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Abstract 
The aim of this case study is to examine mathematics teachers’ knowledge of students’ thinking and its evidences 
in their teaching. The participants were three secondary mathematics teachers. Data were gathered from interviews 
and observations. While analyzing the data, the framework about teachers’ knowledge of students’ thinking was 
used. The findings showed that each teacher mainly considered the knowledge of students’ thinking as knowing 
students’ prior knowledge. They expressed that they benefited from the questions to reveal students’ ideas, 
encouraged their students to use different solution ways for the problems, and had ideas on misconceptions and 
difficulties their students might be confronted. The participants also considered students’ prior knowledge in their 
lessons, but they did not tackle their difficulties, errors and misconceptions unless students asked questions to 
them. They had the limited approaches for building on students’ mathematical ideas, promoting students thinking 
mathematics, triggering and considering divergent thoughts, engaging students in mathematical learning, and 
motivating students learning.  
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Abstrak 
Tujuan dari studi kasus ini adalah untuk menguji pengetahuan siswa guru matematika berpikir dan bukti-bukti 
dalam pengajaran mereka. Para peserta tiga guru matematika sekunder. Data dikumpulkan dari wawancara dan 
observasi. Sementara menganalisis data, kerangka tentang pengetahuan siswa guru berpikir digunakan. Temuan 
menunjukkan bahwa setiap guru terutama dianggap sebagai pengetahuan siswa berpikir dengan mengetahui siswa 
pengetahuan sebelumnya. Mereka menyatakan bahwa mereka mendapat manfaat dari pertanyaan-pertanyaan 
untuk mengungkapkan ide-ide siswa, mendorong siswa mereka menggunakan cara-cara solusi yang berbeda untuk 
masalah, dan memiliki ide-ide tentang kesalahpahaman dan kesulitan siswa mereka mungkin dihadapi. Para 
peserta juga dianggap pengetahuan siswa sebelumnya dalam pelajaran mereka, tetapi mereka tidak mengatasi 
kesulitan mereka, kesalahan dan kesalahpahaman kecuali siswa mengajukan pertanyaan kepada mereka. Mereka 
memiliki pendekatan yang terbatas untuk membangun ide-ide matematika siswa, mempromosikan siswa berpikir 
matematika, memicu dan mengingat pengalaman yang berbeda, melibatkan siswa dalam belajar matematika, dan 
memotivasi siswa belajar. 
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The mathematics teachers’ content knowledge and also the interaction between their knowledge about 

students and the knowledge of their learning ways affect students’ conceptual learning (Hill & Ball, 

2004; Loong, 2014). Hill, Ball, and Schilling (2008) stated that there was an agreement about the fact 

that the mathematics teachers who realize effective teaching have the knowledge of students’ thinking. 

Noticing and focusing students’ thinking has inherently complex structure. Student-centered instruction 

can be implemented if the teachers reflect their “knowledge of students’ thinking (KoST)” in their 

teaching. Anwar, Budayasa, Amin, and Haan (2014) explained that the mathematics teachers should to 
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change their instructions to include the activities that will allow the students to develop mathematical 

thinking. Kung and Speer (2009) expressed that KoST was one of the fundamental components of 

pedagogical content knowledge. KoST provides that the mathematics teachers recognize their students’ 

mistakes, misunderstanding, ideas and thoughts (Empson & Junk, 2004). The researches handled KoST 

and tried to explain it with different components. For example, An, Kulm, and Wu (2004) stated four 

components as addressing students’ misconception, building on students’ mathematical idea, engaging 

students in mathematics learning, promoting students’ thinking mathematically. Based on the research 

of An, Kulm, and Wu (2004), Lee (2006) added some components to their frame. These components 

were triggering different ideas, motivating students learning, evaluating students’ understanding and 

using prior knowledge. When considered KoST and its component, it is thought to be important that 

teachers reflect their KoST in their lessons for students to learn mathematical concepts accurately, to 

gain different perspectives related to concepts to use them in practice. In this study, firstly it was tried 

to be determined what mathematics teachers think about KoST, then to be examined the evidences of 

teachers’ KoST in lessons in a detail way. While we were examining mathematics teachers’ KoST, we 

considered Özaltun (2014) KoST framework included the nine components and their contents. The 

components were named as building on students’ mathematical ideas, promoting students thinking 

mathematics, triggering and considering divergent thoughts, engaging students in mathematical 

learning, evaluating students’ understanding, motivating students learning, considering students’ 

misconceptions and errors, considering students’ difficulties and estimating students’ possible ideas and 

approaches. 

The aim of this study is to examine three mathematics teachers’ KoST and its evidence in their 

teaching. In this direction, we tried to answer the questions of “What do the mathematics teachers think 

about the KoST?” and “What are the evidences that indicate the existence of the mathematics teachers’ 

KoST in their teaching?”.  

 

METHOD 

The study was based on a qualitative case study design because we aimed to examine the 

teachers’ KoST and its evidences in their teaching with KoST framework in a detail way. We handled 

the mathematics teachers’ in-class teaching and actions as cases. By the framework, we could determine 

the selection criteria for the situations that be needed to examine from huge amount of data sources that 

were collected in different ways. Also, we could explain the indicators of the framework with the 

emergent situations from the cases. The participants of the study were three mathematics teachers [Ali 

(male), Ozden (female), Serin female)] working at a high school.  

The data were gathered from the interviews and observations regarding two-hour lessons for each 

teacher. Firstly, we conducted the semi-structured interviews for revealing teachers’ ideas about 

planning, KoST and the content of KoST. After the interviews, we observed their lessons to determine 

how they reflected their existing KoST. A video camera was used during the interviews and two video 
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cameras were used during the lessons. Then, all the video records were verbatim transcribed. We also 

took the field notes while observing the lessons. These notes included especially the teachers’ actions 

for evidence of teachers’ KoST. While analyzing the data, we independently examined the transcripts 

based on the KoST framework. We considered which approaches can be related to KoST on the sections 

of the lessons and which practices performed by the participants while considering student thinking. 

We examined the sections that could be related to student thinking. Then, we compared our analysis 

with each other and arrived at a consensus.  

 

RESULTS AND DISCUSSION 

In the context of the findings, the lessons of the three teachers were presented by identifying with 

the content of KoST and were supported with the excerpts taken from the interviews and their lessons.  

Ali’s Knowledge of Student Thinking 

Ali expressed the necessity of determining the students’ prior knowledge related to the concepts. 

Especially, he stated that he asked questions about prior knowledge while introducing new topic, he 

tried to tackle students' prior knowledge while he was providing for students to understand the 

definitions of the concepts. An excerpt of the Ali's interview was as follows: 

 
Especially, at the beginning of the lesson and when we need more definitions, namely, when we 
want to make mathematical definitions of the concepts, I relate the new concept or subject to prior 
knowledge and then, if it is necessary, I try to support their understanding related to the prior 
knowledge with several questions. It is definitely necessary to know what they learnt before. [Ali-
interview] 

 
Ali stated that he could estimate students’ possible difficulties in the context of the subject by 

depending on his experience. Also, he stated that he dealt with difficulties in a detail way, gave many 

examples andhe was mostly aware of students’ misconceptions and errors about the concepts and he 

asked questions about them. Also, he emphasized the importance of knowing students, and mentioned 

that he could estimate his students’ thoughts and their errors. When the students made an error, he asked 

those students to do their solutions on the board and then by asking questions to them he provided for 

them to be able to overcome the incorrect solutions. An excerpt from Ali’s interview was given below: 

 
It is evident in which each student will make errors and even, which student can make errors… each 
student tried to solve the problems in different ways, some of them try to remember, for example, a 
student can make an error because he did not remember the knowledge, another student can solve 
by interpreting the questions. As we can understand students’ thinking and strategies, we need more 
experience. [Ali-interview] 

 
As he believed that it was important to present different solutions in geometry, he included 

different solutions in his lessons. An excerpt from Ali’s interview was given below: 

 
I absolutely want to tackle different solutions on the board. For example, asking a question about 
triangle, maybe area or lengths. When a student solved a question and other one said that she/he 
solved differently, I definitely ask her/him to make her/his solution on the board. Especially in 
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geometry, I believe that the more we solve different questions, the more the students easily 
understand. [Ali-interview] 

 
According to the interview with Ali, it was apparent that Ali considered the contexts of knowing 

and considering students’ prior knowledge to reflect KoST on his teaching; asking questions to reveal 

students’ thoughts and increase their existing understanding; knowing students’ difficulties, 

misconceptions and errors, presenting approaches to overcome these; predicting students’ thoughts and 

possible solutions and encouraging them to produce different ways of solutions. 

Ali conducted two hour lessons about “finding the greatest common divisor (GCD) and the least 

common multiple (LCM) of two or more polynomial functions”. When Ali’s lessons were examined in 

terms of building on students’ mathematical ideas, it was seen that Ali determined his students’ prior 

knowledge by asking questions. When his students’ responses were insufficient or wrong, he reminded 

the related definitions and concepts and gave additional information about process and he encouraged 

the students to find GCD and LCM in real numbers and used different representations for finding them. 

  
Ali: A= 24 

B= 18  
Who could find the LCM and GCD of these numbers? You taught them at Grade 
9. Did you remember that? We can write: 
� = 2�.3 
� = 3�.2 

Students: Yes 
Ali: How do you find the GCD? 
Student 1: We consider the smallest exponent.    

GCD=2�.3� 
Ali: The smallest one from common exponents. What is the GCD? What is the LCM?   

GCD=2�.3� 
LCM=3�.2� 
Ok, what are the LCM and the GCD of these numbers? 
� = 2�.3�.5� 
� = 2.3�.7.5  

Student 2: GCD=2�.3�.1 
LCM=2�.3�.5�.7 

Student 3: Why do we have to consider the biggest exponents to find LCM? Why do not we 
multiply these numbers? 

Ali: 24  18  2 
12   9   2 
6     9   2 
3     9   3 
1     3   3 
       1 
We found LCM and GCD of two real numbers in this way, do you remember?  

Student 3: Yes. 
Ali: Today, we study the LCM and the GCD of polynomials. I write a polynomial as   

�(�) = �� − 2� − 3 
and the other polynomial as  
�(�) = �� − 9  
What do you think the LCM and the GCD of these polynomials? You can think 
what you did while finding the LCM and the GCD of real numbers.  

Student 4: At that case, we will factorize these polynomials.  
Ali: Yes, you are right. We factorize the polynomials.  

�(�) = (� + 1)(� − 3) 
�(�) = (� − 3)(� + 3) 
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For finding the GCD, we consider only common factors.  As the common factor 
is only (x-3) , GCD[�(�), �(�)] = (� − 3) 
For finding the LCM, we consider the biggest exponential of the common factors 
and the others.  So, LCM[�(�), �(�)] = (� + 1)(� − 3)(� + 3) 

Student 5: Why did not we write (� − 3) �for the LCM? 
Ali: (x-3)(x+3)    (x-3)(x+1)   (x-3) 

(x+3)            (x+1)           (x+3) 
1                   (x+1)           (x+1) 
                      1 
Can I find the LCM by using this way? Can you understand? 

Student 5: Yes, this way is better. 

 
While he promoted his students thinking mathematics, he frequently gave examples and asked 

questions to the students. After the students worked on examples related to GCD-LCM in polynomials, 

Ali made his students estimate about a question containing the degrees of polynomials taught in 

previous lessons. He asked many questions to improve students’ understanding. He also encouraged the 

students to make predictions while expressing their thoughts.  

To triggering and considering students’ ideas, Ali asked questions to uncover students' ideas and 

requested his students to express what they thought. After getting their thoughts, he provided feedback 

regarding correct or incorrect aspects of their ideas but did not explain or expand these ideas by himself. 

In parallel to this, Ali neither asked the students to explain his/her own expressions nor did he ensure 

that students clarified each other's thoughts. In the beginning of the lesson, he stated that students might 

obtain result by using different methods for a question about finding GCD and LCM and encouraged 

them to use different solution ways. But, in another example, Ali warned his student who performed a 

different solution way from what he thought.  The below excerpt indicates this; 

 
Board: �(�) = �� − 6�� + 9�  

�(�) = �� − 9�� . Find the LCM and the GCD of these polynomials 
Student on the board: �(�) = �(�� − 6� + 9) . There is x below. 
Students: (�� − 3�)(�� + 3�) 
Ali: It won’t be that way. It is wrong, think one more time and correct it. 

 
Ali did not continuously ask the reasons underlying students’ ideas. He did not make students 

make give contradictory examples. Although he represented various solution, in certain cases, when 

students proceeded on a different solution way and he thought there was a more appropriate, he 

interfered the students’ solutions.  

Ali directly corrected students’ mistakes occurred in solving examples/questions on the board. 

He realized a student’s mistake related to the GCD and LCM of polynomials upon another student’s 

question and he tried to eliminate by explaining the solution directly.   As can be seen in the excerpt 

below, Ali mentioned the rules about finding LCM to make correct the solution of the student who 

incorrectly found the LCM of two polynomials. 

 
The student on the board: �(�) = (� − 3)(� + 1) 

�(�) = (� − 3)(� + 3) 
LCM= (x+1).(x+3) 
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GCD=(x-3) 
Student 2: Why do not we include (x-3) in the expression of LCM? [He is comparing 

his ideas to those on the board] 
Ali: We have to write (x-3) for LCM. Which one is bigger? The degrees of both 

of them are one.  

  
He introduced concepts to eliminate students’ errors, mentioned the rules where students made 

mistakes and gave different explanations to overcome the students’ difficulties. Ali, instead of directly 

explaining, sometimes helped students overcome on their own difficulties by giving the clues.  

 

Ozden’s Knowledge of Student Thinking 

In the context of the interview, Ozden stated that KoST contained knowing students’ prior 

knowledge and misconceptions as a response to the question of what KoST includes. Ozden expressed 

that she questioned her students’ prior knowledge and explained the deficient points about their prior 

knowledge again. Also, she said that she understood their misconceptions or difficulties through the 

help of homework and exams, but she realized their misunderstanding when they asked questions during 

the lessons. An excerpt from Ozden’s interview is given below: 

 
I can understand the misconceptions only if any student ask question, but if they do not ask questions, 
I can’t understand… In other words, I can only understand that there is a problem or difficulty by 
their questions such as “I didn’t understand this”, “Does it mean this here?”. [Ozden-interview] 

 
In addition, she stated that she utilized additional questions when her students made errors and 

changed the way of teaching when she thought to lead to difficulties. An excerpt from Ozden’s interview 

is as follows: 

 
When a student has a difficulty, I try to explain it in a more simplified way to eliminate it; I change 
the teaching methods or the examples. I generally simplify it or I think that the reason of the not 
understanding depends probably on prior knowledge, so then I explain the content and give the 
information. [Ozden-interview] 

 
Ozden stated that she encouraged her students to think by asking questions.  Also, she expressed 

that she gave chance for the students who solved in a different way to explain their solutions. She stated 

that she utilized daily life examples and told theorems proposed to be given in the textbooks but she 

proved these theorems herself instead of asking her students to do. An excerpt from Ozden’s interview 

was give below: 

 
I usually ask questions to encourage students to think, I think that this is the most important thing 
for learning. I can ask questions to have them think before teaching the subject. I enable them to 
think with the questions which will prompt them to interpret. I may represent different solutions on 
the board, too. That is, when one student solves the question and then another student said “I solved 
it like this”, I consider that solution way, too. … Also, I use daily life examples from the textbook. 
[Ozden-interview] 

 
Ozden carried out two-hour lessons about “finding solution set of first-degree equation or 

inequation” and “noticing features about the absolute value of a real number” and “finding solution set 
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of first-degree equation or inequation including absolute expression value”. Ozden taught the concept 

depending on textbooks rather than students’ thinking. She was not flexible for arranging the instruction 

according to the students’ thinking. She asked only the students who could give correct answer.  

Ozden began her lessons by reminding the properties of first degree inequalities containing one 

variable in the set of real numbers which were studied during the previous lessons. She determined the 

students’ prior knowledge by asking questions. After determining the students’ prior knowledge, she 

asked problems including the solution sets of the first degree equations and inequalities with one 

variable in various numbers sets. Generally, she asked the students who gave the correct answer to come 

to the board and to tell how he/she solved the problem or the question. While a student was solving on 

the board, she expressed his/her actions in terms of mathematical rules and ideas to support students’ 

mathematical ideas. When students could not understand solution of absolute value example, Ozden 

explained them by using the number line. So, she tried for the students to understand by means of 

different representations. She determined some real numbers on the number line and asked her students 

finding their absolute value. Ozden’s approach regarding using different representation was as below: 

 
Board: �1 − √3� + �3 − √3� =? 

Ooo 
Ozden: When the value is negative in the absolute sign, if you do not make it positive, 

the result will not be right; so, it will be negative still if you do not consider the 
value. If the value is positive, I write it as positive number. If it is negative, my 
purpose is to make it positive, so I multiply it with -1. Is it correct? For example, 
this is the absolute value of -7. To make -7 to be positive, 7, I multiply it with -
1. 

Student: We’ll try to make it positive. 
Ozden: My purpose is to make it positive, because the 

distance value will not be negative, the distance 
between a number and 0 is positive value, it is 
correct?  

 
Ozden gave a real world example from the textbook regarding the equations and inequalities 

including absolute values and ensured that the students construct a relation between the concept and the 

daily life. In the context of the real world example, she evaluated with the students for the temperature 

to be equal to a certain value and then she asked the students to interpret this situation mathematically. 

Thus, she prompted the students to consider explanations related to their actions while solving the 

problem and clarified their actions by expanding them as well.  

Ozden determined that her students made an error because they did not consider the domains 

given in the question about finding the biggest or smallest whole number which an expression can be 

equal. The excerpt which presented her approach related to considering and correcting the students’ 

misunderstanding by taking into consideration the reason for this error was given below. 

 
Board: �, � ∈ ℝ 

If x and y were defined as −4 < � < 1 and −3 < � < −1, what is the biggest 
whole number value of 2�� − ��? 
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Ozden: Yes, this is the question, How can you interpret this question? You remember 
how to square and cube. What will I do for solving this question? 

ooo 
Student: I found 30 
Ozden: Ok, how did you find? 
Student: I squared it. The square of -4 will be positive, starting from 0. 
Ozden: For this inequalities, 0 < ��,  Is there equity also or only inequality? 
Student: Yes, there is. The square of 4 is 16, so it will be 16. 

ooo 
Student: The biggest whole number value of �� is 15  
Ozden: But, does the values of �� have to whole number? It doesn’t have to be a whole 

number [She is showing the condition of �, � ∈ ℝ ]. But, x and y don’t have to 
be whole numbers, is there any necessity to give a whole number value? 

ooo 
Ozden: 1 < 2�� − �� < 59 So, what is the biggest value that you can find? 
Students: 58. 
Ozden: 58. What did you find when you assigned a whole number to ��? 30. So, now it 

has a bigger value. 

 
She did not want students to make estimations about the questions/examples/problems; instead, 

she asked the students who solved correctly to show the solution on the board. During her lessons, 

Ozden continuously verbally rewarded her students for their correct solutions and divergent thoughts 

and motivated them. Ozden frequently repeated the mathematical rules throughout the lesson, thus she 

supported that students could improve their mathematical thoughts. She gave enough time for students 

to think the problems and questions and to solve them.  

 

Serin’s Knowledge of Student Thinking 

As a response to the question of what KoST includes, Serin replied that it contained knowing 

students’ prior knowledge and eliminating deficiencies of their prior knowledge. Serin stated that she 

did not try to determine the students’ prior knowledge and that only when she observed any problematic 

points of their prior knowledge, she gave information about them and so provided for the students to 

remember. Serin expressed that she considered the students who solved the questions correctly, but did 

not prefer to consider the students who made mistakes to not change her lesson’s flow. She stated that 

she was aware of the parts in which students would have difficulties for understanding based on her 

experiences. An excerpt from Serin’s statements is given below: 

 
I do not make extra study to determine the students’ prior knowledge, but they are understood during 
the lesson, If I noticed the problems, then I gave several information about them. [Serin – interview] 

 
Serin stated that she considered what the students had difficulties and she explained the important 

and necessary properties about the content by considering the student who had difficulties because all 

class might have the same difficulties even though a student explained that. She told that she encouraged 

the students to write the solutions step by step and she asked the students’ ideas and thoughts in critical 

steps to prompt them to think. Also, she expressed that she directed the students to use the solution ways 
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which were easy for her and she thought to be easy. An excerpt representing this approach from Serin’s 

interview is given below: 

 
For example, I tell the students “it will be easy for you if you solve in this way”…I try to prompt 
them to find the solution by enabling them to think. For example, I ask “what can you do after this 
step”. [Serin – interview] 

 
It is deduced from Serin’s statements that she considered students’ prior knowledge and 

eliminating their deficiencies during her teaching, simplifying the things which were difficult for the 

students and asking questions to reveal students’ ideas. 

Serin realized two-hour lessons about “factoring polynomial with real valued coefficients”. Serin 

traditionally taught the content of the lesson and could not encourage her students to think. She gave 

definitions and properties about the concept and then she selected one of the students who correctly 

responded the question. She ignored students’ incorrect solutions and did not consider them. She 

frequently mentioned mathematical rules regarding the identities when solving these problems. If 

students had difficulties, she repeated mathematical rules and explanations. As can be seen in the 

following excerpt, she gave an example with an analogy from daily life to define the concept before 

proceeding to factorization applications by adding or subtracting a term from a given polynomial. 

  
Serin: We will study on factorization by adding and subtracting a term from a given 

polynomial.  
ooo 

 In old times, a man had 17 camels and three children as younger, middle and 
bigger. He wanted to share the camels among his children by giving the half of the 
camels to the bigger child, one third of them to the middle child and one ninth of 
them to younger child. It was seen that he could not share by this way, because he 

could not get the half of 17 or 
�

�
 of 17 or 

�

�
  of 17.   As he did not know how he 

would solve this problem, he wanted for a wise man to help. The wise man found 
the solution to the problem by giving a camel to the man. When he gave a camel, 
the man had 18 camels. The half of 18 was 9 camels; he gave these camels to the 
biggest children. The one third of 18 was 6 and the one ninth of 18 was 2 camels. 
The shared camels were 17 in total and the number of remained camel was 1. He 
gave back this camel to the wise man. That is, he could share the camels and then 
the wise man took back his own camel. When the man could not find a solution for 
sharing, adding 1 became a solution way for him, was not it? There were 18 camels 
by adding one camel and he easily shared them. When we cannot directly factorize 
a polynomial, we can use from adding and subtracting a term.       
 

Serin did not encourage students to think with the questions and did not prompt them to estimate about 

the questions, Also, she did not support for students to improve their understanding and did not establish the 

class discussion at any moment. In other words, she exhibited relatively insufficient approaches regarding the 

triggering and considering divergent thoughts.  

When she determined that a student did not understand a question related to the identities, she explained 

the solution process again and tried to eliminate her students’ difficulties. However, Serin focused only on 

mathematical rules and processes to improve students’ mathematical knowledge during the lesson for 

considering students’ misconceptions and errors. Serin lectured directly without thinking her students and thus, 
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she generally did not give chance to students to think and ignored her students. But, she was able to assess how 

they understood and realized the instructions from their statements or solutions on their notebooks.  

The aim of this study is to examine three mathematics teachers’ KoST and its evidence in their teaching 

and the findings were evaluated in the context of this aim. According to the findings from the interviews, each 

teacher mainly considered KoST as knowing students’ prior knowledge. Parallel to this finding, Carpenter, 

Fennema and Franke (1996) stated KoST as knowing the knowledge of students’ prior knowledge, 

misunderstandings and concepts that can support students’ learning. In addition, teachers expressed that they 

benefitted from questions to understand students’ ideas, they promoted students to use different solution ways 

for solving problems and they had ideas about which errors their students could make and the difficulties their 

students could have. Taker and Subramaniam (2012) emphasized that KoST includes knowing students’ 

understanding, conceptual difficulties, possible ways of learning and developing sensitivity to what they think 

and do in mathematics lessons.  

The findings obtained from their lessons presented that the participants considered students’ prior 

knowledge in parallel with their statements expressed in the interviews. On the other hand, the participants did 

not consider their students’ difficulties, mistakes and misconceptions unless students asked a question. All three 

teachers displayed insufficient approaches to the component of triggering and considering divergent thoughts. 

Van Zoest, Stockero, and Kratky (2010) regard the teachers’ approaches to mentioning different thoughts and 

methods, revealing different opinions, comparing students’ ideas and encouraging them to question one another 

as the components of understanding students’ thinking. It is very important that this component of KoST to 

reflect on teaching for the development of students’ thinking. Besides, we can say that the teachers’ views about 

mathematics and teaching mathematics were effective for the approaches both promoting students thinking 

mathematics and motivating them to learn such as relation the concepts with daily life. 

 In the study, the teachers generally repeated the rules to eliminate the students’ error but they did not 

prompt the students to notice the reasons of their errors or misconceptions and did not create a discussion 

environment. An and Wu (2012) expressed that KoST includes that teachers should know how well the 

students understand mathematical concepts, should understand their possible misconceptions and examples 

about misconceptions and should develop proper strategies to eliminate misconceptions. In this context, the 

participant teachers did not have effective actions. 

Even though Ali stated that he could understand in which his students had difficulties and which students 

what they could do, we did not see an action which supported this view. When he asked questions, he selected 

the students who always gave correct answers or whom he thought that they would correctly respond instead 

of selecting any students and asking them to respond. This approach led him to notice the students who had 

difficulties. Also, he only considered the incorrect solutions or responses when the student on the board had 

errors. He did not examine different errors which other students in the classroom could have. Although he 

stated during the interview that he asked questions to determine students’ errors, difficulties or misconceptions, 

he did not realize questioning in the context of his teaching. Besides, Ali expressed that he revealed different 

thoughts and solutions but he did not use questions such as “Is there anyone who solved in a different way?” 
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or “Is there anyone who thought differently?” in the lessons for considering alternative ideas. It was revealed 

that there were inconsistencies between his explanations during the interview and his actions in the lessons.   

When considered Ozden’s instruction, the prominent aspect was that she generally asked the students 

who correctly responded to explain their solutions. Additionally, she considered specific students and their 

thinking. Even though she stated during the interview that she recognized the students who solved in a different 

way, she never asked to students questions such as “Is there anyone who made a different solution?”. That is, 

Ozden also did not have any approach triggering different solution or thinking like Ali. However, she simplified 

the concepts or solution steps and controlled whether the students understood with questions such as “Is there 

any problem until this point?”, so she supported them to understand.  Also, when the students had difficulties, 

she used figural representations such as the number line. This approach was also an appropriate approach in 

the context of KoST.       

Serin stated that she considered the students’ prior knowledge and determined incorrect ideas in their 

prior knowledge during her teaching. But, she did not pay attention to the students’ prior knowledge which was 

important for leading in the subject. In the interview, she expressed that she discussed the thoughts of the 

student who had difficulties or responded incorrectly in the classroom. In accordance with these statements, 

she eliminated the students’ errors by communicating with them one-to-one while walking among their desks. 

Her explanations were generally rule-oriented for both all students’ difficulties and students’ individual 

difficulties. Her approach regarding eliminating the errors or difficulties was to directly emphasize the rules 

instead of trying to understand their reasons. Thus, she could not realize what the students thought. Besides, 

she did not try to reveal possible different thoughts and did not regard them. 

In brief, the expressions of three mathematics teachers from the interviews were inconsistencies with 

their implementations during their teaching.  It is possible that they expressed opinions about what needed to 

be done but they did not reflect these opinions in their instructions because they may not adopt these approaches 

or their routines do not include them.  

 

CONCLUSION 

This study which we analyzed the teachers’ actions and thoughts regarding KoST in a detail way has an 

important place for the mathematics education different from many research which examined mathematics 

teachers’ pedagogical content knowledge. We shared and discussed the findings with the participant teachers, 

thus they gained a critical point of view to their instructions and their awareness were improved.   In this context, 

we can say that sharing the findings of the research with the participants is an important issue.  

In the following studies, a specific subject-oriented research can be done by determining subject or 

concept and by examining the teachers’ KoST of this subject or concept.  These studies enable the teachers to 

understand the detailed approaches which they can integrate in their lessons and can implement by supporting 

their knowledge of teaching, strategy and content. It is necessary for the mathematics educators who have 

responsibilities for the teaching processes to become more effective to realize the content-oriented studies about 

KoST and to support the mathematics teachers’ professional development regarding KoST.      
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Besides, the issues which the mathematics teachers have to consider during planning can be understood 

from the KoST framework.  When it is thought that the lesson plans are important for teaching, it is expected 

for the mathematic teachers to consider their students’ thinking while planning and to have the idea that they 

plan the lessons by regarding their students. Similarly, the researchers can realize extensive and developmental 

studies about the lesson plans which include the students and their thinking. Thus, it is possible to say that the 

connection between the research about mathematics education and school implementations can be stronger. 
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