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This article reports on a study which used the APOS (action-process-object-schema) theoretical 

framework to investigate university students’ understanding of derivatives and their applica-

tions. Research was done at the Westville Campus of the University of KwaZulu-Natal in South 

Africa. The relevant rules for finding derivatives and their applications were taught to under-

graduate science students. This paper reports on the analysis of students’ responses to six types 

of questions on derivatives and their applications. The findings of this study suggest that those 

students had difficulty in applying the rules for derivatives and this was possibly the result of 

many students not having appropriate mental structures at the process, object and schema lev-

els. 
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Introduction 

In South Africa, Grade 12 learners are exposed to the concept of derivative of a func-

tion 𝑓(𝑥), denoted by 𝑓 ′(𝑥). They are exposed tothe following two interpretations of 

the derivative of 𝑓(𝑥): 𝑓 ′(𝑥) gives (1) the gradient of the tangent to the curve 𝑓 at any 

point (𝑥, 𝑓 𝑥 ), and (2) the rate of change of 𝑓 with respect to 𝑥. Basic rules to find 

derivatives of simple functions, mainly polynomial functions and applications of de-

rivatives are also covered. The rules covered are for the basic structures of functions 

of the types 𝑓 𝑥 = 𝑘, 𝑔 𝑥 = 𝑥𝑛 , 𝑕 𝑥 = 𝑘𝑥𝑛  and the sum or difference of such 

functions (Department of Education, 2003; Department of Education, 2012). The ap-

plications of the derivative concept include finding the derivatives of such functions, 

curve sketching and interpretation of graphs in the context of cubic polynomials, ex-

treme value problems and rates of change. At university level the applications are ex-

tended to new and more complex functions, including those based on the concept of 

composite functions. The findings of other studies indicated that (a) the derivative is a 

difficult concept for many students to understand (Orton, 1983; Uygur & Özdaş, 

2005), (b) students‟ difficulties with the derivative increase and get worse when the 

function considered is a composite function (Tall, 1993), and (c) this results in the 

chain rule being one of the hardest ideas to convey to students in calculus (Gordon, 

2005; Uygur & Özdaş, 2007). My interactions with first year mathematics students, at 

the University of KwaZulu-Natal, indicated that many students experience difficulties 

in finding the derivatives of functions whose structures include composition of func-
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tions. When finding the derivative of a function, for example 𝑓 𝑥 = ln⁡(3𝑥2 + 1), 

many students typically respond with 𝑓 ′ 𝑥 =
1

3𝑥2+1
. These indicated that there was a 

need to engage with a study on students‟ understanding of the symbolic representa-

tions of functions and their derivatives. The research question for this study was: How 

should the teaching of the concept of the derivative be approached? 

 
Theoretical framework 

This study is based on APOS Theory (Dubinsky & McDonald, 2001). APOS Theory 

proposes that an individual has to have appropriate mental structures to make sense of 

a given mathematical concept. The mental structures refer to the likely actions, proc-

esses, objects and schema required to learn the concept. Research based on this theory 

requires that for a given concept the likely mental structures need to be detected, and 

then suitable learning activities should be designed to support the construction of 

those mental structures. 

    Asiala, Brown, De Vries, Dubinsky, Mathews & Thomas (1996) proposed a spe-

cific framework for APOS Theory based research and curriculum development, in 

undergraduate mathematics education. The framework consists of the following three 

components: theoretical analysis, instructional treatment, and observations and as-

sessment of student learning. According to Asiala et al. (1996), APOS Theory based 

research should be done according to the paradigm illustrated in Figure 1. 

 
    In this paradigm, theoretical analysis occurs relative to the researchers‟ knowledge 

of the concept in question and knowledge of APOS Theory. This theoretical analysis 

helps to predict the mental structures that are required to learn the concept. For a given 

mathematical concept, the theoretical analysis informs the design and implementation 

of instruction. These are then used for collection and analysis of data. The theoretical 

analysis guides the latter, which Figure 1 indicates could lead to a modification of the 

initial theoretical analysis of the given mathematical concept. 

 
Description of the APOS/ACE Instructional Treatment 

APOS Theory and its application to teaching practice are based on an assumption on 

mathematical knowledge and a hypothesis on learning. These were developed to un-
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derstand the ideas of Jean Piaget. In some studies (for example, Weller, Clark, Dubin-

sky, Loch, McDonald & Merkovsky, 2003), these ideas were recast and applied to 

various topics in post-secondary mathematics. Piaget investigated the thinking of ado-

lescents and adults, including research mathematicians. Those investigations led him 

to discover common characteristics, specifically certain mental structures and mecha-

nisms that guide concept acquisition (Piaget, 1970). According to Dubinsky (2010), 

APOS theory and its application to teaching practice are based on the following as-

sumption on mathematical knowledge and hypothesis on learning mathematics. 

 

    Assumption on mathematical knowledge: An individual‟s mathematical knowl-

edge is his/her tendency to respond to perceived mathematical problem situations and 

their solutions by [a] reflecting on them in a social context, and [b] constructing or 

reconstructing mental structures to use in dealing with the situations. 

    Hypothesis on learning: An individual does not learn mathematical concepts di-

rectly. He/she applies mental structures to make sense of a concept (Piaget, 1964). 

Learning is facilitated if the individual possesses mental structures appropriate for a 

given mathematical concept. If appropriate mental structures are not present, then 

learning the concept is almost impossible. 

    The above imply that the goal for teaching should consist of strategies for: [a] help-

ing students build appropriate mental structures, and [b] guiding them to apply these 

structures to construct their understanding of mathematical concepts. In APOS The-

ory, the mental structures are actions, processes, objects and schemas. In the following 

subsections (1) each of these is briefly described, and (2) then the ACE Teaching Cy-

cle; which constitutes the pedagogical strategies used, based on the hypothesis and the 

implication for teaching; is described. 

    After these general considerations, the assumption on mathematical knowledge is 

focused on by making an APOS analysis of the derivative concept. The result of this 

analysis is called a genetic decomposition. A genetic decomposition of a concept is a 

structured set of mental constructs which might describe how the concept can develop 

in the mind of an individual (Asiala et al., 1996). So, a genetic decomposition postu-

lates the particular actions, processes and objects that play a role in the construction of 

a mental schema for dealing with a given mathematical situation. The genetic decom-

position arrived at for the derivative concept, is indicated in the methodology section. 

 
APOS Theory 

The main mental mechanisms for building the mental structures of action, process, 

object and schema are called interiorization and encapsulation (Dubinsky, 2010; 

Weller et al., 2003). The mental structures of action, process, object and schema con-

stitute the acronym APOS. APOS theory postulates that a mathematical concept de-

velops as one tries to transform existing physical or mental objects. The descriptions 

of action, process, object and schema; given below; are based on those given by 
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Weller, Arnon & Dubinsky (2009). I formulated suitable examples to clarify those 

descriptions. 

 Action: A transformation is first conceived as an action, when it is a reaction 

to stimuli which an individual perceives as external. It requires specific in-

structions, and the need to perform each step of the transformation explicitly. 

For example, a student who requires an explicit expression to think about the 

derivative of a function, 𝑓 ′(𝑥), where say 𝑓 𝑥 = 𝑥3 and can do little more 

than perform the action 𝑓 ′ 𝑥 = 3𝑥2, is considered to have an action under-

standing of the derivative of a function. 

 Process: As an individual repeats and reflects on an action, it may be interi-

orized into a mental process. A process is a mental structure that performs 

the same operation as the action, but wholly in the mind of the individual. 

Specifically, the individual can imagine performing the transformation with-

out having to execute each step explicitly. For example, an individual with a 

process understanding of the derivative of a function, say 𝑔 𝑥 = (𝑥2 + 1)2, 

will construct a mental process which could include that 𝑔(𝑥)should first be 

written in a simplified form by squaring the binomial (𝑥2 + 1)and then the 

derivative can be found by applying the rule, the derivative of a sum of func-

tions is the sum of the individual derivatives of functions. 

 Object: If one becomes aware of a process as a totality, realizes that trans-

formations can act on that totality and can actually construct such transforma-

tions (explicitly or in one‟s imagination), then we say the individual has en-

capsulated the process into a cognitive object. For example, when finding the 

derivative of functions an individual may confront situations requiring 

him/her to apply various actions and/or processes. These could include think-

ing about a function as the composite of two functions, for example the func-

tion 𝑕 𝑥 = (𝑥2 + 1)100  is the composite of the functions 𝑓 𝑥 = 𝑥100 and 

𝑔 𝑥 = 𝑥2 + 1, since 𝑕 𝑥 = 𝑓(𝑔 𝑥 ). To find the derivative, 𝑕 𝑥  should 

first be conceptualized as an object which comprises of the composite of two 

functions. To this function object, the process understanding for finding de-

rivatives must be encapsulated in the context of the chain rule to find the de-

rivative 𝑕′ 𝑥 . 

 Schema: A mathematical topic often involves many actions, processes and 

objects that need to be organized and linked into a coherent framework, 

called a schema. It is coherent in that it provides an individual with a way of 

deciding, when presented with a particular mathematical situation, whether 

the schema applies. For example, the coherence might lie in understanding 

that to determine the local extrema of a function, say 𝑕 𝑥 = (𝑥2 − 1)100 , 

the following must be considered: the derivative 𝑕′(𝑥), the critical points of 

𝑕 occur where 𝑕′ 𝑥 = 0, these critical points should be used to construct the 
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sign diagram of 𝑕′(𝑥), and this should be analysed to determine the nature of 

the extrema of 𝑕. 

Explanations offered by an APOS analysis are limited to descriptions of the thinking 

which an individual might be capable. So such analyses don‟t describe what “really” 

happens in an individual‟s mind, since this is probably unknowable. Further, the fact 

that an individual possesses a certain mental structure does not mean that he or she 

will necessarily apply it in a given situation. This depends on other factors, for exam-

ple managerial strategies, flexibility, prompts and emotional states. The main use of an 

APOS analysis is to point to possible pedagogical strategies. Data is collected to vali-

date the analysis or to indicate that it should be reconsidered. For more details, see 

Asiala et al. (1996) and Dubinsky & McDonald (2001). 

 
The ACE Teaching Cycle  

This pedagogical approach, based on APOS Theory and the hypothesis on learning 

and teaching, is a repeated cycle consisting of three components: (A) activities, (C) 

classroom discussion, and (E) exercises done outside of class (Asiala et al., 1996). The 

activities, which form the first step of the cycle, are designed to foster the students‟ 

development of the mental structures called for by an APOS analysis. In the classroom 

the teacher guides the students to reflect on the activities and its relation to the 

mathematical concepts being studied. Students do this by performing mathematical 

tasks. They discuss their results and listen to explanations, by fellow students or the 

teacher, of the mathematical meanings of what they are working on. The homework 

exercises are fairly standard problems. They reinforce the knowledge obtained in the 

activities and classroom discussions. Students apply this knowledge to solve standard 

problems related to the topic being studied. The implementation of this approach and 

its effectiveness in helping students make mental constructions and learn mathematics 

has been reported in several research studies. A summary of early work can be found 

in Weller et al. (2003). 

 

Insights on the Derivative Concept from Past Studies 

In any first course on calculus, the building block for the concept of a derivative is the 

function concept. For this reason the literature review focuses on (1) Functions and 

function composition, and (2) Derivatives, including the chain rule. 

 

Functions and function composition. 

Functions are a central part of the pre-calculus and calculus curriculum (Tall, 1997). 

This was supported by a study of first year calculus prescribed textbooks (for example 

the textbooks by Stewart, 2009; Lial, Greenwell & Ritchley, 2008) at the University of 

KwaZulu-Natal, which revealed that a good grounding of the following are pre-

requisites for introducing the derivative concept: [a] algebraic manipulations, and [b] 
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functions, including their symbolic and graphical representations. These imply that 

before the concept of the derivative of a function is introduced, students should have 

adequately established algebraic manipulation skills, and the concept of a function. 

Their mental structures of functions should be at the higher levels of APOS; process 

level and higher. The reality is that at best most students are at the process level, since 

in general students exhibit a predominant reliance on the use of and the need for alge-

braic formulae when dealing with the function concept (Breidenbach, Dubinsky, 

Hawks & Nichols, 1992; Asiala, Cottrill, Dubinsky & Schwingerdorf, 1997; Akkoç & 

Tall, 2005). Further, previous studies emphasized the importance of the concept of 

function composition in the understanding of the chain rule (Clark, Cordero, Cottrill, 

Czarnocha, De Vries, St. John, Tolias & Vidakovi´c, 1997; Cottrill, 1999; Hassani, 

1998), which is a technique used to find the derivative of functions, in whose struc-

tures other functions are embedded; for example 𝑓 𝑥 =  𝑥2 + 1. Here, we can con-

ceptualize 𝑓 𝑥  as a composition of two functions, for example 𝑓 𝑥 = 𝑔 𝑕(𝑥)  

where 𝑔 𝑥 =  𝑥 and 𝑕 𝑥 = 𝑥2 + 1. 

 

Derivatives, including the chain rule. 

The derivative is a difficult concept for many students to understand (Orton, 1983; 

Uygur & Özdaş, 2005). Giraldo, Carvalho & Tall (2003) distinguish between a de-

scription of a concept, which specifies some properties of that concept and the formal 

concept definition. They noted that a commonly used description of the derivative is 

the following: gradient of a function 𝑓(𝑥) at 𝑥0 is the slope of the tangent line to the 

curve 𝑓 at the point (𝑥0 , 𝑓 𝑥0 ). Hähkiöniemi (2004) noted that students‟ understand-

ing of the derivative can be improved if they are exposed to several different kinds of 

representations, to process the derivative. He exposed students to different perceptual 

(eg. rate of change of the function from the graph, steepness of tangent) and symbolic 

(eg. differentiation rule, slope of a tangent) representations of the concept of a deriva-

tive. Perceptual representations assist students to understand the derivative as an ob-

ject. Roorda, Vos & Goedhart (2009) focused on representations and their connections 

as part of understanding derivatives. They found that growth in understanding depends 

on a variety of connections, both between and within representations, and also be-

tween a physical application and mathematical representations. Zandieh (2000) ob-

served that students prefer the graphical representation in tasks and explanations about 

derivatives. This was supported by Tall (2010) who made a strong argument for direct 

links between visualization and symbolization when teaching the concept of a deriva-

tive. 

    When the function considered is a composite function, students‟ difficulties with 

the derivative increase and get worse (Tall, 1993). This results in the chain rule being 

one of the hardest ideas to convey to students in calculus (Gordon, 2005, Uygur & 

Özdaş, 2007). Clark et al. (1997) who studied students‟ understanding of the chain 
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rule and its applications concluded that the difficulties with the chain rule for a large 

number of students could be attributed to student difficulties in dealing with composi-

tion and decomposition of functions. The implication is that the understanding of 

composition of functions is an integral part to understanding the chain rule, which is 

supported by several studies (eg. Webster, 1978; Cottrill, 1999; Horvath, 2007). 

    It seems that many students perform poorly because they: (a) are unable to ade-

quately handle information given in symbolic form which represent objects [abstract 

entities], for example functions, and (b) lack adequate schema or frameworks, which 

help to organize and link different objects (Maharaj, 2005). The teaching implication 

is that (1) a variety of representations should be used, and (2) students should be en-

couraged to engage with a flexibility of mathematical conceptions (Andresen, 2007; 

Maharaj, 2010) of 𝑓 ′ 𝑥 , the derivative of the function 𝑓 with respect to 𝑥. 

 
Participants and Methodology 

This section focuses on (1) Participants, aim of module studied and ethical issues, (2) 

Theoretical analysis of derivative concept using an APOS approach, genetic decompo-

sition, (3) Instructional treatment, ACE teaching cycle, and (4) Tools for collection of 

data. 

 
Participants, Aim of Module Studied and Ethical Issues 

The participants in this study were 857 science students at the University of KwaZulu-

Natal (UKZN) in 2010; about 67% of these were first year students and about 33% 

were senior (for example, second or third year) students. Those 857 students took the 

third test for a module they were studying, and it was convenient to analyse their re-

sults, so it was a convenience sampling. That test was comprised of multiple-choice-

questions; it was neither a standardised test, nor was it adapted from literature. The 

students were studying the Math133W1 (Mathematics & Statistics for Natural Sci-

ences) module, which was a compulsory service module towards their Bachelor of 

Science degrees. Major subjects for these students varied over chemistry, physics, 

biology, zoology and pharmacy. The aim of that module studied was to “introduce 

students to the fundamental principles, methods, procedures and techniques of 

mathematics and statistics as the language of science” (Faculty of Science and Agri-

culture, 2010:229). Those students attended their lectures in one of three timetable 

groups. The study was conducted according to the research ethical guidelines of 

UKZN as indicated in Research Policy V (University of Kwa-Zulu Natal, 2007). Also, 

the researcher successfully completed the United States of America‟s National Insti-

tutes of Health (NIH) Office of Extramural Research Web-based training course “Pro-

tecting Human Research Participants” and was certified by that NIH. Guidelines indi-

cated in that course were also followed in this study. This was the context for the theo-

retical analysis of the derivative concept. 
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Theoretical Analysis of Derivative Concept using an APOS Approach, Genetic Decom-

position 

My theoretical analysis indicated the type of mental structures of action, process, ob-

ject, and schema relevant to both the derivative concept and types of problems based 

on the derivative that the participants encountered. Those mental structures were de-

scribed under the subheading APOS Theory. The examples I gave there to expand on 

the descriptions of the mental constructions, and my literature review (Tall, 1997; 

Clark et al., 1997; Cottrill, 1999; Hassani, 1998) led me to the following genetic de-

composition. 

As part of his or her function schema, the student has developed 

1. a process or object conception of a function, and 

2. a process or object conception of composition of functions. 

As part of his or her derivative schema, the student has 

3. an action conception which enables the finding of derivatives of simple func-

tions, whose rules are given in the symbolic form. For example, 𝑓 𝑥 = 3𝑥2. 

4. a process conception of differentiation which enables the finding of deriva-

tives of functions. This could involve studying the structure of the function, 

detecting whether a rule for differentiation could be applied or whether the 

function should be written in a standard form which enables the application 

of the appropriate rules for differentiating. 

5. an object conception which enables the seeing of strings of processes as a to-

tality and performing mental or written actions on the internal structure of the 

given function, which enables differentiation. For example, the student views 

a function 𝑕 𝑥  as an object which is a composition of two functions, 𝑕 𝑥 =
𝑓(𝑔 𝑥 ), to which the chain rule can be applied. 

6. organized the actions, processes and objects related to the derivative concept, 

and linked them into a coherent framework. This framework includes various 

interpretations of the derivative in different contexts, and possible techniques 

for [a] finding derivatives of various function types, [b] interpreting the graph 

of a derivative, [c] using the derivative of a function for curve sketching, or 

[d] optimizing a function. 

Points 1 and 2 of my genetic decomposition; dealing with the function schema; is the 

same as that of Clark et al. (1997). However, the points dealing with the derivative 

schema are different. The reason for the latter is that the genetic decomposition given 

by Clark et al. (1997) was for the chain rule, and not for the derivative (in general) and 

related applications. 

 
Instructional Treatment, ACE Teaching Cycle 

This was informed by my theoretical analysis of the derivative concept, the literature 

review (Asiala et al., 1997; Akkoç & Tall, 2005; Hähkiöniemi, 2004) and the types of 
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problems that the students had to be exposed to. A lecture schedule, based on sections 

of the prescribed book, was followed. That schedule allocated 22 lecture periods, each 

of 45 minutes‟ duration, for sections and topics considered to be crucial for the deriva-

tive concept as determined by my genetic decomposition of the derivative concept, 

and informed by the literature review (Hähkiöniemi, 2004; Roorda et al., 2009; Tall, 

2010). There were 4 periods per week and a 3 hour tutorial session. During the lecture 

periods, students were exposed to: (a) algebraic manipulation skills, and symbolic and 

graphical representations of functions. (b) the two interpretations of derivative of a 

function which are dealt with in grade 12, at schools. (c) basic differentiation tech-

niques for different types of simple functions, including for example 𝑦 = 𝑒𝑘𝑥 , 

𝑦 = 𝑎𝑘𝑥 , 𝑦 = log
𝑎
𝑥. (d) the composition and decomposition of functions, followed by 

applications of the chain rule. (e) applications of the derivative to curve sketching, and 

optimization problems in their fields of study. For each of the lecture periods, activi-

ties were formulated and were projected by use of a PC tablet. 

    I now focus on how the teaching and learning experience was structured for stu-

dents, by using an ACE teaching cycle approach. For example, one of those periods 

dealt with the question: How to determine where a function is increasing or decreas-

ing? Appendix A gives activities for this question. A reasonable time was given for 

students to reflect and work on each activity; they were free to discuss with other stu-

dents sitting beside them and to use the prescribed textbook. While students engaged 

with the activities I observed how they worked, and noted their difficulties and aspects 

that required further explanations. These informed my explanations; using the PC tab-

let; to the class. Activities and classroom discussions were followed by homework 

exercises, which students had to work on as part of their tutorial requirements. The PC 

Tablet was used to summarize the lecture-room discussions. Those summaries were 

available to students, on the website for the Math133W1 module. During each of the 

six two-and-a-half hour tutorial sessions, students were in groups of about 35. In their 

groups they could further discuss the homework exercises with their tutors. 

 
Tools for Collection of Data 

About a week after the last tutorial on derivatives and their applications, a multiple 

choice test was administered to 857 students. The questions were set by me and were 

similar to those for the activities and homework. Students were required to first work 

out the solutions in the space below each question and then to mark their choices on 

the MCQ (multiple-choice-question) cards. The MCQ test was not a standardised test 

adapted from literature. Each question was given a weighting of 3 marks. Students 

were informed that to discourage guessing, negative marking applied; -1 for each in-

correct choice. In 2010 at UKZN, negative marking was a science faculty requirement 

for the use of MCQs. The six questions are indicated in the next section. Those ques-

tions were constructed by using my genetic decomposition and notes on relevant ob-
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servations during student activities and tutorials. The options given for each of the 

MCQs were constructed bearing in mind the APOS levels of mental structures. 

 
Analysis, Findings and Discussion 

To represent the analysis, findings and discussion for each of the six questions in a 

reader friendly format, the following subheadings which describe the type of question 

are used: (1) Decomposition of functions, (2) Derivative of an exponential function 

with base e, (3) Derivatives of exponential and logarithmic functions, (4) Rates of 

change, (5) Interpretation of the graph of a derivative, and (6) Optimization of a func-

tion. Under each of these subheadings the relevant test item and question analysis is 

given. The question analysis indicating student responses for each of the six questions 

are indicated in Tables 1 to 6. In each of these tables „Qu‟ means question and the 

symbol “*” appears under the letter of the correct answer, for example B is the correct 

answer for question 1. The Bad Index gives the number of students who marked more 

than one choice.The numbers under the columns A to Omit Index gives the percentage 

of students, rounded correct to two decimal places. 

 
Decomposition of Functions 

1.  If the function defined by 𝑦 =
1

𝑥2−7
  is expressed as the composition of two func-

tions 𝑓 and 𝑔 such that 𝑦 = 𝑓[𝑔 𝑥 ] then  

A)  𝑓 𝑥 =
1

𝑥2  ;   𝑔 𝑥 = 𝑥 − 7 B)  𝑓 𝑥 =
1

𝑥
 ;   𝑔 𝑥 = 𝑥2 − 7  

C)  𝑓 𝑥 =
1

𝑥2  ;   𝑔 𝑥 = −
1

7
 D)  𝑓 𝑥 =

1

7
 ;   𝑔 𝑥 = 𝑥2  − 7  

E)   none of these 

 

Table 1   Student responses in percentages (n = 857) 

 

    Question 1 is based on recognizing a given function as the composition of two func-

tions, which is the reversal of the process of composing two functions (which coin-

cides with point 2 of my initial genetic decomposition). Table 1 suggests that [a] about 

67.21% of the students had a function schema which included an adequate process or 

object conception of composition of functions, and [b] at least 17.4% of the students 

(using the results of the four other choices) had mental structures for the composition 

which were, at best at the action level. If this is accepted then at least 17.4% of the 

students had inadequate schema for composition of functions, and this should impact 

negatively on their application of the chain rule. For the 14.47% of students who gave 

 

Qu 

 

  A 

 

  B 

 

   C 

 

  D 

 

   E 

Omit 

Index 

Bad 

Index 

  1 4.32 67.21* 10.74 0.01 2.33 14.47    1 
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no response, there could be a number of reasons for this. For example reasons could 

be that: (1) some of them had inadequate composition of function schema which could 

be a result of students‟ difficulties in dealing with the composition and decomposi-

tions of functions (Clark et al., 1997), or (2) some avoided indicating an uncertain 

choice because of negative marking. The literature review (Webster, 1978; Cottrill, 

1999; Horvath, 2007) suggested that an insight of composition of functions is required 

for success with the chain rule for differentiation. So, one would expect about 32% of 

these students to have difficulties with the chain rule (see items 2 and 3, Tables 2 and 

3) since function composition increases students‟ difficulties with the derivative (Tall, 

1993) and hence the chain rule (Gordon, 2005, Uygur & Özdaş, 2007). Note that item 

1 was designed to assess point 2 of my genetic decomposition which is a pre-requisite 

for the description given in point 6, of that genetic decomposition. 

 
Derivative of an Exponential Function with base e 

2.  If 𝑦 = 𝑒4𝑥2
+ 𝑥 then 

𝑑𝑦

𝑑𝑥
= 

A)  4𝑥2𝑒4𝑥2−1 + 1 B)   8𝑥𝑒2𝑥 + 1     C)   8𝑥𝑒𝑥2
+ 1  

D)  8𝑥𝑒4𝑥2
+ 1  E)   𝑒8𝑥 + 1 

 

Table 2   Student responses in percentages (n = 857) 

 

Qu 

 

  A 

 

 B 

 

  C 

 

   D 

 

  E 

Omit 

Index 

Bad 

Index 

  2 8.57 1.63 1.75 81.45* 2.45  3.97     0 

 

    The function in Question 2 has the structure of the sum of two functions. It is based 

on recognizing the rules for differentiation that should be applied are for the sum of 

functions and the chain rule to an exponential function, with base e. In terms of my 

genetic decomposition, this question requires a derivative schema which coincides 

with the descriptions indicated under points 4 and 5. Table 2 suggests that 81.45% of 

the students had an adequate derivative schema for functions of this type, and 14.4% 

had schema which excluded the chain rule. Since 81.45% had a schema which in-

cluded the chain rule as a rule for differentiation, this suggests that a schema for de-

composition of functions as suggested by Clark et al. (1997), 67.21% from Table 1, 

may not be conclusively the determining factor for application of the chain rule. This 

could be viewed as a new finding and seems reasonable, since an application of the 

chain rule only requires that one recognizes [a] that this rule should be applied, and [b] 

which is/are the embedded function(s). It does not actually require the decomposing of 

the original function into sub-functions, as focused on in item 1. 
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Derivatives of Exponential and Logarithmic Functions 

3.  If 𝑓 𝑥 =  23 −𝑥 + ln(9+𝑥2) then 𝑓 ′ 𝑥 = 

A)  −ln23(23)−𝑥 +
1

9+𝑥2   B)   ln23(23)−𝑥 +
2𝑥

9+𝑥2 

C)  −𝑥(23)−𝑥−1 + ln(9)+ ln(2𝑥)  D)   (23)−𝑥 +
2𝑥

9+2𝑥
 

E)  −ln23(23)−𝑥 +
2𝑥

9+𝑥2 

 

Table 3 Student responses in percentages (n = 857) 

 

Qu 

 

  A 

 

   B 

 

   C 

 

  D 

 

    E 

Omit 

Index 

Bad 

Index 

  3 5.13 21.12 12.95 6.53 42.24* 12.02     0 

 

    The function structure is the sum of an exponential function, with base not e, and a 

natural logarithmic function. Each of those functions requires the application of the 

chain rule. In terms of my genetic decomposition, the successful answering of this 

type of question requires a derivative schema which coincides with the descriptions 

indicated under points 4 and 5. According to my genetic decomposition, students‟ 

responses in Table 3 suggest: [a] 12.95% (from response C) were at best at the action 

level, [b] 26.25% (from responses for A and B) were at a process level of the chain 

rule applied to only one of those functions, [c] 6.53% had no adequate schema for 

differentiating an exponential function of the indicated type, and [d] 42.24% of stu-

dents had an adequate schema. So, about 67% of those students had inadequate 

schema to find derivatives of exponential and logarithmic functions which required 

two separate applications of the chain rule, relating to point 6[a] of my genetic de-

composition. This seems to support literature findings (Gordon, 2005, Uygur & Öz-

daş, 2007) that the chain rule is one of the hardest ideas to convey to students in calcu-

lus. 

 
Rates of Change 

4.  The population of a certain type of insect in a region near the equator is given by 

𝑃 𝑡 = 15ln(𝑡 + 10), where 𝑡 represents the time in days. The rate of change of the 

population when = 2, is 

A)   2.5 insects  B)   3.4 insects  C)   1.75 insects  

D)   1.5 insects  E)   1.25 insects  

 

Table 4 Student responses in percentages (n = 857) 

 

Qu 

 

  A 

 

  B 

 

  C 

 

  D 

 

    E 

Omit 

Index 

Bad 

Index 

 4 8.40 3.03 1.75 2.68 68.26* 15.75    1 
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    Question 4 required interpreting [a] firstly as a derivative problem, and [b] the de-

rivative as a rate of change. The successful answering of such a question requires a 

derivative schema incorporating a framework as described under point 6 of my genetic 

decomposition, including a flexibility of conception of the derivative concept. Student 

responses in Table 4 suggest that 68.26% had such a schema, enabling them to suc-

cessfully interpret the derivative as a rate of change. This could be a result of the 

teaching approach which focused on several different kinds of representations of the 

derivative (Hähkiöniemi, 2004) including explanations on the direct links between 

visualization and symbolization of the derivative concept (Tall, 2010). 

 
Interpretation of the graph of a derivative 

5.  Consider the graph   

 

 

 

 

 

 

 

 

 

 

 

 

 

If the graph is that of 𝑓 ′(𝑥), then the function 𝑓 has 

A)   relative maxima at −2 and 2 

B)   a relative minimum at −4 

C)   a relative maximum at −2; a relative minimum at 2 

D)   a relative minimum at −2; a relative maximum at 2 

E)   critical values at −2, −4 and 2 

 

Table 5 Student responses in percentages (n = 857) 

 

Qu 

 

 A 

 

   B 

 

   C 

 

   D 

 

   E 

Omit 

Index 

Bad 

Index 

  5 5.25 35.24 22.29* 11.79 12.02 13.42     0 

 

    Question 5 required an analysis of the graph of the derivative function 𝑓 ′(𝑥), to 

determine the intervals over which the original function 𝑓(𝑥) is increasing or decreas-

ing and the use of this information to find the relative extrema of 𝑓(𝑥). According to 
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my genetic decomposition of the derivative schema, the successful answering of such 

a question requires the description given under point 6. In particular this assessment 

item requires that the student interprets the derivative represented in graphical form. 

Interpretation is required at a level that should enable the making of relevant conclu-

sions relating to the original function 𝑓 𝑥  on: (1) the intervals over which 𝑓(𝑥) in-

creases or decreases, and (2) the relative extrema of 𝑓(𝑥). The student responses in 

Table 5 suggests that [a] only 22.29% had an adequate schema which enabled them to 

interpret the graph of the derivative function at the required level, and [b] 53.51% 

(from responses for A, B and E) had mental structures which were not even at an ac-

tion level, for what was required. The latter suggests that there should be greater em-

phasis during teaching on derivatives represented graphically (Zandieh, 2000) and 

relevant connections (Roorda et al., 2009) on where the original function is increasing 

or decreasing. 

 
Optimization of a Function 

6. The percent of concentration of a certain drug in the bloodstream 𝑥 hours after the 

drug is administered is given by 𝐾 𝑥 =
3𝑥

𝑥2+4
, and 𝐾 ′ 𝑥 =

−3𝑥2+12

 𝑥2+4 2 . 

The time (in hours) at which the concentration is a maximum, and the maximum con-

centration, are respectively given by 

A)   1;  
3

5
 %   B)   0.5;  

1

3
%    C)   2;  

3

4
 %     D)   3; 1%    E)   −2; −

3

4
% 

 

Table 6 Student responses in percentages (n = 857) 

 

Qu 

 

  A 

 

  B 

 

   C 

 

  D 

 

  E 

Omit 

Index 

Bad 

Index 

  6 6.88 6.07 46.09* 3.62 8.63 28.70     0 

 

Question 6 required the optimization of a function in a practical context. A successful 

answering of such a question would require that a student has a schema which in-

cludes a description of what is indicated under point 6 of my genetic decomposition. 

Table 6 suggests that 54.72% of students (from responses to C and E) had some sort of 

schema for optimization of a function, of those 46.09% had an adequate schema for 

optimizing a function in a practical context, while 8.63% did not. The teaching impli-

cation here is that growth in understanding derivatives depends on a variety of connec-

tions, in this case between a physical application and a mathematical representation 

(Roorda et al., 2009). 

 
Conclusions and Recommendations 

Useful insights into the relevant mental structures towards which teaching should fo-

cus were revealed by the APOS genetic decomposition of the derivative concept and 
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-2 2

+ + + 0 0- - - - - + + +
x

f x( ):

its applications. This helped to design learning activities for the derivative concept, 

some of which were fairly successful. The findings of this study suggest that students 

seem to experience difficulties when: (1) differentiating a function which requires the 

application of the chain rule, and (2) interpreting the derivative of a function repre-

sented in graphical form. For (1) it seems that composition of functions positively 

influence the application of the chain rule, so this concept should preferably be fo-

cused on just before the chain rule is introduced as a differentiation technique. In par-

ticular the detecting of which functions are involved in the composition of a given 

function could aid the application of the chain rule. However, it seems that more em-

phasis should be placed on the detecting of embedded functions, to which the chain 

rule should be applied. This implies that point 2 of my genetic decomposition for the 

function schema should be modified to focus on which sub-function(s) is/are imbed-

ded within a function, in particular process or object conceptions of detecting embed-

ded functions (when applying the chain rule). For (2) it seems there is a need to help 

students set up an appropriate schema. This could include unpacking the information 

on the derivative represented in graphical form to a table of signs representation for 

𝑓 ′(𝑥). For question 5, the table of signs for 𝑓 ′(𝑥) is given in Figure 2. This table 

could then be used to analyse the behaviour of the function 𝑓(𝑥) over the relevant 

intervals, and also to find relative extrema. 

 

 

 

 

    Figure 2  Table of signs for 𝑓 ′(𝑥) 

 

    My reflections on the instructional design indicated that more time needs to be de-

voted to helping students develop the mental structures at the process, object and 

schema levels. This implies that instruction should focus on (1) verbal and graphical 

approaches to applications on the derivative concept, (2) unpacking of structures given 

in symbolic form and information given in graphical form, and (3) modelling possible 

schema. A graphical approach should facilitate the development of mental structures 

at the process and object levels, while a focus on symbolic structures should aid object 

conceptions. If schemas organize and link the relevant actions, processes and objects 

then this should be a part of the instructional treatment. The impact of such a focus on 

instruction will require further research. Further, the present study provides six as-

sessment tasks on the derivative concept and applications that were designed within an 

internationally tested research framework. These could lead to a study on the follow-

ing research question: What insights would an APOS analysis of students’ understand-

ing of the derivative concept reveal? 
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Appendix A An example of an activity 


