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Improving Mathematics: An Examination of the Effects of Specific
Cognitive Abilities on College-age Students’ Mathematics Achievement

Abstract
This study investigated the effects of general intelligence and seven specific cognitive abilities on college-age
students’ mathematics achievement. The present investigation went beyond previous research by employing
structural equation modeling. It also represents the first study to examine the direct and indirect effects of
general and specific cognitive abilities, simultaneously, on the mathematics achievement of college-age
students. A model developed using the Cattell-Horn-Carroll theory of intelligence was the theoretical model
used in all analyses. Data from 1,054 college-age students who participated in the standardization of the
Woodcock–Johnson III (Woodcock, McGrew, & Mather, 2001) were divided into a calibration sample set
and validation sample set. The calibration data set was used for model testing and modification and the
independent validation sample data set was used for model validation. The specific areas of intelligence
demonstrating direct effects on the mathematics achievement dependent variable were Crystallized
Intelligence and Fluid Reasoning. The effects of general intelligence were found to be indirect in the college-
age sample. Implications for instruction and intervention to improve college student’s mathematics
achievement are provided.
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Improving Mathematics: A Examination of the Effects of Specific Cognitive Abilities on 

College-age Students’ Mathematics Achievement 
 

Research investigating quantitative reasoning within the scholarship of teaching 
and learning (SoTL) community indicates that the cognitive abilities important for 
mathematics success are also important for students’ general academic success. The 
academic skills associated with these cognitive abilities include numeracy, problem 
solving, and quantitative reasoning (e.g., Bok, 2006; Grawe, 2011; Richardson & 
McCallum, 2004). Much of this research encourages faculty to foster students’ 
academic development across curricular domains and disciplines. Many of these studies 
are process oriented, meaning their focus is on students’ output or the application of 
quantitative reasoning knowledge and/or skills in our classrooms.  Another area of 
research in the relationship between cognitive abilities and mathematics achievement 
focuses on the specific underlying cognitive abilities important in the acquisition of 
quantitative reasoning skills.  

Knowledge of the specific cognitive abilities important for mathematics success 
has the potential to impact faculty instruction and curriculum development. It is 
impractical for faculty to assess and provide feedback and instruction relative to each 
student’s problem solving and reasoning skill-level. However, each cognitive ability is 
composed of specific narrow areas or what might be thought of as specific sub-skills. 
For example, two sub-skills important in reasoning activities include deductive and 
inductive reasoning. Knowing the specific narrow areas or sub-skills underlying each 
cognitive ability that is important for quantitative reasoning skill acquisition may assist 
faculty in curriculum development, instruction, and improve students’ learning outcomes.  

Prior research investigating the role of cognitive abilities and mathematics 
achievement focused on general intelligence. For the purposes of the present paper, 
we are defining general intelligence as being inferred from the common variance 
shared by multiple tasks used to measure intellectual functioning. Although this 
phenomenon is not directly observable, it is a strong predictor of academic and 
occupational success. Research suggests that general intelligence is the single best 
predictor of academic achievement across all academic areas including mathematics 
(Cronbach & Snow, 1977; Hunter & Hunter, 1984; Jensen, 1984, 1998). Although 
general intelligence accounts for about .50% of the variance in the prediction of 
academic achievement, knowledge of an individual’s general intelligence or IQ score 
does little to assist faculty during instruction or curriculum development; except when 
working with individuals at the extreme ends of the distribution.   
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More recently, researchers have identified specific cognitive abilities important for 
success across many academic domains. This research identifies the specific cognitive 
abilities important for mathematics success- beyond general intelligence. Knowledge of 
the specific cognitive abilities important for mathematics success may be used by 
faculty to guide instruction and curriculum development. To date, the majority of this 
research focused on school-age populations (e.g., Floyd, Keith, Taub, McGrew, 
2007; McGrew, Flanagan, Keith, & Vanderwood, 1997; Taub, Floyd, Keith, & 
McGrew, 2008). This study represents the second investigation of this nature 
involving college-age participants (Taub & Benson, 2013).   

The development of this body of research is driven by two factors. The first is 
advances in the areas of intellectual assessment, research methods, and intellectual 
theory. This is most evident in the Cattell-Horn-Carroll (CHC) theory of intelligence 
(McGrew & Flanagan, 1998), which serves as the theoretical foundation for the 
research identifying the specific cognitive abilities important for academic success. The 
second factor driving this research is the technological advancement provided through 
structural equation modeling (SEM), which allows for the inclusion of composite 
scores or general intelligence and the scores from the tests measuring the specific 
cognitive factors contributing to general intelligence to be analyzed simultaneously. This 
is not possible with multiple regression (Thorndike, Hagen, & Sattler, 1986).  
Cattell-Horn-Carroll Theory of Intelligence  

 The CHC theory of intelligence is the most comprehensive research-based 
model of intelligence (McGrew 2005; 2009) and serves as the primary theoretical 
foundation for most contemporary tests of intelligence (Keith & Reynolds, 2010). 
Within CHC theory, there are seven specific cognitive abilities which may be 
measured. These include Auditory Processing, Crystalized Intelligence, Fluid Reasoning, 
Long-Term Retrieval, Processing Speed, Short-Term Memory, and Visual-Spatial 
Thinking (see Taub & Benson, 2013; Taub & McGrew, 2004 for a detailed 
explanation of each cognitive ability). Recent CHC-based research employing SEM 
identified the specific cognitive abilities Crystalized Intelligence, Fluid Reasoning, and 
Processing Speed as strong predictors of mathematics achievement (McGrew, 1997; 
Keith 2009). This research was supported by Taub, Floyd, Keith, & McGrew’s 
(2007) study which identified these three specific cognitive factors, in various 
combinations, as important for mathematics achievement across four age differentiated 
school-age samples.   
Purpose of the Study 

Investigating the cognitive abilities important for mathematics achievement to 
guide faculty instruction and improve student achievement is valued within the 
scholarship of teaching and learning community (Dewar & Benett, 2010; Hutchings, 
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Huber, & Ciccone, 2011; Mitchell, Anderson, Sensibaugh, & Osgood, 2011). The first 
purpose of the study is to answer the question, which specific CHC cognitive abilities 
are most important for college students’ quantitative reasoning skill acquisition, beyond 
general intelligence? This will expand discipline-based knowledge through the 
development of curriculum and instructional strategies to assist students as they 
acquire, apply, and master mathematics algorithms and skills. The second purpose of 
this research is to identify how students process information to improve academic 
learning and more specifically, mathematics achievement (Cerbin, 2013). A final 
purpose of this study is to provide the SoTL community with knowledge of the 
development of this body of research. 

Method 
Participants 

The participants were derived from a portion of the WJ III standardization 
sample (McGrew & Woodcock, 2001). The WJ III was standardized on individuals 
ranging from 2 years of age to over 90 years old. The subsection of the 
standardization sample used in the present study consisted of the portion of the 
standardization sample that ranged between 20 years of age and 39 years of age   
(n = 1,041).  
Instruments 
 The seven CHC-based specific cognitive (or broad) abilities used in this study 
were derived from correlations matrixes obtained from participant scores on 27 tests 
and one composite. The  indicators included 4 tests from the WJ III Tests of 
Achievement (ACH; Mather & Woodcock, 2001), 5 tests and 1 special composite (a 
combination of Number Series and Number Matrices tests) from the WJ III Diagnostic 
Supplement (Woodcock, McGrew, Mather, & Schrank, 2003), and 18 tests from the  
WJ III Tests of Cognitive Abilities. More information about the tests and abilities they 
measure may be found in the instrument’s Technical Manual or in Taub, Floyd, Keith, 
& McGrew (2008).  

Scores from the Applied Problems and Calculation tests from the WJ III ACH 
served as the dependent variable, Quantitative Reasoning. These tests require 
participants to identify relevant from irrelevant information, perform calculations ranging 
from simple subtraction and addition to calculus, and comprehend the nature of a 
mathematical problem for successful problem completion.  

Analysis 
All analyses were conducted using covariance matrixes derived from the 

correlations and standard deviations of participant scores. Following the 
recommendations of MacCallum, Roznowski, Mar, and Reith (1994), the sample was 
randomly divided into two subsamples. One sample served as the calibration sample 
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and the other was the validation sample. Randomly dividing participant data into both 
a calibration and validation sample allowed for model cross-validation. The AMOS 
(Arbuckle, 2007) statistical program was used to conduct all analyses with SEM. 
This means scores from the participants were divided into two independent samples or 
datasets. One data set was used for model testing (i.e., calibration) and the second 
sample or dataset was used for model validation.  
Models 

The first two models provide an overview of the development of the body of 
research into the relationship between intelligence, specific cognitive abilities, and 
academic achievement. They are included for informational purposes and are not 
estimated (results are not provided for these models). The first model, Figure 1, 
presents the Traditional model to measure intelligence. The Traditional model in Figure 
1 is presented sideways and is hierarchical. The hierarchical nature of the model may 
be seen as the tests on the left side of the figure (rectangles) provide scores that 
contribute to the calculation of each of the seven specific CHC-based cognitive 
abilities (ovals).  In CHC nomenclature, the seven specific cognitive abilities are 
called broad abilities. The term broad abilities will be used for consistency when 
referring to these specific cognitive abilities. The scores from the broad abilities then 
contribute to the calculation of general intelligence (g) at the apex of the hierarchy. 
It is important to note that using scores from 28 different tests permits the inclusion 
of at least three indicators for each of the seven broad abilities. Additionally, each of 
these 28 tests measures a different aspect of each broad ability. In CHC 
nomenclature, each test contributes scores from (or measures) a different narrow 
area, thus each specific broad ability is a combination of scores from more than one 
narrow area or subskill.  

The lines with single-headed arrows represent the impact of one variable on 
another. The lines with single-headed arrows connecting the tests to the seven broad 
abilities as well as the lines connecting the broad abilities to general intelligence (g) 
are referred to as paths in SEM nomenclature. AMOS provides estimates for these 
paths and other sources of variance within the model. The estimates for the paths are 
referred to as path coefficients. This model is not estimated in the present study, it is 
presented for informational purposes. 

The second model, Figure 2, presents a Broad model identifying the effect of 
each of the seven specific CHC-based broad abilities on Quantitative Reasoning. It 
too is a hierarchical model similar to the Traditional model in Figure 1. The Broad 
model provides an estimate of the relative contribution of each of the seven CHC-
based broad abilities, in combination, on Quantitative Reasoning (general intelligence is 
not included in this model).  
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The third model is an integration of the models in Figures 1 and 2. This 
integrated model is referred to as the baseline model and is presented in Figure 3. 
The baseline model integrates the tests contributing the seven CHC-based broad 
abilities, general intelligence, and Quantitative Reasoning. The baseline model identifies 
the specific broad abilities, beyond general intelligence, having the strongest effect on 
the acquisition of Quantitative Reasoning skills. It is important to note that general 
intelligence is identified as g in the integrated baseline model. This change makes 
labeling within the baseline model consistent with prior research. The SEM 
measurement model presented in Figure 3 was used in previous research and has 
empirical support (e.g., McGrew & Woodcock, 2001; Taub & Benson, 2013; Taub, 
Floyd, Keith, & McGrew, 2007; Taub & McGrew, 2004).  
Analysis 
 The first two models, the Broad and Traditional models displayed in Figures 1 
and 2 are not analyzed in this study. They are presented to provide a background to 
explain the baseline model displayed in Figure 3. Analyses were conducted in two 
phases. The purpose of the first phase, the Calibration phase, was to identify the 
specific or combination of specific CHC-based broad abilities that were statistically 
significant predictors of the Quantitative Reasoning dependent variable. Thus, the first 
phase only used calibration data and was complete when the best fitting model, using 
the calibration data, was identified. Model estimations were obtained via the AMOS 
program which provided estimations for each of the structural paths. The initial model 
tested in the Calibration phase was the baseline model presented in Figure 3. Next, 
the single structural path with the highest negative value was removed from the 
baseline model. The model was then re-estimated. This process of model examination, 
deletion, and reiteration was carried out until all structural paths with negative values 
and paths with critical values below 1.96 (p. > .05) were removed. This resulted in 
a final model that contained only positive and statistically significant values. Once 
identified, this model served as the final calibration model and signaled the end of the 
first phase of the study.  

In the second phase of the study, the Validation phase, the final calibration 
model was re-estimated using data from the validation sample. It is important to note 
that the final model derived from analyses using the calibration data in the first phase 
of the study was then validated using an independent dataset (validation data) in the 
second phase of the study, the Validation phase. The final model derived during the 
Calibration phase is presented in Figure 4 and will now be referred to as the 
Validation model. One benefit of using separate calibration/validation samples is the 
results are more stable (e.g., higher likelihood of obtaining similar results) upon 
replication (MacCallum et al., 1994).   
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Results  
The Traditional and Broad models presented in Figures 1 and 2 were not 

estimated; they are included for informational purposes. The third model presented as 
Figure 3 is the baseline model used in the Calibration phase. The Calibration phase 
employed a process of model generation, path deletion, and reiteration using data from 
the calibration sample. The final model from theses analyses was identified as the 
best fitting model and is presented in Figure 4. Once identified, the model in Figure 
4 was referred to as the Validation model and was tested using the independent 
validation data set in the second phase of the study, the Validation phase.  

All structural paths in the final model, the Validation model displayed in Figure 
4, were statistically significant. The standardized direct effects of the positive and 
statistically significant structural paths associated with the Validation model are 
presented in Figure 4.  

An examination of fit indices associated with the Validation model, presented in 
Figure 4, provided evidence of the goodness of fit of the model to the data. These 
fit indices included the Akaike Information Criterion (AIC; 2445.019), comparative fit 
index (CFI; .721), root mean square error of approximation (RMSEA; .092), and 
the Tucker-Lewis index (TLI; .693). For reference, lower values indicate a better fit 
for the AIC and RMSEA and higher values on the CFI and TLI indicate that the 
model fit the data better, with a 1.0 indicative of a perfect fit. The RMSEA of .092 
is above the threshold of .08 to consider the model to have adequate fit, but is less 
than the .10 cutoff indicating poor fit (Hu & Bentler. 1999).  The model χ2  is 
2,299.019 with 423 degrees of freedom. 

Overall, the results indicate that general intelligence had an indirect effect on 
the dependent Quantitative Reasoning variable. Meaning general intelligence had a 
direct effect on the specific abilities, which in turn had a direct effect on the 
mathematics achievement dependent variable. The specific broad abilities factors 
Crystallized Intelligence and Fluid Reasoning had direct effects on Quantitative 
Reasoning. The standardized path coefficient for Crystallized Intelligence → Quantitative 
Reasoning was .26 and Fluid Reasoning → Quantitative Reasoning was .54. The total 
indirect effect of g on Quantitative Reasoning can be calculated by first multiplying the 
path coefficient g → Gf by the path coefficient Gf → Gq (.95 x .54 = .513) as 
presented in Figure 4. The next step is to multiply the path coefficient g → Gc by 
the path coefficient Gc →Gq (.83 x .26 = .215). The sum of these two products 
is the total indirect effect of general intelligence on Quantitative Reasoning (.513 + 
.215 = .728) or .73.  

Discussion 
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Recent advances in intellectual theory and statistical software (e.g., SEM) 
allow researchers to simultaneously analyze the relative contribution of specific broad 
abilities and general intelligence on mathematics achievement. The purpose of the 
present study was to go beyond earlier investigations of SEM and mathematics 
achievement to identify the relative contribution of seven specific broad abilities, based 
on the CHC theoretical model of intelligence, and general intelligence on college-age 
students’ mathematics achievement.  

The model presented in Figure 1, the Traditional model, provides a visual figure 
of the measurement of general intelligence. Initial research investigating the relationship 
between broad abilities and achievement focused specifically on the relationship 
between general intelligence and achievement. 

The Broad model presented in Figure 2 examines the direct relationship 
between specific broad abilities and Quantitative Reasoning. One inherent problem with 
the Broad model is that it does not account for the variance associated with strong 
and consistent relationship between general intelligence and academic achievement. One 
purpose of this study was to identify the effects of the specific CHC-based broad 
abilities beyond the strong effect of general intelligence. In other words, if we take 
general intelligence out of the equation (or account for all variance associated with 
general intelligence), which CHC broad ability or combination of broad abilities are 
most important to Quantitative Reasoning skill acquisition?  

To answer this question, the models presented in Figure 1 and 2 were 
combined into one model, the baseline model, as displayed in Figure 3. This 
integrated model accounts for the direct effect of seven specific CHC-based broad 
abilities on general intelligence and the portion of remaining variance associated 
Quantitative Reasoning.  This model was tested in two phases: a Calibration phase 
and a Validation phase. In the first phase, calibration data were used as input data 
and all negative structural paths were deleted from the model one at a time, after the 
deletion of each individual path the model was retested. This iteration continued until 
all structural paths with negative or non-statistically significant structural paths were 
removed from the model in Figure 3. This was then referred to as the final model. 
Next, the final model served as the Validation model presented in Figure 4, was 
tested using an independent validation data set.  

The structural paths remaining in Figure 4 linking Crystalized Intelligence and 
Fluid Reasoning with Quantitative Reasoning indicate that these are the only specific 
broad abilities having direct effect on Quantitative Reasoning beyond general intelligence 
for this sample. The specific broad abilities Crystallized Intelligence and Fluid 
Reasoning had statistically significant direct effects on Quantitative Reasoning.  In 
previous studies, Crystallized Intelligence also demonstrated a consistent relationship 
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with mathematics, specifically from 6 years of age through 19 years of age, with the 
exception of 7-8 years of age (e.g., Floyd, et al., 2003; Hale, Fiorello, Kavanagh, 
Hoeppner, & Gaither, 2001; Keith, 1999; McGrew, 1997; McGrew & Hessler, 1995; 
Taub, et al., 2008); as did Fluid Reasoning across all age groups. Thus, it was not 
surprising to find that Crystallized Intelligence and Fluid Reasoning were statistically 
related to mathematics achievement in the present college-age sample.  

The specific CHC broad ability Crystalized Intelligence accounts for the depth 
and breadth of an individuals’ acquired knowledge. This includes information that is 
overlearned and automatized across several domains including academic, cultural, and 
linguistic domains. It also accounts for the communication of this knowledge and for 
reasoning using previously acquired experiences and procedural skills.  

The Fluid Reasoning broad ability accounts for one’s ability to solve problems 
using both inductive and deductive reasoning skills. It also accounts for the ability to 
form concepts and solve problems using novel or less familiar information and 
procedures. This is in contrast to using overlearned and automatized problem solving 
skills associated with Crystalized Intelligence. The results from the present study 
support previous results indicating that Crystalized Intelligence is important across all 
areas of the curriculum and Fluid Reasoning is as important across all age ranges in 
the acquisition of mathematics skills. These results support prior SoTL research which 
identified the cognitive processes associated with mathematics as important across all 
areas of the curriculum in higher education.   
Limitations 

The findings from this study are limited by the data set used in the analyses. 
Specifically, all data used in this research came from a single battery of tests. 
Second, the participants were 20 years of age or older, thus college-age students 
between the ages of 18 and 19 were not included. Third, the mathematics 
achievement variable was general in nature and may not represent all mathematics 
skills.  

Despite such limitations, several strengths in the present study are worth noting. 
The study used separate calibration and validation data for all analyses. This permitted 
the development of a model based on one sample (data set) which was validated 
on a different data set. This should result in more stable findings when compared to 
using a single data set for exploratory and confirmatory analyses. Finally, the specific 
broad abilities tested in this study and the general factors of intelligence were derived 
from an instrument that is well standardized and validated on a nationally represented 
sample.  
Implications 
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The first implication of the study was general intelligence only had an indirect 
effect on the mathematics achievement of college-age students. This finding was 
important because previous research indicated that general intelligence had a direct 
effect between the ages of 14 to 19 years of age. It is also noteworthy that the 
stable effect of general intelligence for college-age students, 20 years of age and 
above, was indirect and only observed through its direct effect on the specific broad 
ability Crystallized Intelligence and Fluid Reasoning, which in turn had a direct effect 
on the mathematics achievement dependent variable.  

Possibly a more noteworthy implication was the important role of Crystallized 
Intelligence and Fluid Reasoning on mathematics achievement of college-age students. 
Within the classroom, these findings may indicate that students experiencing difficulty 
with mathematics may benefit from explicit strategies targeting these two constructs. 
Specifically, in regards to Crystallized Intelligence, students who have not over learned 
mathematical algorithms may benefit from repeated instruction, instruction in the 
development of memorization strategies, or compensatory strategies (e.g., note cards) 
to assist in problem solving. The appearance of Fluid Reasoning as an important 
broad ability in the completion of mathematics may indicate that conceptual knowledge 
of the relationship between numbers and mathematics algorithms may be foundational 
for mathematics achievement (Hecht, Close, & Santisi, 2003). Unlike calculation, 
problem solving involves linguistic information for students to construct a problem 
model. Thus, instructional strategies assisting students with problem representation may 
prove beneficial in the classroom (Fuchs, Fuchs, Stuebing, et al., 2008). 
Additionally, instructional strategies asking students to visualize elements of the problem 
may also improve conceptual understanding and improve students’ learning outcomes 
(Wendling & Mather, 2009).  Faculty may also consider supplementing traditional 
mathematics instruction with activities that emphasize the use of students’ visual-spatial 
skills. This involves supplementing formula-based instruction with diagrams, figures, and 
visual cues. An example of this is A Visual Approach to Calculus Problems (Apostol, 
2000), which is a free webpage showing how to use diagrams and figures to teach 
and solve calculus problems. 

As students age, there is also a decline in the growth of working memory and 
processing speed (Geary, 2007; McGrew & Woodcock, 2001). Instructional strategies 
that assist students experiencing difficulty holding information in immediate memory for 
problem solving may benefit from compensatory or instructional strategies that require 
students to show their work, thus avoiding dependency on mental calculation 
(Swanson & Beebe-Frankenberger, 2004). Similar strategies will also benefit students 
who have inefficient mental processing. Both working memory and processing speed 
are components of the central executive. The central executive may be thought of as 
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the air traffic controller of our mind. It is responsible for many meta-cognitive activities 
including resource allocation, purposeful attention, and evaluation. Interventions and 
instructional strategies that require students to demonstrate knowledge of mathematics, 
while at the same time, limiting the amount of information suspended in immediate 
awareness for problem solving/transformation/transposition should reduce students’ 
dependency on the central executive.  
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Figure 1. The Traditional model accounting for the relationship between specific CHC-
based cognitive abilities and General Intelligence. g= General Intelligence; Gf = Fluid 
Reasoning, Gv = Visual Processing, Gs = Processing Speed, Glr = Long-Term 
Storage and Retrieval, Ga = Auditory Processing, Gsm = Short-Term Memory, Gc = 
Crystallized Intelligence, g = General Intelligence, and Gq = Quantitative Reasoning. 
 
Figure 2. The Integrated model accounting for the relationship between specific CHC-
based cognitive abilities and Quantitative Reasoning. g= General Intelligence; Gf = Fluid 
Reasoning, Gv = Visual Processing, Gs = Processing Speed, Glr = Long-Term 
Storage and Retrieval, Ga = Auditory Processing, Gsm = Short-Term Memory, Gc = 
Crystallized Intelligence, g = General Intelligence, and Gq = Quantitative Reasoning. 
 
Figure 3. The Integrated Calibration model, based on CHC-theory to account for direct 
effects from general intelligence, and specific CHC cognitive ability factors on 
Quantitative Reasoning. g = General Intelligence Gf = Fluid Reasoning, Gv = Visual 
Processing, Gs = Processing Speed, Glr = Long-Term Storage and Retrieval, Ga = 
Auditory Processing, Gsm = Short-Term Memory, Gc = Crystallized Intelligence, and 
Gq = Quantitative Reasoning. 
 
Figure 4. The Integrated Validation model, which was tested using the validation data. 
g = General Intelligence, Gf = Fluid Reasoning, Gv = Visual Processing, Gs = 
Processing Speed, Glr = Long-Term Storage and Retrieval, Ga = Auditory Processing, 
Gsm = Short-Term Memory, Gc = Crystallized Intelligence, and Gq = Quantitative 
Reasoning. 
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