
 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 80
www.aitp-edsig.org /www.isedj.org

Teaching Case

Solving Relational Database Problems with
ORDBMS in an Advanced Database Course

Ming Wang
ming.wang@calstatela.edu

Department of Information Systems
California State University

Los Angeles, CA 90032

Abstract

This paper introduces how to use the object-relational database management system (ORDBMS) to
solve relational database (RDB) problems in an advanced database course. The purpose of the paper
is to provide a guideline for database instructors who desire to incorporate the ORDB technology in
their traditional database courses. The paper presents how to use the specific object-relational
database (ORDB) technology to solve three normalization problems: Transitive dependency, Multi-
value attributes, and Non-1st Normal Form. The paper also provides the solutions to data complexity
problems with three specific ORDBMS techniques: object view, object inheritance, and object
integration. The paper summarizes the significance and advantages of teaching ORDBMSs in advanced
database courses. Course contents and students’ learning outcomes are discussed. To be more helpful
to database educators, the paper presents a complete object-relational database development case
study from the UML class diagram design to Oracle ORDBMS implementation.

Keywords: Object-relational database, Database Curriculum, Oracle Database, Normalization

1. INTRODUCTION

The success of relational database management
systems (RDBMSs) cannot be denied, but they
experience difficulty when confronted with the
kinds of "complex data" found in advanced
application areas such as hardware and software
design, science and medicine, and mechanical
and electrical engineering. To meet the
challenges, Oracle, IBM and Microsoft have
moved to incorporate object-oriented database
features into their relational DBMSs under the
name of object-relational DBMSs. The major
database vendors presently support object-
relational data model, a data model that
combines features of the object-oriented model
and relational model (Silberschatz, et al., 2009).
The emergence of object-relational technology

into the commercial database market has caused
the database professional’s attention in seeking
how to utilize its object-oriented features in the
database development and has brought new
challenges for IS instructors in teaching
ORDBMS in their database courses. In response
to this challenge, the author has incorporated
the ORDB technology into her advanced
database course. ORDBMS enhances object-
oriented technology into the relational database
management system (RDBMS) and extends
traditional RDBMS with object-oriented features.
As an evolutionary technology, ORDBMS allows
users to take advantages of reuse features in
object-oriented technology, to map objects into
relations and to maintain a consistent data
structure in the existing RDBMS.

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 81
www.aitp-edsig.org /www.isedj.org

The purpose of the paper is to provide a guide
for database instructors who desire to
incorporate the ORDB technology in their
traditional database courses. This paper
presents how to use ORDBMS to overcome
relational database weaknesses and solve some
existing normalization problems. The paper first
introduces the background and features of
ORDBMS, then presents how to use the specific
ORDBMS techniques to solve normalization
problems in 1) Transitive dependency, 2) Multi-
value attributes, 3) and Non-1st Normal Form,
and how to use the specific ORDBMS features:
1) object view 2) object inheritance and 3)
object integration to solve data complexity
problems. Course content and students’ learning
outcomes are discussed. Many of the ORDBMS
features appear in Oracle. Thus, the author
utilizes Oracle as a tool to demonstrate how to
overcome some weaknesses of relational DBMS.
The ORDBMS script in the case study has been
tested in the Oracle 9i, 10g, and 11g SQLPlus
environment. The solution to the presented case
can be utilized in the classroom demonstration
and can also be generalized the homework
assignments and projects of advanced database
courses.

2. ORDB TECHNOLOGY

The object-relational database technology
occurrence can be traced back to the middle of
1990s after emergence of object-oriented
database (OODB). In their book “Object-
relational DBMSs: the Next Great Wave”,
Stonebraker and Moore (1996) define their four-
quadrant view (two by two matrix) of the data
processing world: relational database, object-
relational database, data file processing, and
object-oriented database. Their purpose is to
indicate the kinds of problems each of four-
quadrants solves. As will be seen, "one size does
not fit all"; i.e. there is no DBMS that solves all
the applications. They suggest that there is a
natural choice of data manager for each of the
four database applications. They conclude why
the problems addressed by object-relational
DBMSs are expected to become increasingly
important over the next decade. As such, it is
"the next wave".

Theoretically, as Stonebraker and Moore (1996)
predict in their four-quadrant view of the
database world, ORDBMS has been the most
appropriate DBMS that processes complex data
and complex queries. The object-oriented
database management systems have made

limited inroads during the 1990’s, but have since
been dying off. Instead of a migration from
relational to object-oriented systems, as was
widely predicted around 1990, the vendors of
relational systems have incorporated many
object-oriented database features into their
DBMS products. As a result, many DBMS
products that used to be called “relational” are
now called “object-relational.” (Garcia-Molina,
et al. 2003).

Practically, ORDBMS bridges the gap between
OODBMS and RDBMS by allowing users to take
advantage of OODB'MSs great productivity and
complex data type without losing their existing
investment in relational data (Connolly & Begg,
2006). In fact, an ORDBMS engine supports both
relational and object-relational features in an
integrated fashion (Frank, 1995). The underlying
ORDB data model is relational because object
data is stored in tables or columns. ORDB
designers can work with familiar tabular
structures and data definition languages (DDLs)
while assimilating new object-oriented features
(Krishnamurthy et al., 1999).It is essentially a
relational data model with object-oriented
extensions. In response to the evolutional
change of ORDB technology, SQL:1999 started
supporting object-relational data modeling
features in database management
standardization and SQL:2003 continues this
evolution. Currently, all the major database
vendors have upgraded their relational database
products to object-relational database
management systems to reflect the new SQL
standards (Hoffer et al., 2009) and use by
industrial practitioners.

Although each of the object-relational DBMS
vendors has implemented OO principles:
encapsulation and inheritance in their own way,
all of them share the combination of the OO
principles and follow SQL standardization,
incorporate object-oriented paradigms. All the
ORDBMSs have the ability to store object data
and methods in databases. Many of the
SQL:2003 standard ORDBMS features appear in
Oracle. These features are listed as follows.

Object Types: User-defined data types (UDT)
or abstract types (ADT) are referred to as object
types.

Functions/Methods: For each object type, the
user can define the methods for data access.
Methods define the behavior of data.

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 82
www.aitp-edsig.org /www.isedj.org

Varray: The varray is a collection type that
allows the user to embed homogenous data into
an array to form an object in a pre-defined array
data type.

Nested table: A nested table is a collection type
that can be stored within another table. With a
nested table, a collection of multiple columns
from one table can be placed into a single
column in another table.

Inheritance: With Object type inheritance,
users can build subtypes in hierarchies of
database types in ORDBs.

Object View: Object view allows users to
develop object structures in existing relational
tables. It allows data to be accessed or viewed
in an object-oriented way even if the data are
really stored in a traditional relational format.

There is some research that has been done in
ORDBMS technology as ORDBMSs have become
commonplace in recent years. He and Darmont
(2005) propose the Dynamic Evaluation
Framework (DEF) that simulates access pattern
changes using configurable styles of change.
Pardede, Rahayu, & Taniar (2006) propose an
innovative methodology to store XML data into
new ORDB data structures, such as user-defined
type, row type and collection type. The
methodology has preserved the conceptual
relationship structure in the XML data, including
aggregation, composition and association. Wok
(2007) and Cho, et. al. (2007) present a
methodology for designing proper nesting
structures of user-defined types in object-
relational database. The proposed schema trees
schema are transformed to Oracle 10g. Their
purpose is to develop an automatic ORDB design
tool.

But very little research has been done in using
ORDBMS to overcome relational database
weaknesses and solve some existing
normalization problems. The significance of the
paper is to promote teaching ORDBMS features
for problem solving and object reuse and
integration among IS educators. The use of
ORDBMSs to develop database applications can
enforce the reuse of varying user-defined object
types, provide developers’ an integrated view of
data and allow multiple database applications to
operate cooperatively. Ultimately, this can
result in improved operational efficiency for the
IT department, increase programmers’
productivity, lower development effort, decrease

maintenance cost, reduce the defect rate, and
raise the applications’ reliability. If multiple
database applications use the same set of
database objects in ORDBMS, a de facto
standard for the database objects is created,
and these objects can be extended, reused and
integrated in the ORDB.

3. CASE STUDY

3.1 Case Scenario

Pacific Bike Traders assembles and sells bikes to
customers. The company currently accepts
customer orders online and wants to be able to
track orders and bike inventory. The existing
database system cannot handle the current
transaction volume generated by employees
processing incoming sales orders. When a
customer orders a bike, the system must
confirm that the ordered item is in stock. The
system must update the available quantity on
hand to reflect that the bike has been sold.
When Pacific Bike Traders receives new
shipments, a receiving clerk must update the
inventory to show the new quantity on hand.
The system must produce invoices and reports
showing inventory levels.

3.2. Business Rules

The following business rules are developed for
the new database system:

One customer may originate many orders.
One order must be originated from a customer.

One order must contain one or more bikes.
One bike may be in many orders.

One employee may place many orders.
One order must be placed by an employee.

One bike is composed with a front wheel, rear
wheel, crank, and stem.
One front wheel, rear wheel, crank, and stem
compose one bike.

One employee must be either a full-time or part-
time.
One full-time or part-time employee must be an
employee.

3.2. ORDB Design

The Pacific Trader Object-Relational Database
design is illustrated with the UML class diagram

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 83
www.aitp-edsig.org /www.isedj.org

in Appendix 1. Each of the classes is displayed
as a rectangle that includes three sections: the
top section gives the class name; the middle
section displays the attributes of the class; and
the last section displays methods that operate
on the data in the object. Associations between
classes are indicated with multiplicity
(“min..max.” notation). Inheritance is indicated
with an empty triangle. Aggregation is marked
with an empty diamond, whereas composition is
marked with a solid diamond. Aggregation
models a whole-part relationship where
individual items become elements in a new
class. In Appendix 1, a sales order is made of
line items (bikes). Aggregation is indicated by a
small empty diamond next to the SalesOrder
class. The dotted line links to the associative
class generated from the many-to-many
relationship.

Based on the Pacific Trader’s Object-Relational
Database Design in Appendix 1, ORDB features
are implemented with Oracle for the case in the
following sections. The implementation shows
how the UML class diagram maps and supports
major ORDB features. For the sake of simplicity,
it is assumed that referential integrity
constraints will be added later.

4. ORDBMS FOR NORMALIZATION

Normalization is a logical data modeling
technique for the development of a well
structured relational database. The process is
decomposing tables with anomalies to produce
smaller tables. Traditional normalization
processes are normalizing tables in non-1NF
form and multi-value attributes to at least 3NF;
and removing transitive dependency. Such
processes can be eliminated if ORDB technology
is used.

4.1. Object Type & Transitive Dependency

The address attribute is usually split into four
columns such as street, city, state and zip code
in order to store address dada in a customer
table since it is a composite attribute in a
traditional database.

Customer table

Cu_id First Last Street City State Zip
1 John Smih 12 Pine Bell CA 90201
2 Mary Fox 6 Circle Brea CA 92821

The above Customer table is in Second
Normalization Form (2NF) and violates the Third

Normalization Form (3NF) rule because there is
the transitive dependency in the customer table.
Zip is a determinant of street, city and state.
Functional dependency analysis shows transitive
dependency:

Zip -> Street, City, State (transitive dependency)

There are three solutions to this transitive
dependency problem. Solution 1 keeps the
customer table in the Second Normalization
Form (2NF) though it is not an ideal normal form
for a relational database.

Solution 2 is to create a new customer address
table by splitting the address from the original
customer table (3NF). This solution implies more
joins of records in the Customer table and Zip
table.

Customer Table
Cu_id First Last Zip
1 John Smith 90201
2 Mary Fox 92821

Zip Table
Zip Street City State
96123 12 Pine Bell CA
25678 6 Circle Brea VA

Solution 3 is to store all the customer address
information in one column. This solution creates
difficulty in data retrieval. For example, it is
impossible to retrieve or sort customer records
by city, state or zip code.

Customer table
Cu_id First Last Address
1 John Smith 12 Pine, Bell, CA 90201
2 Mary Fox 6 Circle, Brea, CA 92821

None of the above three solutions is considered
ideal in terms of efficient database design and
operations. The first solution is not satisfactory
since 2NF is not ideal for relational database
design. The second solution implies that more
joins might occur in the query process, since the
zip table has been added to the database. The
third solution creates difficulty in data retrieval.
For example, it is impossible to retrieve or sort
customer records by city, state, or zip code.

With ORDBMS technology, the attribute address
can be defined as a user-defined abstract data
type with a number of attributes using s the
same internal format. User-defined types (UDT)
or abstract data types (ADT) are referred to as
object types. Object types are used to define

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 84
www.aitp-edsig.org /www.isedj.org

either object columns or object tables. The
following UML Customer class illustrates the
address object column.

+getFullName()

-<PK> cust_id : Integer
-name : Object
-address : Object
-<multivalued>phone : Object

Customer

Object types need to be defined before the
customer table. The following SQL statements
define the object types: address_ty and
name_ty.

CREATE OR REPLACE TYPE address_ty AS
OBJECT
(street NVARCHAR2(30),
 city VARCHAR2(25),
 state CHAR(2),
 zip NUMBER(10));

CREATE OR REPLACE TYPE name_ty AS OBJECT
(
f_name VARCHAR2(25),
l_name VARCHAR2(25));

Mapping the above customer class, the following
statement is used to create the Customer table
with the CustName and CustAddress object
columns using name_ty and address_ty. The
column phone is to be added to the table later.

CREATE TABLE Customer2(
Cust_ID Number(5),
CustName name_ty,
CustAddress address_ty);

Object type constructors are used to insert
object data into the table. The following INSERT
statement uses constructors name_ty() and
address_ty() to add data into the two object
columns.

INSERT INTO Customer VALUES (1,
name_ty ('John', 'Smith',),
address_ty ('12 Road', 'Bell', 'CA', 90201));

The following statements retrieve the data from
the Customer2 table.

SELECT c.custName.l_name, c.custAddress.City,
c.custAddress.state
 FROM Customer2 c;

CUSTNAME.L_NAME CUSTADDRESS.CITY CU
John Smith Bell CA

SELECT * from Customer2;

CUST_I
D

CUSTNAME(F_NAME
, L_NAME,
INITIALS)

CUSTADDRESS(STREET
, CITY, STATE, ZIP)

1 NAME_TY('John',
'Smith')

ADDRESS_TY(’12 Pine’,
'Bell', 'CA', 90201)

4.2 Varray and Multi-value Attributes

 In a relational model, multi-valued attributes
are not allowed in the first normalization form.
The traditional solution to the problem is that
each multiple-valued attribute is handled by
forming a new table in a relational database. If a
table has five multi-valued attributes, that table
would have to be split into six tables. The Oracle
ORDBMS allows users to create the varying
length array (VARRAY) data type as a new data
storage method for multi-valued attributes. The
following statement defines a varray type of
three VARCHAR2 string named varray_phone_ty
to represent a list of phone numbers.

VARRAY is a collection type in ORDBMSs. A
VARRAY consists of a set of objects that have
the same predefined data type in an array. In a
relational model, multi-valued attributes are not
allowed in the first normalization form. The
solution to the problem is that each multiple-
valued attribute is handled by forming a new
table. If a table has five multi-valued attributes,
that table would have to be split into six tables
after the First Form of normalization. To retrieve
the data back from that original table, the
student would have to do five joins across these
six tables. ORDBMs allow multi-valued attributes
to be represented in a database. ORDBMSs allow
users to create the varying length array
(VARRAY) data type can be used as a new data
storage method for multi-valued attributes. The
following statement defines a VARRAY type of
three VARCHAR2 strings named
varray_phone_ty to represent a list of three
phone numbers in the Customer2 table.

CREATE TYPE varray_phone_ty AS VARRAY(3)
OF VARCHAR2(14);

ALTER TABLE Customer ADD (phones
varray_phone_ty);

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 85
www.aitp-edsig.org /www.isedj.org

UPDATE customer
 SET phones =
(varray_phone_ty('(800)555-1211',
'(800)555-1212','(800)555-1213'))
 WHERE cust_id = 1;

INSERT INTO customer(phones) values
(varray_phone_ty('(800)555-
1211','(800)555-1212','(800)555-1213'));

The above example shows that using the varying
length array (VARRAY) data type not only can
solve multi-value attribute problem for the
customer table, but also can speed up the query
process on customer data.

4.3 Nested Table and Non-1NF

A nested table is a table that can be stored
within another table. With a nested table, a
collection of multiple columns from one table can
be placed into a single column in another table.
Nested tables allow user to embed multi-valued
attributes into a table, thus forming an object.

+updateInventory()
+getBike()

-<PK>serial_no : Integer
-model_type : String
-qty_on_hand : Integer
-list_price : Decimal

Bike

+getStem()

-SKU# : Integer
-size : String
-weight : String

Stem

+getCrank()

-SKU : Integer
-size : String
-weight : String

Crank

+getWheel()

-SKU : Integer
-rim : String
-spoke : String
-tire : String

Wheel

1

1 1
2

CREATE TYPE wheel_type AS OBJECT(
 SKU VARCHAR2(15),
 rim VARCHAR2(30),
 spoke VARCHAR2(30),
 tire VARCHAR2(30));

CREATE TYPE crank_type AS OBJECT
 (SKU VARCHAR2(15),
 crank_size VARCHAR2(15),
 crank_weight VARCHAR2(15));

CREATE TYPE stem_type AS OBJECT(
 SKU VARCHAR2(15),
 stem_size VARCHAR2(15),
 stem_weight VARCHAR2(15));

The following statement creates nested table
types: wheel_type, crank_type and stem_type:

CREATE TYPE nested_table_wheel_type AS
TABLE OF wheel_type;

CREATE TYPE nested_table_crank_type AS
TABLE OF crank_type;

CREATE TYPE nested_table_stem_type AS
TABLE OF stem_type;

The following example creates the table named
Bike with that contains four nested tables:

CREATE TABLE bike (
serial_no INTEGER PRIMARY KEY,
 model_type VARCHAR2(20),
 front_wheel
 nested_table_wheel_type,
 rear_wheel
 nested_table_wheel_type,
 crank
 nested_table_crank_type,
 stem
 nested_table_stem_type
)
 NESTED TABLE
 front_wheel
 STORE AS
 front_wheel,
 NESTED TABLE
 rear_wheel
 STORE AS
 rear_wheel,
 NESTED TABLE
 crank
 STORE AS
 nested_crank,
 NESTED TABLE
 stem
 STORE AS
 nested_stem;

INSERT INTO bike VALUES (1000, 'K2 2.0 Road',
nested_table_wheel_type(wheel_type('w7023',
'4R500', '32 spokes', '700x26c')),
nested_table_wheel_type(
wheel_type('w7023', '4R500', '32 spokes',
'700x26c')),
nested_table_crank_type(
crank_type('c7023', '30X42X52', '4 pounds')),
nested_table_stem_type(
stem_type('s7023', 'M5254', '2 pounds')));

Finally the previous statement inserts a row into
the Bike table with nested tables using the three

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 86
www.aitp-edsig.org /www.isedj.org

defined constructors: wheel_type, crank_type
and stem_type.

The above example shows that using the
NESTED TABLE can implement the composition
association, store multiple parts and also speed
up the data retrieval speed for the Bike table.
The following statement shows the nested tables
in the table Bike.

SELECT * from bike;

5. ORDBMS FOR OBJECT INTEGRATION

The beauty of ORDBMSs is reusability and
sharing. Reusability mainly comes from storing
data and methods together in object types and
performing their functionality on the ORDBMS
server, rather than have the methods coded
separately in each application. Sharing comes
from using user-defined standard data types to
make the database structure more standardized
(Breg & Connolly. 2010)

5.1. Object Views on a Relational Table

Object views are virtual object tables, which
allow database developers to add OOP structures
on top of their existing relational tables and
enable them to develop OOP features with
existing relational data. The object view is a
bridge between the relational database and OOP.
Object view creates a layer on top of the
relational database so that the database can be
viewed in terms of objects (Loney & Koch,
2002). This enables you to develop OOP features
with existing relational data. The following
statements show how to create the SalesOrder
table:

CREATE TABLE SalesOrder (
ord_id NUMBER(10),
ord_date DATE,
cust_id NUMBER(10),
emp_id NUMBER(10));

INSERT INTO SalesOrder VALUES
 (100,'5-Sep-05', 1, '1000');
INSERT INTO salesOrder VALUES
 (101, '1-Sep-05', 1, '1000');

The following statements show how to create an
object view on the top of the SalesOrder
relational table:

CREATE TYPE SalesOrder_type AS OBJECT(
sales_ord_id NUMBER(10),

ord_date DATE,
cust_id NUMBER(10),
emp_id NUMBER(10));

CREATE VIEW customer_order_view OF
SalesOrder_type WITH OBJECT IDENTIFIER
(sales_ord_id)
AS SELECT o.ord_id, o.ord_date, o.cust_id,
o.emp_id
 FROM salesOrder o
 WHERE o.cust_id = 1;

The following SQL statement generates the view
output:

SELECT * FROM customer_order_view;

The object view is a bridge that can be used to
create object-oriented applications without
modifying existing relational database schemas.
By calling object views, relational data can be
retrieved, updated, inserted, and deleted as if
such data were stored as objects. The following
statement can retrieve Analysts as object data
from the relational SalesOrder table. Using
object views to group logically-related data can
lead to better database performance.

5.2 Inheritance for Object Reuse

The main advantages of extending the relational
data model come from reuse and sharing. If
multiple applications use the same set of
database objects, then you have created a de
facto standard for the database objects, and
these objects can be extended (Price, 2002).
ORDBMSs allow users to define hierarchies of
data types. With this feature, users can build
subtypes in hierarchies of database types. If
users create standard data types to use for all
employees, then all of the employees in the
database will use the same internal format.

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 87
www.aitp-edsig.org /www.isedj.org

Users might want to define a full time employee
object type and have that type inherit existing
attributes from employee_ty. The full_time_ty
type can extend employee_ty with attributes to
store the full time employee’s salary. The
part_time_ty type can extend employee_ty with
attributes to store the part-time employee’s
hourly rates and wages. Inheritance allows for
the reuse of the employee_ty object data type.
The details are illustrated in the following class
diagram:

+updateSalary()
-salary : Decimal

FullTime

+updateRate()

-rate : Decimal
-hours : Integer

PartTime

+getEmployee()

-<PK> emp_id : Integer
-name : Object
-address : Object
-phone : Object

Employee

Object type inheritance is one of new features of
Oracle 9i. For employee_ty to be inherited from,
it must be defined using the NOT FINAL clause
because the default is FINAL, meaning that
object type cannot be inherited. Oracle 9i can
also mark an object type as NOT
INSTANTIABLE; this prevents objects of that
type derived. Users can mark an object type as
NOT INSTANTIABLE when they use the type only
as part of another type or as a super_type with
NOT FINAL. The following example marks
address type as NOT INSTANTIABLE:

CREATE TYPE employee_ty AS OBJECT (
 emp_id NUMBER,
 SSN NUMBER,
 name name_ty,

dob DATE,
 phone varray_phone_ty,
 address address_ty
) NOT FINAL NOT INSTANTIABLE;

To define a new subtype full_time_ty inheriting
attributes and methods from existing types,
users need to use the UNDER clause. Users can
then use full_time_ty to define column objects
or table objects. For example, the following
statement creates an object table named
FullTimeEmp.

CREATE TYPE full_time_ty UNDER employee_ty (
Salary NUMBER(8,2));

CREATE TABLE FullTimeEmp of full_time_ty;

The preceding statement creates full_time_typ
as a subtype of employee_typ. As a subtype of
employee_ty, full_time_ty inherits all the
attributes declared in employee_ty and any
methods declared in employee_ty. The
statement that defines full_time_ty specializes
employee_ty by adding a new attribute “salary”.
New attributes declared in a subtype must have
names that are different from the names of any
attributes or methods declared in any of its
supertypes, higher up in its type hierarchy. The
following example inserts row into the
FullTimeEmp table. Notice that the additional
salary attribute is supplied

INSERT INTO FullTimeEmp VALUES
(1000, 123456789, name_ty('Jim', 'Fox', 'K'),
'12-MAY-1960',
varray_phone_ty('(626)123-5678', '(323)343-
2983', '(626)789-1234'),
Address_ty ('3 Lost Spring Way', 'Orlando', 'FL',
32145), 45000.00);

SELECT * FROM FullTimeEmp;

A supertype can have multiple child subtypes
called siblings, and these can also have
subtypes. The following statement creates
another subtype part_time_ty under
Employee_ty.

CREATE OR REPLACE TYPE part_time_ty UNDER
employee_ty (
rate Number(7,2),
hours Number(3))NOT FINAL;

CREATE TABLE PartTimeEmp of part_time_ty;

A subtype can be defined under another
subtype. Again, the new subtype inherits all the
87attributes and methods that its parent type
has, both declared and inherited. For example,
the following statement defines a new subtype

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 88
www.aitp-edsig.org /www.isedj.org

student_part_time _ty under part_time_ty. The
new subtype inherits all the attributes and
methods of student_part_time _ty and adds two
attributes.

CREATE TYPE student_part_time_ty UNDER
part_time_ty
(school VARCHAR2(20),
 year VARCHAR2(10));

5.3 Object Integration with Interface

ORDBMS combines attributes and methods
together in the structure of object type. The
object type interface includes both attributes
and its methods. The public interface declares
the data structure and the method header shows
how to access the data. This public interface
serves as an interface to applications. The
private implementation fully defines the
specified methods.

Public Interface
Specification:
 Attribute declarations
 Method specifications

Private Implementation
Body:
 Method implementations

The following statement displays the public
interface of the object type name_type. The
output of the name_type public interface shows
attributes and method headers as follows:

DESC name_ty;

METHOD
 MEMBER FUNCTION FULL_NAME
RETURNS VARCHAR2

Although the user-defined methods are defined
with object data within the object type, they can
be shared and reused in multiple database
application programs. This can result in
improved operational efficiency for the IT
department, as well, by improving
communication and cooperation between
applications. An object-relational database
schema consists of a number of related tables
that forms connected user-defined object-types.

Object-types possess all the properties of a
class, data abstraction, encapsulation,
inheritance and polymorphism. These traits of
object-types are embedded in the relational
nature of the database; data model, security,
concurrency, normalization. In more precise
words, the underlying ORDB data model is
relational because object data is stored in tables
or columns.

6. LEARNING OUTCOMES

The provided ORDB script guides students with
hands-on learning experience in the classroom.
Once they have understood they can use the
script as templates to do their homework
assignments and projects. ORDB, implement it
with Oracle 9i/10g, and create ORDB
applications using various tools. As a result, the
following learning outcomes are demonstrated at
the end of the class. Students are able to:

1. Map UML class diagrams to ORDB databases
2. Use Object Types to remove transitive

dependency
3. Use VARRAY types for multi-value attribute
4. Use NESTED TABLE types to Solve non-1NF

problems
5. Implement inheritance with sub-object types
6. Create object views in the existing relational

databases

ORDB technology helps students to better
understand object-oriented principles such as
encapsulation, inheritance, and reusability.
During the learning process, they have reviewed
the object-oriented paradigm they learned from
their previous programming courses and are
able to tie it to ORDBMS and object-oriented
system design.

With a grasp of ORDB technology, students are
able to make their database design more
structured and consistent. With object reuse and
standard adherence, students are able to create
a de facto standard for database objects and
multiple database applications. The motivation
to learn in class is high because students have
realized that object-relational technology is
incorporated in most commercial DBMS.
Learning it will help their career development in
the future competitive job market.

7. REFERRNCES

Begg, C., & Connolly, T. (2010). Database

systems: A practical approach to design,

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 89
www.aitp-edsig.org /www.isedj.org

implementation, and management, 5th Ed.
Addison Wesley.

Cho, W., Hong, K. & Loh, W. (2007). Estimating

nested selectivity in object-oriented and
object-relational databases Information and
Software Technology, (49)7, 806-816

Connolly, T. and Begg, C. (2006). Database

systems: A practical approach to design,
implementation, and management, 4th Ed.
Addison Wesley.

Elmasri, R. & Navathe, S. (2011). Fundamentals

of Database Systems, 6th Edition, Addison
Wesley.

Fortier, P. (1999). SQL3: Implementing the

Object-Relational Database, Osborne
McGraw-Hill,

Frank, M. (1995). Object-relational Hybrids,

DBMS, 8/8, 46-56.

Garcia-Molina, H., Ullman, J. & Widom, J. 2003.

Database Systems: The Complete Book,
Prentice Hall, Upper Saddle River.

He, Z., & Jérôme, D. (2005). Evaluating the

Dynamic Behavior of Database Applications,
Journal of Database Management; 16:2, 21-
45.

Hoffer, J., Prescott, M., & Topi, H., 2009 Modern

Database Management, 9th Edition, Pearson
Prentice Hall.

Krishnamurthy, Banerjee and Nori, 1999.

Bringing object-relational technology to the

mainstream, Proceedings of the ACM
SIGMOD International Conference on
Management of Data and Symposium on
Principles of Database Systems,
Philadelphia, PA

Loney, K. & Koch, G. (2002) Oracle 9i: The

complete reference, Oracle Press/McGraw-
Hill/Osborne.

Mok, W. Y. (2007) Designing nesting structures

of user-defined types in object-relational
databases, Information and Software
Technology, 49, 1017–1029.

Pardede, E., Rahayu, J. Wenny, T. & Taniar, D.,

2006, Object-relational complex structures
for XML, Information & Software Technology,
48(6), 370-384.

Philippi, S. 2005, Model driven generation and

testing of object-relational mappings,
Journal of Systems and Software, 77:2, 193-
207.

Price, J. 2002. Oracle9i, JDBC Programming,
Oracle Press/McGraw-Hill/Osborne

Rahayu, J. W., Taniar, D. And Pardede, E.
(2005) Object-Oriented Oracle, IRM Press

Silberschatz, A., Korth, H. and Sudarshan, S.

2009, Database System Concepts, Six
Edition, McGraw-Hill

Stonebraker M. and Moore, D. 1996. Object-

relational DBMSs: the Next Great Wave. San
Francisco, CA: Morgan Kaufmann Publishers,
Inc.

 Information Systems Education Journal (ISEDJ) 9 (4)
 September 2011

©2011 EDSIG (Education Special Interest Group of the AITP) Page 90
www.aitp-edsig.org /www.isedj.org

Appendix 1 Pacific Trader’s Object-Relational Database Design

