
Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org /www.isedj.org

Relational Algebra and SQL: Better Together

Kirby McMaster
kmcmaster@weber.edu

CSIS Dept, Fort Lewis College
Durango, CO 81301, USA

Samuel Sambasivam

ssambasivam@apu.edu
CS Dept, Azusa Pacific University

Azusa, CA 91702, USA

Steven Hadfield
steven.hadfield@usafa.edu

CS Dept, US Air Force Academy
USAFA, CO 80840, USA

Stuart Wolthuis

stuart.wolthuis@byuh.edu
CIS Dept, BYU-Hawaii
Laie, HI 96762, USA

Abstract

In this paper, we describe how database instructors can teach Relational Algebra and Structured
Query Language together through programming. Students write query programs consisting of
sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The
query programs can then be run interactively, allowing students to compare the results of Relational
Algebra and equivalent Structured Query Language commands. In this way, students better
understand both Relational Algebra and Structured Query Language—by writing code and watching it
run.

Keywords: database, query, relational algebra, structured query language, SQL.

1. INTRODUCTION

Perhaps the most important topic in a first
database course is Codd's relational model for
data (Codd, 1970). Relational databases
implement logical data structures called tables,
and provide ways to perform data-entry and
data-retrieval operations on the tables.

Substantial class time is spent on how to create,
maintain, and query a database.

Classroom discussion of query languages
generally leads to a detailed examination of
Structured Query Language (SQL). Relational
Algebra (RA) as a query language usually
receives less attention. This emphasis on SQL
distorts database history.

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org /www.isedj.org

When Codd introduced his relational model in
1970, the main focus was on data
independence, with no mention of Relational
Algebra or SQL. Two years later, Codd (1972)
presented a detailed analysis of RA, along with
Relational Calculus. IBM developed two
prototype databases based on RA in England in
the 1970s (Notley, 1972; Todd, 1976). More
recent database systems that offer a form of RA
as a query language include LEAP (Layton,
2010) and Rel (Voorhis, 2010).

The initial design of SQL (then called SEQUEL)
was performed by Chamberlin and Boyce (1974)
at IBM in the early 1970s. This led to the
development of several IBM relational database
systems based on SQL, including a research
prototype System R in the mid-1970s
(Chamberlin, et. al, 1981) and the production
system DB/2 in 1983. In 1979, Relational
Software (now Oracle) introduced the first
commercial implementation of SQL.

Why Teach Relational Algebra?

There is widespread agreement that SQL is an
essential component of an introductory database
course, but there is less support for Relational
Algebra (Robbert & Ricardo,2003). Never-the-
less, there are several advantages to including
RA in a database course.

1. Teaching RA helps students understand
the relational model. The relational model with
RA operations provides a consistent, powerful
way to query a database. RA is not a database
design tool, but it can support database analysis
and design decisions.
2. Knowledge of RA facilitates teaching and
learning the query portion of SQL. The basic
syntax of the SQL SELECT statement provides
an integrated way to combine RA operations to
express a query.
3. An understanding of RA can be used to
improve query performance. The query-
processing component of a database engine
translates SQL code into a query plan that
includes RA operations. The query optimizer
attempts to speed up query execution by
reducing the processing time of each operation.

When to Teach Relational Algebra?

Most database textbooks provide more material
on SQL than on RA. Table 1 lists six multiple-
edition database textbooks that have a
Computer Science (CS) or Information Systems
(IS) orientation. For each textbook, the table

includes the approximate number of pages
devoted to RA and to the query features of SQL.
The page counts in Table 1 do not include non-
query aspects of SQL. All except Date's book
have more pages explaining SQL than RA.

Three of the textbooks in Table 1 introduce RA
before SQL, while the other three explain SQL
first. If an instructor covers RA first, then SQL
can be introduced by showing how the RA
operations can be performed with SQL. If SQL is
presented first, then SQL query statements can
be decomposed into a corresponding sequence
of RA operations.

Table 1: Database Textbook Summary.

Database Textbook

SQL
pages

RA
pages

First
topic

Connolly & Begg,
5th ed, 2010

34 13 RA

Date, 8th ed, 2004 34 45 SQL
Elmasri & Navathe,
6th ed, 2010

44 29 SQL

Ramakrishnan &
Gehrke, 3rd ed,
2002

33 14 RA

Silberschatz, et al,
6th ed, 2010

42 22 SQL

Ullman & Widom,
3rd ed, 2008

48 30 RA

The SQL SELECT statement includes query
operations that go beyond RA, such as ordering,
grouping, and aggregate functions. If RA has
been discussed first, these additional SQL
operations can be presented as extensions to
RA. If SQL has been covered first, then RA can
be described as a subset of the query
capabilities provided by SQL. In either case, a
student's understanding of the relational model
and query languages is improved when RA and
SQL reinforce each other.

Other authors have presented innovative ways
to teach SQL, such as by using case studies
(Caldeira, 2008) or by combining SQL and Java
to build web applications (Pereira, Raoufi & and
Frost, 2012). Our emphasis in this paper is on
teaching Relational Algebra. The advantage of
using RA to help students learn SQL is a side
benefit of our approach.

2. AN EXAMPLE DATABASE

To illustrate query programming with SQL and
Relational Algebra, we define an example
database. The logical structure of a Time-and-

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org /www.isedj.org

Billing system for the fictional X-Files group
within the FBI consists of three tables: AGENT,
CASES, and TIMECARD. The relational model for
this XFILES database is shown in Figure 1.
Primary keys are marked in bold.

Figure 1: XFILES Database

In this data model, agents are assigned to
various cases. Several agents often work
together on a case, and each agent can work on
multiple cases. The number of hours charged by
an agent to a case is recorded each day in the
TIMECARD table. Sample data for the XFILES
database is given in the Appendix.

Consider the following Query1 for the XFILES
database.
Query1: List the agent ID and last name of all
female agents that have worked on Case 2803.

An SQL statement to perform Query1 is shown
below. This SELECT statement combines several
RA operations (select, project, and join) into one
command.

SELECT DISTINCT AgentID, LastName
FROM AGENT, TIMECARD
WHERE AgentID = TAgentID
 AND Gender = 'F'
 AND TCaseNo = 2803

3. RELATIONAL ALGEBRA QUERIES

Teaching SQL in a database course is relatively
straightforward. Sections of the SELECT
command can be covered in the order favored
by the instructor or the textbook. When query
execution is desired, many database products
are available that implement SQL as the primary
query language. This includes commercial
systems such as Oracle and SQL Server, as well
as free software such as MySQL. SQL queries
can also be run in Microsoft Access using the
SQL View screen.

If an instructor decides to include Relational
Algebra in a database course, how should this
topic be presented? RA coverage in leading
database textbooks often takes a mathematical
approach (Elmasri & Navathe, 2010),
(Silberschatz, Korth, & Sudarshan, 2010),
(Ullman & Widom, 2008). Most database
students are not comfortable with a
mathematical notation that uses Greek letters in
new contexts, along with other strange symbols.
A greater problem with the math syntax is that
students cannot execute query programs written
in the mathematical notation.

The mathematical approach for RA contrasts
with the way SQL is taught. With SQL, an
important part of learning occurs when students
run their query statements. Errors in program
execution provide feedback to help students
reconcile their understanding of the problem
with the proposed solution. Unfortunately, few
computing environments are available for
running Relational Algebra programs. One
current system that does support a form of RA is
LEAP (Leyton, 2010).

In this paper, we present a non-mathematical,
function-based Relational Algebra language for
writing query programs. We then describe a
custom RA and SQL (RASQL) software
environment that can execute both RA and SQL
query programs on Microsoft Access databases.

RA Query Programs

Table 2: RA Query Functions

Operation Function
selection TSelect(Table1,RowCondition)
projection TProject(Table1,ColumnList)
join TJoin(Table1,Table2,JoinCondition)
union TUnion(Table1,Table2)
intersection TIntersect(Table1,Table2)
difference TMinus(Table1,Table2)
product TProduct(Table1,Table2)
division TDivide(Table1,Table2)
rename TRename(Table1,OldColumnName,

NewColumnName)

In our Relational Algebra syntax, a query
program consists of a sequence of statements
that specify operations to perform on database
tables. Each statement is a function call that
performs one RA operation. Functions are
defined for the nine RA operations listed in Table
2. We start each function name with the letter
"T" to avoid conflicts with SQL keywords.

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org /www.isedj.org

Each RA function receives one or two tables as
input and returns a temporary table. The
temporary table can be used in later RA
operations. Using function calls for operations
provides a familiar programming environment
for CS and IS students.
A sample RA program for Query1 using these
functions is shown below.

-- Query1: XFILES Database
T1 = TJoin('AGENT','TIMECARD',
 "AgentID=TAgentID")
T2 = TSelect(T1,"Gender='F'")
T3 = TSelect(T2,"TCaseNo=2803")
T4 = TProject(T3,"AgentID,LastName")

An explanation of each line of code for this
program follows:

Line 1: This is a comment (--)

Line 2: The AGENT and TIMECARD tables are
joined based on the condition that the AgentID
(PK) field matches the TAgentID (FK) field. The
output table is assigned to variable T1.

Line 3: Rows of table T1 are then selected when
the Gender field value is 'F' (female). The
output table variable is named T2.

Line 4: Rows of table T2 are selected when the
TCaseNo field equals 2803. The output table is
assigned to variable T3.

Line 5: The two attributes of table T3 specified
in the column list are projected as table T4 (the
result table for the query).

RASQL Software

Our RA and SQL (RASQL) query software allows
us to execute queries written in the RA format
demonstrated by the Query1 program, as well
as SQL SELECT statements. An earlier version
of the software provided the ability to run RA
query programs but not SQL.

Our explanation of how to use RASQL is
presented in order of the controls that appear on
the Main Screen (Figure 2).

1. Database File textbox: Select a
database. The database must be in an Access
MDB (not ACCDB) file. We chose this database
format, because MDB files are easy to distribute
to students.

2. Query Program textbox: Choose a query
program consisting of a sequence of RA and/or
SQL statements. Each RA instruction must be
on a single line. SQL statements can span

multiple lines. Query programs must be in a
text file with a TXT extension.

Figure 2: RASQL Program Main Screen

3. Display button: Display the query
program code in a window (read-only). Use a
separate text editor to create and modify the
programs.

4. Load button: Before a query program
can run, it must be loaded (initialized).
Repeating this action restarts the program from
the beginning.

5. Step button: Each click of this button
executes one RA or SQL instruction. Comments
in the program code are skipped. The output
table for each step is shown on the screen.

6. Save button: When an RA or SQL
instruction has successfully completed, the
current output table can be saved to disk as an
Excel XLS file.

7. Exit button: Click this button to exit the
RASQL system.

The final output table from the RA program for
Query1, using the data in the sample XFILES
database, is presented in Figure 3. The result
table for the Query1 SELECT statement (with
DISTINCT) is identical. Without the DISTINCT
keyword, the SQL output lists duplicate rows.

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org /www.isedj.org

Figure 3: RASQL Query1 Result Table

When an SQL SELECT statement is included in a
RASQL query program, the statement can
extend across multiple lines. The special
keyword ENDSQL (not case-sensitive) must be
placed at the end of the statement to designate
where the statement terminates.

4. RA AND SQL TOGETHER

The RASQL software can be used to teach
Relational Algebra and SQL concepts together.
The advantage of mixing SQL and RA in query
programs is that it helps students visualize how
RA concepts relate to SQL. Some examples of
query concepts that can benefit from this
integrated approach are described below.

Select Before Join

Relational algebra is a procedural language, in
that a sequence of operations must be specified
for each query. However, different orderings of
RA operations can produce identical solutions.
Although the end result may be the same, the
code versions can vary greatly in terms of
resources and performance.
Consider the following revised RA program for
Query1. In this version, the select operations
are performed before the join.

-- Query1 revised: Select before Join
T1 = TSelect('AGENT',"Gender='F'")
T2=TSelect('TIMECARD',"TCaseNo=2803")
T3 = TJoin(T1,T2,"AgentID=TAgentID")
T4 = TProject(T3,"AgentID,LastName")
In the original Query1 program, the join
operation is performed first, so table T1 has as
many rows as the TIMECARD table. When the
select operations are performed before the join,
the join table T3 is much smaller, because it is
restricted to female agents from the AGENT
table. It is also based only on rows for Case
2803 from the TIMECARD table.

Table T3 is the same in both RA versions. The
advantage of performing select operations early
and join operations later is obvious as the RA
program executes step-by-step in RASQL.

In the SQL SELECT statement for Query1, the
intermediate operations are unseen by the user.
The DBMS query optimizer makes choices
among alternative algorithms. Because the
intermediate results of the underlying
calculations are not visible, SQL appears to be
more non-procedural.

Product vs. Join

Joining two tables is equivalent to performing a
product operation followed by a select operation.
For example, the first line of the Query1 RA
program:

T1 = TJoin('AGENT','TIMECARD',
 "AgentID=TAgentID")

could be split into two operations as follows:

T0 = TProduct('AGENT','TIMECARD')
T1 = TSelect(T0,"AgentID=TAgentID")

Table T1 and the final result for Query1 (shown
in Figure 3) would be unchanged, but the
rewritten version requires an extra (relatively
large) temporary table T0.

Union and Union-Compatible

The union of tables A and B consists of the
combined set of rows of A and B. Because the
union is a set, listing duplicate rows is
redundant. The union operation in RA follows
this convention and eliminates duplicate rows
automatically. SQL provides the option to show
(UNION ALL) or not show (UNION) duplicate
rows. To illustrate the union operation in SQL
and RA, consider Query2 stated below.

Query2: List the agent ID and last name of all
agents that are male or have worked on Case
2801.

An SQL statement for this query, including the
ENDSQL keyword required to run in RASQL, is
shown below.

SELECT AgentID, LastName
FROM AGENT
WHERE Gender = 'M'
UNION
SELECT AgentID, LastName
FROM AGENT, TIMECARD
WHERE AgentID = TAgentID
 AND TCaseNo = 2801
ENDSQL

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org /www.isedj.org

Because this statement contains the UNION
keyword (instead of UNION ALL), DISTINCT is
not needed, and duplicate rows from the two
SELECT sections will not be displayed.

The Query2 result table for this SQL statement,
using the XFILES database, is displayed in
Figure 4.

Figure 4: RASQL Query2 Result Table

The row "FB270 Doggett", representing the only
male agent to work on Case 2801, appears just
once.

A comparable RA program for Query2 is listed
below. With this query program, duplicate rows
in tables T2 and T5 are not repeated in table T6.
The result table T6 is identical to the one shown
in Figure 4.

-- Query2: Union Operation
T1 = TSelect('AGENT',"Gender='M'")
T2 = TProject(T1,"AgentID,LastName")
T3 = TJoin('AGENT','TIMECARD',
 "AgentID=TAgentID")
T4 = TSelect(T3,"TCaseNo=2801")
T5 = TProject(T4,"AgentID,LastName")
T6 = TUnion(T2,T5)

The union operation requires the two input
tables to be union-compatible. That is, they
must have the same number of columns, with
matching domains for the columns. In this
Query2 example, both tables (each SELECT part
in the SQL statement, or tables T2 and T5 in the
RA program) have the same columns--AgentID
and LastName. When two tables are not union-
compatible, the union operation is undefined.

Intersection and Difference

Relational algebra includes two additional set
operations. The intersection of tables A and B is
the set of rows that are simultaneously in A and
in B. The difference A - B includes all rows of A
that are not in B. As with union, the intersection
and difference operations expect the input tables
to be union-compatible. The SQL keyword for
the intersection operation is INTERSECT. The
difference operation is called MINUS in Oracle

and EXCEPT in the SQL standard. In our RA
library, the function names are TIntersect and
TMinus.

The following Query3 and its SQL and RA
programs demonstrate the difference operation.

Query3: List the agent ID and specialty of all
agents that have not worked on Case 2804.

An SQL statement for this query, including the
ENDSQL keyword (RASQL format), is listed next.
This SQL statement first collects all rows from
AGENT and then removes those for agents who
have worked on Case 2804.

SELECT AgentID, Specialty
FROM AGENT
MINUS
SELECT AgentID, Specialty
FROM AGENT, TIMECARD
WHERE AgentID = TAgentID
 AND TCaseNo = 2804
ENDSQL

A corresponding RA program for Query3 is listed
below.

-- Query3: Difference Operation
T1 = TProject('AGENT',
 "AgentID,Specialty")
T2 = TJoin('AGENT','TIMECARD',
 "AgentID=TAgentID")
T3 = TSelect(T2,"TCaseNo=2804")
T4 = TProject(T3,"AgentID,Specialty")
T5 = TMinus(T1,T4)

In this RA program, table T1 includes all agents,
and T4 lists those who worked on Case 2804.
The difference table T5 consists of all agents
who have not worked on that case.

Sample output for the Query3 SQL statement
and RA program, using the XFILES database, is
presented in Figure 5.

Figure 5: RASQL Query3 Result Table

The rows that do not appear in Figure 5
represent the agents in the intersection of the

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org /www.isedj.org

two tables (T1 and T4 in the RA program).
These rows are:

FB270 Military Tactics
FB340 Folklore and Mythology

We note that in SQL it is common to use
subqueries (with IN or NOT IN) to implement
queries involving intersections and differences.
One reason for this is that some database
systems do not support the INTERSECT and
MINUS/EXCEPT keywords.

5. RASQL LIMITATIONS

The RASQL software was designed to provide a
convenient academic environment for teaching
Relational Algebra and SQL together through
programming. Several limitations and
constraints for using the software are described
below.

1. RASQL provides modest error checking.
Error messages show the offending line of code
but not the reason for the error.

2. Duplicate field names should be avoided
in databases. If necessary, use the TRename
function in RA programs. This is a constraint
inherent in Relational Algebra (Date, 2004).
SQL can handle duplicate names using aliases.

3. Nesting of RA function calls within a
single statement is permitted but not
recommended. Nested function calls defeat the
opportunity to see intermediate RA tables. SQL
statements hide all but the final query result.

4. Date fields can be included in queries.
To specify date constants in row conditions, use
the toDate function (similar to Oracle's to_date
function), which returns a date datatype. The
format for our toDate function is:
 toDate(year, month, day).

5. The RASQL software has been tested in
Windows XP, Windows Vista, and Windows 7.
Administrative privileges may be required for
Vista or Windows 7.

6. CONCLUSIONS

In this paper, we present reasons for integrating
Relational Algebra and SQL in database courses.
We suggest that, in teaching RA to database
students, a programming approach is preferable
to a mathematical approach. Our chosen syntax
is to write RA query programs as a sequence of
function calls, where each function performs one
RA operation. Applying this format, students
can gain experience using a procedural query

language. Query programs can also be written
with non-procedural SQL SELECT statements, or
as a combination of RA and SQL instructions.

Learning is enhanced when students can both
write and execute query programs. According to
Knuth (1974), "... a person does not really
understand something until after teaching it to a
computer." To ensure that the computer has
interpreted our intent correctly, we must be able
to run our programs and receive feedback. This
is a common learning style in most computing
courses.

There are readily available database systems for
performing SQL queries, but very few for RA.
Because of this, we developed a custom
Relational Algebra and SQL (RASQL) software
environment in which both RA and SQL
programs can run.

The RASQL software allows students to see
intermediate results during a sequence of RA
and SQL instructions. With this capability,
students can visualize how RA operations
behave, and relate these operations to SQL
statements. Using several example queries, we
demonstrated how RA and SQL are interrelated
conceptually and functionally. This experience
can improve students' understanding of
database query languages and the relational
model.

We have been using various versions of our
Relational Algebra software in database courses
for several years. Most of our evidence regarding
the utility of the software in teaching RA and
SQL has been favorable but non-empirical.
Students are able to effectively write and run
Relational Algebra queries. However, no formal
assessment of the benefits of this approach in
teaching SQL has been established.

In future research, we hope to confirm the
symbiotic relationship between learning
Relational Algebra and learning SQL. We intend
to measure how well a student's understanding
of RA improves his/her ability to write SQL query
statements, and vice versa. This followup
research has been delayed until the authors are
again scheduled to teach database courses
during the same semester.

Note: An executable version of the RASQL
program, runtime files, and the XFILES database
and sample RA and SQL programs described in
this paper, can be obtained from the lead
author.

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org /www.isedj.org

7. REFERENCES

Caldeira, C. (2008). Teaching SQL: A Case
Study. ITiCSE '08: Proceedings of the 13th
annual conference on Innovation and
Technology in Computer Science Education,
June 30 - July 2, Madrid, Spain: 340.

Chamberlin, D., and Boyce, R. (1974). SEQUEL:
A structured English query language.
Proceedings of the 1974 ACM SIGFIDET
(now SIGMOD) workshop on Data
description, access and control, pp 249-264.

Chamberlin, D., et. al. (1981). A History and
Evaluation of System R. Communications of
the ACM, Vol 24, No. 10, pp 632-646.

Codd, E.F. (1970). A relational model of data for
large shared data banks. Comm. ACM IS, 6.

Codd, E. F. (1972). Relational Completeness of
Data Base Sublanguages. In Rustin, Randall
(ed.), Data Base Systems, Courant
Computer Science Series 6. Prentice Hall.

Connolly, T., and Begg, C. (2010). Database
Systems: A Practical Approach to Design,
Implementation, and Management (5th ed).
Addison-Wesley.

Date, C. J. (2004). An Introduction to Database
Systems (8th ed). Addison-Wesley.

Elmasri, R., and Navathe, S. (2010).
Fundamentals of Database Systems (6th
ed). Addison-Wesley.

Knuth, D. (1974). Computer Science and Its
Relation to Mathematics. In The American
Mathematical Monthly, 81, pp 323-343.

Leyton, R. (2010). LEAP RDBMS: An Educational
Relational Database Management System.
Retrieved from http://leap.sourceforge.net.

Notley, M. (1972). The Peterlee IS/1 System.
Rep. UKSC-18, IBM UK Scientific Centre,
Peterlee, England.

Pereira, A., Raoufi, M., and Frost, J. (2012).
Using MySQL and JDBC in New Teaching
Methods for Undergraduate Database
Systems Courses. In Lecture Notes in
Computer Science, 2012, Volume
6411/2012, pp 245-248.

Ramakrishnan, R., and Gehrke, J. (2002).
Database Management Systems (3rd ed).
McGraw Hill

Robbert, M., and Ricardo, C. (2003). Trends in
the Evolution of the Database Curriculum.
Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer
Science Education. Greece.

Silberschatz, A., Korth, H., and Sudarshan, S.
(2010). Database System Concepts (6th ed).
McGraw Hill.

Todd, S. (1976). The Peterlee Relational Test
Vehicle - A System Overview. IBM Systems
Journal, 15(4), pp 285-308.

Ullman, J., and Widom, J. (2008). A First Course
in Database Systems (3rd ed). Prentice Hall.

Voorhis, D. (2010). An Implementation of Date
and Darwen's Tutorial D Database Language.
dappbuilder.sourceforge.net/Rel.php.

Editor’s Note:

This paper was selected for inclusion in the journal as a ISECON 2012 Meritorious Paper. The
acceptance rate is typically 15% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2012.

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org /www.isedj.org

8. APPENDIX: XFILES DATABASE

AGENT table

AgentID LastName FirstName Gender Position Status Specialty BillRate

FB160 Skinner Walter M Deputy Director Active Management 120

FB180 Mulder Fox M Special Agent Abducted Parapsychology 90

FB210 Scully Dana F Special Agent Active Medicine 96

FB270 Doggett John M Special Agent Active Military Tactics 72

FB340 Reyes Monica F Special Agent Active Folklore and Mythology 72

FB480 Wildcat Wendy F Student Intern Temporary Computers 30

TIMECARD table

TAgentID TCaseNo WorkDate Hours
FB210 2801 10/18/2012 4
FB210 2802 10/18/2012 4
FB270 2801 10/18/2012 4
FB270 2804 10/18/2012 4
FB210 2803 10/19/2012 8
FB270 2803 10/19/2012 8
FB210 2803 10/22/2012 8
FB270 2803 10/22/2012 8
FB340 2802 10/22/2012 4
FB340 2803 10/22/2012 4
FB210 2801 10/23/2012 4
FB210 2802 10/23/2012 4
FB270 2802 10/23/2012 4
FB270 2804 10/23/2012 4
FB340 2802 10/23/2012 4
FB340 2805 10/23/2012 4
FB210 2801 10/24/2012 8
FB270 2805 10/24/2012 8
FB340 2805 10/24/2012 8
FB210 2803 10/25/2012 8
FB270 2801 10/25/2012 2
FB270 2805 10/25/2012 6
FB340 2805 10/25/2012 8
FB210 2801 10/26/2012 2
FB210 2802 10/26/2012 6
FB270 2802 10/26/2012 6
FB270 2804 10/26/2012 2
FB340 2804 10/26/2012 4
FB340 2805 10/26/2012 4

Information Systems Education Journal (ISEDJ) 11 (1)
ISSN: 1545-679X February 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 13
www.aitp-edsig.org /www.isedj.org

CASES table

CaseNo Title Budget

2801 Bermuda Triangle 75000
2802 Dark Matter 40000
2803 Swamp Monster 35000
2804 Alien Cockroaches 25000
2805 Flame-Throwing Aliens 50000
2806 Fat-Sucking Vampire 25000

