Java programmer, Novice programmer, Taxonomy of Error

1. Introduction

One of the most successful programming languages in the market is Java (Wong, 2002). Java is considered as a

general-purpose programming language that reduces the compilation cycle and enables codes to be run on multiple

operating systems on any certified Java Virtual Machine (Sun Microsystems, 2008). It is a robust language that can be

used for a variety of applications such as client-side software that incorporates sophisticated graphical user interfaces

(Benander et al., 2004). Application developers can use it and develop different application software or even different

mailto:emon.torres@gmail.com
http://dx.doi.org/10.5430/wje.v2n1p3

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 4

web applications. As it becomes more popular these days, applications developed from it become in demand and so are

the programmers and developers using it.

Seeing the demand for such skill, Philippine higher education institutions (PHEIs) offer degree and non-degree programs

in Information Technology Education (Computer Science, Information Technology, Information System, and Associate

in Computer Technology). Most PHEIs offer Java as their introductory course in programming. Programming from its

simplest definition is an act of creating a program. However, learning to program is difficult (Robins et al., 2003;

Pendergast, 2005). Inexperienced programmers, also called novice programmers, have experienced varied difficulties in

learning a programming language.

It is important to study novice programming errors since the study ―can lead to a better understanding of

problem-solving strategies and will highlight the difficult aspects of programming and programming instruction‖

(Ebrahimi, 1994, p. 457). As a result, numerous studies have been conducted to identify the difficulties experienced by

novice programmers and the errors associated with these difficulties (e.g., Mosemann and Weibendeck 2001; Jackson et

al., 2005; Gobil et al., 2009).

However, none have yet studied what predicts the errors committed by novice programmers. Thus, this study has been

conceived. Toward this aim, it sought answers to the following questions. (1) How do the respondents perceive the

sources of errors in Java programming in terms of Knowledge error, Memory error, Thought error, Habit error,

Sensorimotor error, and Omission error? (2) What are the Java programming errors committed by novice Java

programmers? (3) Do the different sources of errors, singly or in combination, predict the novice Java programmer‘s

errors?

2. Literature Review

2.1 Error and Taxonomy of Error

Broadly, error is non-attainment of a goal (Zapf et al., 1992). Specifically, human error is defined as ―a deviation from

normal or expected performance, the deviation being defined by the consequence‖ (Whittingham, 2004, p. 3). It is also

defined as the discrepancy between the desired and the actual performance of a person in pursuit of the attainment of the

goal (Meister, 1989). For instance, if a person presses keys at random (i.e., the action is not purposeful (Whittingham,

2004)), an error cannot be committed (Zapf, et al., 1992; Brodbeck et al., 1993).

Most accidents occur due to human error (Peters and Peters, 2006). Such error accounts for the accidents in aviation

(Wiegmann and Shappell, 1997; Rantanen, 2006; Garrett and Teizer, 2009), in computer and utility system operations

(Koval and Floyd II, 1998), driving (Stanton and Salmon, 2009), and in petrochemical, healthcare, construction, mining,

and nuclear power industries (Garrett and Teizer, 2009). The effects of human error range from damaging equipment

and property, disrupting scheduled system operation, or even causing injury or fatality (Koval and Floyd II, 1998). For

this reason, it has been a widely used subject of research (e.g., Kim et al., 2004; Joyce et al., 2005; Itoh et al., 2009;

Stanton and Salmon, 2009).

There are articles that attempted to explain human error. Poska (2009) said that it is associated with carelessness, lack of

attention, misjudgment, forgetfulness, executing tasks out of sequence or doing things outside the required time frame.

Meister (1989) described it further in terms of (1) the nature of the error (errors of omission, commission, sequence,

slips, and mistakes), (2) the stages in which the error occurred (e.g., takeoff, landing, installation error, design error), (3)

the function with which the error is associated (e.g., decision making, tracking), (4) the procedure in relation to which

the error was made, (5) equipment and/or part of the facility with which the erroneous action is associated, (6) assumed

cause of error (e.g., lack of motivation, lack of skill, inattention) and (7) the consequences of error (e.g., catastrophic

effect, no effect at all). Whittingham (2004, p. 4) associated it with the cognitive processes of a person as it commented

that ―human error is a failure of the cognitive (or thinking) processes that went into planning an action or sequence

actions, a failure in the execution of the action or a failure to carry out the action at all.‖ This is called endogenous error

(Whittingham, 2004).

Others attempted to explain human errors through error classification (taxonomy of errors). Phenotypes and genotypes

(Hollnagel, 1993 cited in Sutcliffe and Rugg, 1998, and in Whittingham, 2004) is the broadest taxonomy of human

errors. Genotype deals with the underlying cause of the error at the cognitive level while phenotype deals with the

observable effect of the error (Sutcliffe and Rugg, 1998; Whittingham, 2004). Meanwhile, Rasmussen (1983 cited in

Whittingham, 2004) proposed that errors can be explained through skill-, rule-, and knowledge-based behaviors.

Whittingham (2004) explains that (1) skill-based behavior is used when a usual and routine task has to be carried out in

an automated fashion without a great deal of conscious thought, (2) rule-based behavior is acquired from experience or

through formal training and which is retrieved from memory when a task is executed, and (3) knowledge-based behavior

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 5

is executed when a new and unfamiliar situation is presented for which no existing rules are stored but requires a plan of

action.

Zapf et al. (1992) and Brodbeck et al. (1993) classified errors in the field of human-computer interaction. In their studies

in the office workplace using computers, they proposed two taxa. The first taxon is the functionality problem in which

there is a mismatch between the work task and the computer (Zapf et al., 1992; Brodbeck et al., 1993). The second taxon

is usability problem in which there is a mismatch between the user and the computer (Zapf et al., 1992; Brodbeck et al.,

1993). The second taxon is subdivided further into knowledge-based for regulation, intellectual level of regulation, level

of flexible action patterns, and sensorimotor level of regulation.

Knowledge error is the sole component of knowledge-based for regulation. Thought, Memory, and Judgment errors are

the components of intellectual level of regulation. Level of flexible action patterns is composed of Habit, Omission, and

Recognition errors. Sensorimotor error is the only element of Sensorimotor level of regulation.

Zapf et al. (1992) defined these errors as follows.

 Knowledge errors occur when a specific task is not executed because one does not know certain commands,

function keys, rules, etc.

 Thought errors, on the other hand, occur due to inadequacy of the developed plan or wrong decisions are made

in the assignment of plans or sub-plans even though the user knows what to do.

 Memory errors occur when the plan is forgotten and not executed although the goal and the plan are correctly

identified.

 Judgment errors happen when the user cannot understand or interpret the computer message or feedback.

 Habit errors mean that a correct action is carried out in a wrong situation.

 Omission errors arise when a plan is not executed although the plan is done routinely.

 Recognition errors arise when an error message is unnoticed or is confused with another one.

 Sensorimotor errors are manifested when a wrong key is pressed or a wrong mouse click is executed.

2.2 Novice Programmer

Programming is one of the core skills for Information Technology Education (Computer Science, Information

Technology, Information Systems, and Associate in Computer Technology) students. It is a very useful and rewarding

career (Robins et al., 2003). However, learning to program is hard (Robins et al., 2003; Pendergast, 2005). It requires

exceptional perfection (Perkins and Martin, 1986; Rogerson and Scott, 2010). Programming ability requires a strong

foundation about knowledge on computers, programming languages, programming tools and resources, theory and

formal methods (Robins et al., 2003). More specifically, programming involves putting the pieces together of a set of

programming language instructions that solves a specific problem (Pennington and Grabowski, 1990).

Novice programmers are programmers who are inexperienced in the art of programming and usually taking up

introductory programming course (Gobil et al., 2009). Similarly, Shuhidan et al. (2009) defined them as those who never

had programming experience to those who may had some basic background to programming either attained formally or

informally in a pre-university setup. Norman (1978 cited in Palumbo, 1990) believes it may require 5,000 hours to

develop a complex skill such as programming. Simon (1980 cited in Palumbo, 1990) said that it may require 10,000

hours to build expertise in a particular area. But according to Winslow (1996 cited in Robins et al., 2003), it takes 10

years of experience to develop the skills of novices to become experts. Nevertheless, it is clear that ―if participants in

programming language/problem-solving research were novices at the beginning of the programming instruction, they

would still be classified as non-experts at the conclusion of the instruction‖ (Palumbo, 1990, p. 70).

Novice programmers lack of programming knowledge (Robins et al., 2003) and strategies (Robins et al., 2003; Carbone

et al., 2009). They are less skilled at using functional information in spite of the simplicity and appropriateness of the

program to their own level (Wiedenbeck, 1986). They have difficulty tracing one or more variables in order to see how

these are transformed in the program (data flow view) (Mosemann and Wiedenbeck, 2001; Carbone et al., 2009) due to

their ―line-by-line‖ approach to programming (Gobil et al., 2009; Winslow, 1996 cited in Robins et al., 2003). They

have limited debugging skills (Carbone et al., 2009), and have incomplete understanding of language constructs such as

variables, loops, arrays, and recursions (Gobil et al., 2009). Winslow (1996 cited in Robins et al., 2003, p. 140) also said

that novices are ―limited to surface and superficially organized knowledge, lack detailed mental models, fail to apply

relevant knowledge, and approach programming ―line by line‖ rather than using meaningful program chunks or

structures.‖

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 6

In order to understand more about novices, they are usually compared to experts since ―by definition novices do not

have many of the strengths of experts‖ (Robins et al., 2003, p. 140). Experts are good at structuring changes in a

program and know how to integrate these changes with the existing codes (Mosemann and Wiedenbeck, 2001). They are

also good at recognizing, using, and adapting patterns or schemas (Robins et al., 2003). They employ problem-solving

strategies such as modular decomposition, analogical reasoning, systematic planning, coding and debugging (Kurland et

al., 1986).

Every novice programmer is confronted with a wide range of difficulties and deficits in programming (Robins et al.,

2003). First, novices have difficulty in expressing natural language solutions into computer programming language

solutions (Ebrahimi, 1994; Kelleher and Pausch, 2005). They might know the syntax and semantics of the individual

statements of the programming language but they are unable to put them together into a valid program (Winslow 1996,

cited in Robins et al., 2003). Second, they have problems in analyzing and designing mathematical expressions, naming

variables and assigning suitable data types and structures to these variables, evaluating correctly output statements,

arithmetic expressions, and relationship expressions (Gobil et al., 2009). Lastly, they also have difficulty in debugging

loop conditions, conditional logic, arithmetic errors, and data initialization and update (Fitzgerald et al., 2008).

2.3 Research Paradigm

The foregoing review of related literature served as basis in the formulation of the research paradigm. The study was

guided by the taxonomy of error proposed by Zapf et al. (1992). However, taxonomy of error was modified to fit the

taxa in programming domains. The modified seven constructs were identified below.

<Figure 1 about here>

The following constructs served as the independent variables. These were defined as follows.

 Knowledge error refers to the acquired knowledge in programming of the students in the classroom lecture. The

content of the lecture encompasses syntax, simple mathematical operators, logical operators, conditional

statements, use of classes and methods in Java.

 Memory error refers to the errors committed due to failure to remember a) the syntax of Java programming

language, b) lecture or instructions of the teacher, c) use of specific mathematical operator, and d) use of

methods in Java.

 Thought error refers to the misconception of the acquired knowledge in Java programming. This was

manifested by the presumption that the code was correct but once but once compiled a syntax error was found.

 Judgment error occurs when students cannot understand the compiler error message or cannot debug the error.

Judgment and recognition errors were treated as one in this study.

 Habit error occurs when students tend to ignore the lecture or the instructions of the teacher.

 Sensorimotor motor refers to unintentional inclusion of unnecessary characters in the program text or

unintentional key press.

 Omission error occurs when students skipped the instructions or reading the lecture given by the teacher.

The dependent variable (errors committed by novice Java programmers) was composed of eighteen (18) errors (e.g., No

semi-colon at the end of a statement, Excessive semi-colon, Putting a period between the keyword import and java

packages, etc.). Self-reporting method (Meister, 1989) was used to determine the frequency of errors committed. The

measurement, validity, and reliability of the constructs were discussed in details in the following section.

In light of the research paradigm, it is hypothesized that sources of errors, singly or in combination, do not significantly

predict errors committed by novice Java programmers.

3. Methodology

3.1 Research Design, Locale, and Subjects

The study used a descriptive design which employed a descriptive survey as the research instrument. The College of

Computer Studies and Systems of the University of the East was selected as the research locale of the study. The study

adopted the definition of Gobil et al. (2009) and Shuhidan et al. (2009) of novice programmers. Thus, first year students

who were enrolled in Introductory Computer Programming Course in Java Programming (PROG1) of First Semester of

School Year 2010-2011 were the respondents of the study.

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 7

3.2 Sampling Design

There were 598 students enrolled in PROG1. Eighty-one (81) students participated in the experiment (programming

activity) and forty (40) in the pre-test of the questionnaire. This number of students (121) was deducted from the total

population enrolled in PROG1. Thus, the true population considered in the study was 477. Using Sloven‘s formula with

a sampling error of 0.05, the computed sample size was 217. Respondents were randomly selected through their class

sections in PROG1.

The sample size was increased to 322 (a 48% increase) to accommodate low return rate. Two hundred fifty-three (253)

forms were retrieved and these were all used in the study. The details of the distribution of the survey forms were given

in Table 1.

<Table 1 about here>

3.3 Research Instrument and Data-Gathering Procedure

A survey form was utilized as the research instrument of the study. There were two (2) phases in the construction of the

survey form. The first phase was to determine the items to be included in the survey form. An experiment, which

involved a laboratory programming activity, was conducted in three (3) sections (with a total of 81 students) of PROG1.

Before the experiment was conducted, three experts validated the complexity, relevance, and appropriateness of the

programming problem given (application of an if-else structure) in the activity. These experts were composed of two (2)

professors with at least 10 years of teaching experience in programming and one (1) technical expert (Certified Java

Programmer). They agreed that the problem could be solved within 60 minutes by novice programmers.

The programming problem was related to the lecture. The students were also asked to take screenshots of their

compilations in order to log their common errors in programming. The screenshots were then pasted in a word processer.

Errors committed were tabulated based on the screenshots.

The screenshots were used as basis in the formulation of questions with regard to errors committed by novice Java

programmers. Eighteen questions were developed based on these screen shots. Data collected on the eighteen questions

served as dependent variable of the study.

After the questionnaire was developed, it was pretested to 40 students who were excluded in the sample. This is the

second phase of the survey construction. To determine the frequency errors committed, respondents could answer from 1

(Never) to 5 (Always). The weight and verbal interpretation of this construct are given below (Table 2).

<Tables 2-4 about here>

There were seven (7) constructs that could be attributed to the errors committed by novice Java programmers.

Respondents were asked to rate each question on the hypothesized constructs from 1 (Highly disagree) to 10 (Highly

disagree). Each question began with the statement ―I do not know…‖, ―I forgot the …‖, ―I thought …‖, ―I cannot …‖, ―I

always do not…‖, ―I accidentally …‖, and ―I skipped …‖ for Knowledge Error, Memory Error, Thought Error, Habit

Error, Sensorimotor Error, and Omission Error, respectively. However, Cronbach‘s alpha analysis showed that Judgment

error (= 0.690) (see Table 3) was not found to be a reliable construct (below the minimum criterion of 0.70) (Pallant

2001; George and Mallery, 2009). Thus, only six constructs were retained. The retained constructs were found to be

reliable (above the minimum criterion of 0.70) and valid (factor loadings greater than 0.40) (Pallant 2001; George and

Mallery, 2009).

3.4 Statistical Tools Used

The study used frequency count, percentage, means, and ranking to describe the data. Cronbach‘s alpha analysis and

factor analysis were utilized to determine the reliability and validity of the constructs, respectively. Multiple regression

analysis at 5% level of probability and 95% reliability was employed to determine which of the sources of error would

predict the errors committed by novice Java programmers.

4. Results and Discussion

4.1 Java Programming Errors Committed

The respondents of the study are taking up degree programs in Information Technology (f=194, 77%) and Computer

Science (f=54, 21%), and a non-degree program in Computer Technology (Associate in Computer Technology, f=5, 2%).

Table 4 shows the factor analysis of the eighteen (18) novice Java programming errors.

Five types of errors (i.e., factors) are retained since their eigenvalues are greater than 1.00 (Dancey and Reidy, 2002).

The cumulative percentage of variance is 56.346%. All variables loaded highly on each type of error (greater than 0.40).

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 8

The first type of error extracted is called Invalid symbols or keywords (overall mean rating = 1.98). It has the highest

eigenvalue of 5.209. This is composed of errors such as No period between class name and method name, Capitalized

keywords, Replacing (and) with < and > or [and] in output stream, and else without if. The second type of error is

related to Mismatched symbols (eigenvalue = 1.445; overall mean rating = 2.42). These errors are due to Unmatched

curly braces, Incorrect greater than or equal to sign, Cannot find symbol because of mismatched between the declared

and used variable, and Cannot find symbol because of undeclared variable. Meanwhile, No semi-colon at the end of a

statement, No close/open parenthesis on if condition, No parentheses on if-condition, and Unclosed literals are the errors

under Missing symbols (eigenvalue = 1.281; overall mean rating = 2.03).

Inappropriate naming (eigenvalue = 1.135; overall mean rating = 2.22) is the fourth type of error that is composed of

errors such as Inappropriate casing of method names, Inappropriate casing of class names, and Splitting a class name by

putting a space. Excessive symbols (eigenvalue = 1.072; overall mean rating = 2.11) are the last type of errors. These

are composed of Excessive semi-colon, Putting a period between the keyword import and java packages, and Putting a

semi-colon after the if-condition. All types of errors are below the lower half of the scale (Invalid symbols or keywords,

over all mean rating = 1.98; Mismatched symbols, overall mean rating = 2.42; Missing symbols, overall mean rating =

2.03; Inappropriate naming, overall mean rating = 2.22; and Excessive symbols, overall mean rating = 2.11).

The findings of this study are similar to those of the studies of Jadud (2005), Jackson et al. (2005), and Gobil et al.

(2009). Jadud (2005) reported that out of 1,926 errors encountered by the students, more than half of all errors generated

by students while programming are missing semi-colons, unknown symbol-variable, illegal start of expression, bracket

expected, and unknown symbol-class. Jackson et al. (2005) also reported that novice programmers also encountered the

following errors: cannot resolve symbol, semi-colon expected, illegal start of expression, class or interface expected,

<identifier> expected,) expected, incompatible types, int, not a statement, and } expected. Gobil et al. (2009) also

found out that the most common errors are basic mechanic symbols (braces, brackets and semi-colons, formatting

outputs and indenting), and incorrect and irrelevant naming of variables or constants. The findings of Jadud, Jackson et

al., and Gobil et al. are extended by classifying them into types of errors committed shown in Table 4.

It must be noted that the study was conducted in a laboratory experiment. The findings therefore have profound

implications on educating the novice programmers. First, the finding stressed the importance of teachers (Rogerson and

Scott, 2010) as they play an important role in ―curing‖ these errors during laboratory exercises. The findings provide

Java programming teachers an insight on understanding the errors committed by novice Java programmers. Shuhidan et

al. (2009, p. 148) commented that ―improved understanding of novice errors will also better inform educators about

alleviating the difficulties experienced by novices at commencement.‖ Thus, teachers can expect that their students (i.e.,

novice Java programmers) will always encounter these errors and therefore can be readily equipped to correct these

mistakes.

The second implication is that, since more than 50% in the variation (cumulative percentage of variance = 56.346%) of

the types of errors committed is accounted to the five factors, lecture hours and laboratory exercises can be focused on

these types of errors. Thus, strong focus should be given on the discussion on these errors since it could greatly enhance

the performance of the students in programming.

Consequently, Introductory Java programming syllabus can be designed in a way that tackles these topics. This could

elevate the teaching standards of Java teachers. This is very important since teaching standards can influence the

outcomes of courses that teach programming (Linn and Dalbey, 1985). This is the third implication of the study.

4.2 Sources of Errors Committed

Table 5 shows the sources of Java programming errors committed.

<Table 5 about here>

Thought error has the highest mean rating of 5.18. It is composed of six (6) questions such as ―(1) I thought my syntax

was correct, (2) I thought that the mathematical operator I used was correct, (3) I thought that the logical operator I used

was correct, (4) I thought that the conditional statement I put in an if-statement was correct, (5) I thought that I used a

correct class of Java, and (6) I thought I used a correct method of Java.‖ Meanwhile, Habit error got the lowest mean

rating of 3.23. Sensorimotor (mean = 4.34), Omission (mean = 3.78), and Memory (mean = 3.72) errors were rated at the lower

half of the scale. The overall mean (overall mean = 3.92) shows that the six errors were rated below half of the scale.

It can be noted that Thought error refers to misunderstanding of the learned lesson in Java programming. This is

manifested by writing a syntax that they assumed to be a correct syntax but in reality it is syntactically incorrect. The

solution to such misconception is of course to correct it. This implies that students should be given enough, proper, and

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 9

rigorous instructions on how to translate their solutions represented in natural language statements into programming

language statements.

4.3 Regression of Errors Committed by Novice Java Programmers Committed on Sources of Errors

Table 6 shows the regression of errors committed by novice Java programmers on sources of errors. Knowledge error

(beta = 0.395, p < 0.05) is found to be the significant predictor of Invalid symbol errors. A fifteen percent (15%) (Adj.

R
2
 = 0.153) variation on invalid symbol errors of the students is attributed to Knowledge error. The result is unlikely to

have arisen from sampling error (F-value = 45.931, p < 0.05).

<Table 6 about here>

Mismatched symbol is predicted through Knowledge (beta = 0.317, p < 0.05) and Sensorimotor (beta = 0.128, p < 0.05)

errors. Knowledge error is a stronger predictor than Sensorimotor error since the former has a larger beta coefficient.

Together, the predictors are accounted to 13% (Adj. R
2
 = 0.127) in the variation of Mismatched symbol errors. The

F-value of 19.17 with an associated probability of 0.000 shows that the result of the prediction is unlikely to have arisen

from sampling error.

Knowledge error and Habit error predict Missing symbol type of error. Missing symbol type of error is predicted more

by Habit error (beta = 0.176, p < 0.05) than by Knowledge error (beta = 0.134, p < 0.043). However, the explanatory

power of both predictors is only about 6% (Adj. R
2
 = 0.058). Nevertheless, the result is unlikely to have arisen from

sampling error (F-value = 8.58, p < 0.05).

It must be noted that Habit error refers to the reason of error resulting from persistent inattentiveness of students on the

lecture of the teacher. According to Wiegmann and Shappell (1997), error due to attention is one of the reasons of

accidents in aviation. This finding shows that in the field of programming, inattentiveness of students frequently yielded

to avoidable and simple error such as a ―missing semi-colon.‖ This implies that it is important to listen to the lecture of

the professors.

Knowledge error (beta = 0.332, p < 0.05) also predicts Inappropriate naming with an associated explanatory power of

about 11% (Adj. R
2
 = 0.106). The F-value of 30.408 with an associated p-value of 0.000 shows that the result is unlikely

to have arisen from sampling error. Similarly, Knowledge error (beta = 0.183, p < 0.004) predicts Excessive symbol type

of error. Three percent (3%) (Adj. R
2
 = 0.029) in the variation of Excessive symbol type of error is accounted to

Knowledge error. This is unlikely to have arisen from sampling error, as shown by F-value = 8.423 with an associated

probability of 0.004.

As can be seen in Table 6, Knowledge error is found to be the consistent predictor of all types of errors. The predictive

power of Knowledge error ranges only from 3 to 15%. It can be noted that in this study, Knowledge error only refers to

the knowledge that the students know about Java syntax, mathematical and logical operators, conditional statement

formulation, and classes and methods usage. Thus, other factors can be attributed to committing the types of errors

discussed since ―knowledge is only part of the picture‖ (Davies, 1993, cited in Robins et al., 2003, p. 141).

Novice programmers, according to Perkins and Martins (1986), Robins et al. (2003), and De Raadt (2007), have fragile

knowledge. This knowledge is can either be partial, inert, misplaced, or conglomerated. Perkins and Martins (1986)

elaborated this knowledge as follows: (1) Partial knowledge refers to the straightforward case of an impasse since

knowledge is not retained nor learned. (2) Inert knowledge is possessed by a novice programmer but fails to retrieve that

knowledge during programming. (3) Misplaced knowledge is manifested when a student uses commands structures

which do not fit to its intended purpose. (4) Conglomerated knowledge signifies situations where several unrelated codes

are put together in a syntactically or semantically anomalous way.

In this study, only partial knowledge was investigated. Future studies can include the other three forms of knowledge

discussed by Perkins and Martins (1986).

The finding of the study has also an educational implication and it also supports the study of Robins et al. (2003).

Robins et al. (2003) noted that in their experience, typical introductory programming courses are ―knowledge-driven,‖

i.e., typical programming textbooks are focused on presenting knowledge about a particular language through detailed

samples and exercises. Whitfield et al. (2007) also found out that previous textbooks used by the undergraduate degree

were not suited for them since these textbooks assumed knowledge of problem-solving skills. The result of the

regression shows that knowledge-driven textbooks are relatively effective since it can only predict 3 to 15% of the error

that the students can commit during programming laboratory exercises. In other words, it can be expected that these

textbooks can only avoid 3 to 15% of the errors during programming laboratory sessions.

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 10

While it is important to teach the constructs of the language, however, teachers should not only focus on the ―knowledge‖

given by such textbooks but also on other factors that could lead to error-free programming. Davies (1993 cited in

Robins et al., 2003) advocated the focus on problem-solving strategies. Programming knowledge of a declarative nature

is the ability to state how a for loop works while programming strategies are the ways knowledge is used and applied

(e.g., a for loop is appropriately used in a program) (Davies, 1993 cited in Robins et al., 2003). De Raadt (2007, p. 211)

also commented that ―programming knowledge and programming strategies, while related, need to be identified

separately in curricular materials and assessment.‖ Labuscagne (2008) reported that many teachers believed that

problem-solving should be the focus of teaching to novice programmers while the programming language itself is secondary.

Winslow (1996 cited in Robins et al., 2003) showed that novice programmers use general problem-solving strategies

instead of problem-specific or programming-specific strategies. A flawed strategy therefore could lead to programming

errors (see Robins et al., 2003).

Furthermore, caution should be taken into consideration when writing textbooks. It cannot be denied that students should

be familiarized with the syntax and semantics of the programming language. Nevertheless, textbook writers should also

emphasize the strategy on how to solve problem on hand and direct the students to put the pieces together. Doing this

will greatly encourage novices to become effective programmers (Robins et al., 2003).

5. Summary, Conclusions, and Recommendations

On the errors presented earlier, it was found out that respondents perceived that they only committed these errors

infrequently. When these errors were grouped together, five categories were found. These were Invalid symbols or

keywords, Mismatched symbols, Missing symbols, Inappropriate naming, and Excessive symbols. These errors

contributed to more than 50% of the errors committed during laboratory programming exercises.

Knowledge error was found to be the consistent predictor of novice Java programmers‘ error. Sensorimotor error and

Habit error, together with Knowledge error, were found to be significant predictors of Mismatched symbol and Missing

symbol, respectively. Thus, based on the findings presented, the null hypothesis stating that the sources of errors do not

predict errors committed by novice Java programmers is partially rejected.

In the light of the limitations, findings, and conclusion presented, the following recommendations are set forth. First, a

study of the relationship between errors committed and the affect states and behavior while programming may be

initiated. For example, it was found that there are two types of novice programmers: stoppers and movers (see Robins et

al., 2003). Stoppers are those who, as the word implies, stop on programming when faced with difficulty on the task. On

the other hand, movers are those who keep on trying to solve the problem on hand and, perhaps, eventually will achieve

a working program.

Therefore, questions can be raised from these situations:

(1) What types of errors do stoppers and movers encounter during programming?

(2) Are sources of errors mentioned in this study attributed to the errors they committed?

(3) Is there a difference, in quantity and in nature, between the errors encountered by stoppers and those by movers? (4)

What problem-solving and debugging strategies employed by movers?

(5) As educators, what can be done to help stoppers be engaged in solving the problem?

Future research can answer these questions.

Second, other variables not investigated in this study can be included in future research. The types of errors used in this

study are only focused on syntax errors. Thus, semantic errors can also be investigated. Also, other forms of knowledge

(inert, misplaced, or conglomerated) can be included as independent variables.

Third, Java educators should be readily equipped with the knowledge on how to avoid or to cure the types of errors

found in this study. It is important to teach students the knowledge about a specific programming language but Java

educators should not forget that it should be taught along with effective problem-solving strategies. Robins et al. (2003,

p. 162) also recommended that ―initial course material should be simple, and this should be expanded on systematically

as the students gain experience.‖ In this connection, Java textbooks should not only be ―knowledge-driven‖ but it should

also be ―strategy-driven‖ (Perkins and Martins, 1986; Robins et al., 2003).

Robins et al. (2003, see p. 164) proposed a programming framework that summarized the programming processes. This

gives a clear and vivid picture of the whole programming processes. Guided by this framework, errors committed by

novice Java programmers on each programming process can be investigated.

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 11

Fourth, there were anecdotal evidences that some students preferred some programming languages (e.g, Visual Basic or

C++) over Java. Hence, two further studies can be initiated – (1) a study on the factors considered in choosing

programming languages, and (2) a study on the difficulties faced by novice programmers in using Java.

Finally, the big challenge for Java educators is to help Java novice programmers translate the latter‘s solution into an

error-free program. With the help of an appropriate textbook, teachers could deliver the content of the course with

great precision and caution since ―a course well-experienced will leave students with good programming habits, the

ability to learn on their own, and a favorable impression of programming as a profession‖ (Pendergast, 2006, p. 491).

Doing this will greatly ―educate the younger generation that an error, even a small one, means that the program is

incorrect. After all, even a minor error can cause a disaster and result in a major expenditure of human life‖ (Kolikant

and Mussai, 2008, p. 148).

References

Benander, A., Benander, B., & Sang, J. (2004). Factors related to the difficulty of learning to program in Java – An

empirical study of non-novice programmers. Information and Software Technology, 46, 99–107.

http://dx.doi.org/10.1016/S0950-5849(03)00112-5

Brodbeck, F. C., Zapf, D., Priimper, J., & Frese, M. (1993). Error handling in office work with computers: A field study.

Journal of Occupational and Organizational Psychology, 66, 303–331.

http://dx.doi.org/10.1111/j.2044-8325.1993.tb00541.x

Carbone, A., Hurst, J., Mitchell, I., & Gunstone, D. (2009). An exploration of internal factors influencing student

learning of programming. In Md. J. Nordin, K. Jumari, M. S. Zakaria, & Suwarno (Eds.). Computing Education

2009: Proceedings 11th Australasian Computing Education Conference (ACE 2009), Conferences in Research and

Practice in Information Technology (CRPIT), 95 (pp. 25–34). Sydney, Australia: Australian Computer Society, Inc.

Dancey, C. P., & Reidy, J. (2002). Statistics without maths for Psychology: Using SPSS for Windows 2nd edn. England:

Pearson Education Limited.

De Raadt, M. (2007). A review of Australasian investigations into problem solving and the novice programmer.

Computer Science Education, 17(3), 201–213. http://dx.doi.org/10.1080/08993400701538104

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition. International Journal of

Human-Computer Studies, 41, 457–480. http://dx.doi.org/10.1006/ijhc.1994.1069

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging:

Finding, fixing and flailing, a multi-institutional study of novice debuggers. Computer Science Education, 18(2),

93–116. http://dx.doi.org/10.1080/08993400802114508

Garret, J. W., Teizer, J. (2009). Human factors analysis classification system relating to human error awareness

taxonomy in construction safety. Journal of Construction Engineering and Management, 135(8), 754–763.

http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000034

George, D., & Mallery, P. (2009). SPSS for Windows step by step: A simple guide and reference 16.0 update 9th edn.

Boston: Pearson Education.

Gobil, A. R. M., Shukor, Z., & Mohtar, I. A. (2009). Novice difficulties in selection structure. In Md. J. Nordin, K.

Jumari, M. S. Zakaria, & Suwarno (Eds.). 2009 International Conference on Electrical Engineering and

Informatics, 2, (pp. 351–356). doi: 10.1109/ICEEI.2009.5254715. New Jersey, USA: IEEE Computer Society.

http://dx.doi.org/10.1109/ICEEI.2009.5254715

Itoh, K., Omata, N., & Andersen, H. B. (2009). A human error taxonomy for analysing healthcare incident reports:

Assessing reporting culture and its effects on safety performance. Journal of Risk Research, 12(3/4), 485–511.

http://dx.doi.org/10.1080/13669870903047513

Jackson, J., Cobb, M., & Carver, C. (2005). Identifying top java errors for novice programmers. Frontiers in Education

Conference, 1, T4C-T4C27. http://dx.doi.org/10.1109/FIE.2005.1611967

Jadud, M. C. (2005). A first look at novice compilation behavior using BlueJ. Computer Science Education, 15(1),

25–40. http://dx.doi.org/10.1080/08993400500056530

http://dx.doi.org/10.1016/S0950-5849(03)00112-5
http://dx.doi.org/10.1111/j.2044-8325.1993.tb00541.x
http://dx.doi.org/10.1080/08993400701538104
http://dx.doi.org/10.1006/ijhc.1994.1069
http://dx.doi.org/10.1080/08993400802114508
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000034
http://dx.doi.org/10.1109/ICEEI.2009.5254715
http://dx.doi.org/10.1080/13669870903047513
http://dx.doi.org/10.1080/08993400500056530

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 12

Jenkins, T., & Davy, J. (2001). Diversity and motivation in introductory programming. Innovations in Teaching and

Learning in Information and Computer Sciences, 1(1). Retrieved January 9, 2011, from

http://www.ics.heacademy.ac.uk/italics/issue1/tjenkins/003.PDF

Joyce, P., Boaden, R., & Esmail, A. (2005). Managing risk: A taxonomy of error in health policy. Health Care Analysis,

13(4), 337–346. http://dx.doi.org/10.1007/s10728-005-8129-x

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments

and languages for novice programmers. ACM Computing Surveys, 37(2), 83–137.

http://dx.doi.org/10.1145/1089733.1089734

Kim, J. W., Jung, W., & Ha, J. (2004). AGAPE-ET: A methodology for human error analysis of emergency tasks. Risk

Analysis, 24(5), 1261–1277. http://dx.doi.org/10.1111/j.0272-4332.2004.00524.x

Kolikant, Y. B-D., & Mussai, M. (2008). ―So my program doesn‘t run!‖ Definition, origins, and practical expressions of

students‘ (mis)conceptions of correctness. Computer Science Education, 18(2), 135–151.

http://dx.doi.org/10.1080/08993400802156400

Koval, D. O., & Floyd II, H. L. (1998). Human element factors affecting reliability and safety. IEEE Transactions on

Industry Applications, 34(2), 406–414. http://dx.doi.org/10.1109/28.663487

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development of programming ability and

thinking skills in high school students. Journal of Educational Computing Research, 2(4), 429–458.

http://dx.doi.org/10.2190/BKML-B1QV-KDN4-8ULH

Labuscagne, C. (2008). How to teach programming to novices. Communications of the ACM, 51(6), 11.

http://dx.doi.org/10.1145/1349026.1349029

Linn, M. C., & Dalbey, J. (1985). Cognitive consequences of programming instruction: Instruction, access, and ability.

Educational Psychologist, 20(4), 191–206. http://dx.doi.org/10.1207/s15326985ep2004_4

Meister, D. (1989). The nature of human error. Global Telecommunications Conference and Exhibition, 2, 783–786.

http://dx.doi.org/10.1109/GLOCOM.1989.64071

Mosemann, R., & Wiedenbeck, S. (2001). Navigation and comprehension of programs by novice programmers.

Proceedings of the 9th International Workshop on Program Comprehension: IWPC ’01 (pp. 79–88).

http://dx.doi.org/10.1109/WPC.2001.921716. Washington, DC: IEEE Computer Society.

Pallant, J. (2001). SPSS survival manual: A step by step guide to data analysis using SPSS for Windows version 10.

Buckingham: Open University Press.

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of relevant issues. Review of

Educational Research, 60(1), 65–89.

Pendergast, M. O. (2005). Teaching Java to IS students: Top ten most heinous programming errors. Americas

Conference on Information Systems 2005 Proceedings, 656–667. Retrieved May 3, 2011, from

http://aisel.aisnet.org/amcis2005/241

Pendergast, M. O. (2006). Teaching introductory programming to IS students: Java problems and pitfalls. Journal of

Information and Technology Education, 5, 491–595. Retrieved January 8, 2011, from

http://jite.org/documents/Vol5/v5p491-515Pendergast128.pdf

Pennington, N., & Grabowski, B. (1990). The tasks of programming. In J.M. Hoc, T.R.G. Green, R. Samurҫay, & D.J.

Gilmore (Eds.), Psychology of programming (pp. 45–62). London: Academic Press.

Perkins, D. N., & Martin F. (1986). Fragile knowledge and neglected strategies in novice programmers. In E. Soloway &

S. Iyengar (Eds.), Empirical studies of programmers, First Workshop (pp. 213–229). Norwood, NJ: Ablex.

Peters, G. A., & Peters, B. J. (2006). Human error: Causes and control. Boca Raton, Fl: CRC Press/Taylor & Francis.

Poska, R. (2009). Human error and retraining: An interview with Kevin O‘Donnell, Ph.D., Irish Medicines Board.

Journal of GXP Compliance, 13(4), 47–60.

Rantanen, E. M., Palmer, B. O., Wiegmann, D. A., & Musiorski, K. M. (2006). Five-dimensional taxonomy to relate

human errors and technological interventions in a human factors literature database. Journal of the American

Society for Information Science and Technology, 57(9), 1221–1232. http://dx.doi.org/10.1002/asi.20412

http://www.ics.heacademy.ac.uk/italics/issue1/tjenkins/003.PDF
http://dx.doi.org/10.1145/1089733.1089734
http://dx.doi.org/10.1111/j.0272-4332.2004.00524.x
http://dx.doi.org/10.1080/08993400802156400
http://dx.doi.org/10.1109/28.663487
http://dx.doi.org/10.2190/BKML-B1QV-KDN4-8ULH
http://dx.doi.org/10.1109/GLOCOM.1989.64071

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 13

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.

Computer Science Education, 13(2), 137–172. http://dx.doi.org/10.1076/csed.13.2.137.14200

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program in a tertiary environment.

Journal of Information Technology Education, 9, 147–171. Retrieved April 8, 2010, from

http://jite.org/documents/Vol9/JITEv9p147-171Rogerson803.pdf

Rountree, N., Rountree, J., & Robins, A. (2002). Identifying the danger zones: Predictors of success and failure in a CS1

course. Inroads (the SIGCSE Bulletin), 34, 121–124.

Shuhidan, S., Hamilton, M., & D‘Souza, D. (2009). A taxonomic study of novice programming summative assessment.

In M. Hamilton and T. Clear. Computing Education 2009: Proceedings 11th Australasian Computing Education

Conference (ACE 2009), Conferences in Research and Practice in Information Technology (CRPIT), 95 (pp.

147–156). Sydney, Australia: Australian Computer Society, Inc.

Stanton, N. A., & Salmon, P. M. (2009). Human error taxonomies applied to driving: A generic driver error taxonomy

and its implication for intelligent transport systems. Safety Science, 47(2), 227–237.

http://dx.doi.org/10.1016/j.ssci.2008.03.006

Sun Microsystems. (2008). Java programming language student guide. California, U.S.A.: Sun Microsystems.

Sutcliffe, A., & Rugg, G. (1998). A taxonomy of error types for failure analysis and risk assessment. International

Journal of Human-Computer Interaction, 10(4), 381–405. http://dx.doi.org/10.1207/s15327590ijhc1004_5

Whitfield, A. K., Blakeway, S., Herterich, G. E., & Beaumont, C. (2007). Programming, disciplines and methods

adopted at Liverpool Hope University. Innovations in Teaching and Learning in Information and Computer

Sciences, 6(4), 145–168. Retrieved April 8, 2011, from

http://www.ics.heacademy.ac.uk/italics/vol6iss4/Whitfield.pdf

Whittingham, R. B. (2004). The blame machine: Why human error causes accidents. Elsevier Butterworth-Heinemann:

Burlington, MA.

Wiedenbeck, S. (1986). Organization of programming knowledge of novices and experts. Journal of the American

Society for Information Science, 37(5), 294–299.

Wiegmann, D. A., & Shappell, S. A. (1997). Human factors analysis of postaccident data: Applying theoretical

taxonomies of human error. The International Journal of Aviation Psychology, 7(1), 67–81.

http://dx.doi.org/10.1207/s15327108ijap0701_4

Wong, W. (2002). Self-inflicted wounds may scar Java. Retrieved May 10, 2011, from

http://www.zdnet.com/news/self-inflicted-wounds-may-scar-java/121683?tag=content;search-results-rivers

Zapf, D., Brodbeck, F. C., & Frese, M. (1992). Errors in working with office computers: A first validation of a

taxonomy for observed errors in a field setting. International Journal of Human-Computer Interaction, 4(4),

311–339. http://dx.doi.org/10.1080/10447319209526046

Table 1. Number of Survey Forms Distributed and Retrieved

Section
a

No. of Forms Distributed

(No. of Students)
No. of Forms Returned

A 34 34

B 38 21

C 35 22

D 37 35

E 34 25

F 35 21

G 39 34

H 30 28

I 40 33

TOTAL 322 253
a
Class sections were changed to protect the privacy of the respondents.

http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1207/s15327590ijhc1004_5
http://www.ics.heacademy.ac.uk/italics/vol6iss4/Whitfield.pdf
http://dx.doi.org/10.1207/s15327108ijap0701_4
http://dx.doi.org/10.1080/10447319209526046

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

ISSN 1925-0746 E-ISSN 1925-0754 14

Table 2. Five-Point Scale/Weight, Mean Range, and Verbal Interpretation

Five-Point Scale/Weight Verbal Interpretation

5 Always

4 Often

3 Sometimes

2 Seldom

1 Never

Table 3. The Independent Variables

Independent Variables No. of Questions Cronbach alpha Factor Loading

Knowledge error 6 0.799 0.772

Memory error 5 0.906 0.910

Thought error 6 0.851 0.474

Habit error 2 0.896 0.880

Sensorimotor error 2 0.913 0.457

Omission error 2 0.844 0.829

Judgment error 2 0.690 -

Table 4. Factor Analysis of Novice Java Programmers‘ Errors Committed

Types of error (Errors Committed)
b
 Eigenvalue

Factor

Loading
Mean

Invalid symbols or keywords

No period between class name and method name

5.209

0.754 1.94

Capitalized keywords 0.524 2.11

Replacing (and) with < and > or [and] in output stream 0.647 1.80

else without if 0.539 2.06

Overall mean 1.98

Mismatched symbols

Unmatched curly braces

1.445

0.585 2.34

Incorrect greater than or equal to sign 0.592 2.30

Cannot find symbol because of mismatched between the declared and

used variable

0.631 2.48

Cannot find symbol because of undeclared variable 0.741 2.55

Overall mean 2.42

Missing symbols

No semi-colon at the end of a statement

1.281

0.602 2.14

No close/open parenthesis on if-condition 0.739 1.91

No parentheses on if-condition 0.629 1.92

Unclosed literals 0.540 2.14

Overall mean 2.03

Inappropriate naming

Inappropriate casing of method names

1.135

0.713 2.40

Inappropriate casing of class names 0.743 2.18

Splitting a class name by putting a space 0.732 2.09

www.sciedu.ca/wje World Journal of Education Vol. 2, No. 1; February 2012

Published by Sciedu Press 15

Overall mean 2.22

Excessive symbols

Excessive semi-colon

1.072

0.639 1.79

Putting a period between the keyword import and java packages 0.787 2.11

Putting a semi-colon after the if-condition 0.523 2.42

Overall mean 2.11
b
cummulative % of variance = 56.346

Table 5. Sources of Errors Committed

Source Mean Rank

Thought error 5.18 1

Sensorimotor error 4.34 2

Omission Error 3.78 3

Memory error 3.72 4

Knowledge error 3.28 5

Habit error 3.23 6

Overall Mean 3.92

Table 6. Predictors of Errors Committed by Novice Java Programmers

Types of Error Predictor(s) Beta Sig. Adj. R
2
 F-value Sig.

Invalid symbol Knowledge error 0.395 0.000 0.153 45.931 0.000

Mismatched symbol
Knowledge error 0.317 0.000

0.127 19.17 0.000
Sensorimotor error 0.128 0.035

Missing symbol
Knowledge error 0.134 0.043

0.058 8.58 0.000
Habit error 0.176 0.008

Inappropriate naming Knowledge error 0.332 0.000 0.106 30.408 0.000

Excessive symbol Knowledge error 0.183 0.004 0.029 8.423 0.004

Figure 1. The Research Framework Showing the Sources of Errors That Might Predict Errors Committed

by Novice Java Programmers

Independent Variables

Sources of Errors

 Knowledge error

 Memory error

 Thought error

 Judgment error

 Habit error

 Sensorimotor error

 Omission error

Dependent Variable

Errors Committed by Novice Java

Programmers

