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Abstract

This study investigates the effects of sample size and test length on item-parameter estimation in test 

development utilizing three unidimensional dichotomous models of item response theory (IRT). For this 

purpose, a real language test comprised of 50 items was administered to 6,288 students. Data from this test 

was used to obtain data sets of three test lengths (10, 20, and 30 items) and nine different sample sizes (150, 

250, 350, 500, 750, 1,000, 2,000, 3,000 and 5,000 examinees). These data sets were then used to create 

various research conditions in which test length, sample size, and IRT model variables were manipulated to 

investigate item parameter estimation accuracy under different conditions. The results suggest that rather 

than sample size or test length, the combination of these two variables is important and samples of 150, 250, 

350, 500, and 750 examinees can be used to estimate item parameters accurately in three unidimensional 

dichotomous IRT models, depending on test length and model employed.
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Developed	following	controversies	over	the	intelligence	testing	movement	(Baker,	
1992),	classical	test	theory	has	successfully	served	its	practitioners	in	terms	of	test	
development	and	interpretation	of	test	results	for	decades	(Embretson	&	Reise,	2000;	
Hambleton,	 Swaminathan,	&	Rogers,	 1991).	However,	 the	 need	 for	 a	 theory	 that	
can	predict	examinees’	responses	to	any	item,	even	if	items	have	never	been	seen	by	
the	examinees	before	(Lord,	1980),	resulted	in	the	development	of	a	new	test	theory	
whose	basic	 concepts	were	developed	over	 seven	 and	 a	half	 years	 (Baker,	 1992).	
After	spending	a	long	time	searching	for	an	agreed-upon	name,	item	response	theory	
(IRT)	became	the	contemporary	theoretical	foundation	for	measurement	(Embretson	
&	Reise,	 2000).	 It	 is	 now	widely	 used	 by	 test	 publishers,	 as	well	 as	 educational,	
military,	and	industrial	institutions,	in	their	research	on	test	development,	test	equating,	
and	 detecting	 differentially	 functioning	 items	 (Hambleton	 et	 al.,	 1991).	However,	
despite	 the	advantages	 IRT	offers,	 a	major	obstacle	 to	 its	use	 in	 test	development	
is	 its	demanding	 requirement	 for	 calibration	 sample	 size.	More	 specifically,	while	
developing	a	test,	“the	difficulty	lies	in	the	need	to	assess	the	properties	of	items	by	
trying	them	out	on	a	sample	of	subjects”	(Woods	&	Baker,	1985,	p.	117).	IRT	requires	
this	sample	size	to	be	large	(around	1,000)	in	order	to	obtain	accurate	item-parameter	
estimates	(Hambleton,	1989)	that	results	in	accurate	estimates	of	ability,	upon	which	
some	high-stakes	decisions	are	made.

There	is	a	large	volume	of	published	studies	in	the	literature	on	the	effects	of	sample	
size	 and	 test	 length	 on	 item-parameter	 estimation	 in	 IRT-based	 test	 development.	
Lord’s	(1968)	study is	the	first	one	of	its	kind	in	which	he investigated	the	sample	
sizes	required	for	estimating	item	parameters	(a-item	discrimination,	b-item	difficulty,	
and	c-pseudo	chance)	accurately	in	the	three-parameter	logistic	model	(3PLM)	using	
data	from	the	Scholastic	Aptitude	Test.	As	a	result,	Lord	concluded	that	a	minimum	
of	50	items	and	1,000	examinees	were	required	to	estimate	a	parameters	with	high	
accuracy.	With	the	support	of	subsequent	studies	(Patsula	&	Gessaroli,	1995;	Tang,	
Way,	 &	 Carey,	 1993;	Yen,	 1987;	Yoes,	 1995),	 1,000	 was	 taken	 as	 the	minimum	
sample	size	required	for	accurate	item-parameter	estimation	in	IRT.

Studies	 have	 also	 been	 conducted	 that	 investigated	 the	 effects	 of	 using	 sample	
sizes	 of	 less	 than	 a	 1,000	 on	 item	 parameter	 estimates.	 However,	 their	 findings	
have	 tremendous	discrepancies.	To	 illustrate,	 a	 limited	number	of	 studies	on	one-
parameter	logistic	model	(1PLM)	have	suggested	that	250	(Goldman	&	Raju,	1986),	
300	(Guyer	&	Thompson,	2011),	or	500	(Thissen	&	Wainer,	1982)	are	the	minimum	
feasible	sample	sizes	for	this	dichotomous	unidimensional	model.	As	the	complexity	
of	 the	model	 increases,	 the	discrepancy	 in	findings	also	 increases.	For	example,	a	
sample	of	250	with	15	 items	(Harwell	&	Janosky,	1991),	of	500	(Stone,	1992)	or	
750	(Lim	&	Drasgow,	1990)	with	20	items,	of	200	(Weiss	&	Minden,	2012)	or	250	
(Harwell	&	Janosky,	1991)	with	25	items,	of	500	with	30	items	(Hulin,	Lissak,	&	
Drasgow,	1982),	or	of	300	with	75	items	(Yoes,	1995)	have	been	suggested	for	two-
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parameter	logistic	model	(2PLM).	The	situation	gets	more	confusing	for	3PLM.	A	
sample	of	1,000	with	20	items	(Patsula	&	Gessaroli,	1995;	Swaminathan	&	Gifford,	
1979;	Yen,	1987);	of	200	(Weiss	&	Minden,	2012)	with	25	items;	of	500	(Akour	&	
Al-Omari,	2013)	with	30	items;	of	300	(Chuah,	Drasgow,	&	Luecht,	2006)	with	50	
items;	of	1,000	with	40	(Patsula	&	Gessaroli,	1995;	Tang	et	al.,	1993;	Yen,	1987),	50	
(Lord,	1968),	60	(Hulin	et	al.,	1982)	and	75	(Yoes,	1995)	items;	and	of	500	(Ree	&	
Jensen,	1980)	with	80	items	have	been	suggested	in	3PLM.	

While	numerous	studies	have	been	conducted	on	the	effects	of	sample	size	and	
test	 length	on	item-parameter	accuracy	in	IRT-based	test	development,	 the	present	
study	differs	from	them	in	two	important	aspects.	Firstly,	the	data	used	in	previous	
research	has	been	mostly	simulated	data,	and	it	is	not	known	whether	simulated	data	
reflects	 the	qualities	of	a	 real	 test	 (Sireci,	1991).	 In	 this	manner,	 the	results	of	 the	
present	study	are	expected	to	be	closer	to	real	test	development	than	most	previous	
research.	Moreover,	limited	numbers	of	sample	sizes,	mostly	4	or	5,	were	tested	in	the	
previous	research.	However,	a	large	number	(9)	of	small	and	large	sample	sizes	are	
tested	at	the	same	time	in	the	present	study,	thus	making	it	possible	to	compare	and	
contrast	results	from	both	sides.	That	makes	this	study	unique	in	the	literature.	With	
the	help	of	these	two	aspects,	this	study	sets	out	to	provide	all	IRT	practitioners	with	
a	blueprint	of	how	large	or	small	a	sample	size	can	be	to	estimate	item	parameters	
accurately	in	IRT-based	test	development	by	answering	the	question	“How	do	sample	
size	and	test	length	affect	item-parameter	estimation	in	IRT-based	test	development?”

Method

Participants and Data Collection Instrument
The	participants	in	this	foundational	study	are	6,288	freshman	students	enrolled	in	

an	English	language	course	at	a	large	university.	The	data	collection	instrument	was	a	
50-item	English	language	test.	In	order	to	fulfill	the	content	validity	concerns,	items	
in	the	test	were	written	in	parallel	with	the	course	objectives	by	the	English	language	
instructors	who	teach	the	course	and	are	deemed	as	subject	matter	experts.	Moreover,	
before	administering	the	test,	expert	opinions	were	received	from	a	doctoral	candidate	
and	language	testing	specialists	working	for	the	testing	office	at	the	university	where	
the	 data	 was	 collected.	 In	 this	 way,	 the	 items	were	 revised	multiple	 times	 based	
upon	expert	opinions	until	reaching	their	final	form.	Afterwards,	the	instrument	was	
administered	simultaneously	to	6,288	test	takers	in	one	session.

Item Selection for Shorter Tests 
Items	from	the	full	data	set	were	selected	to	form	sub-tests	of	different	lengths.	

While	deciding	the	number	of	items	for	shorter	tests, previous	studies	(Baker,	1998;	
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Gao	&	Chen,	 2005;	 Patsula	&	Gessaroli,	 1995;	Yen,	 1987)	 in	 the	 literature	were	
considered.	 So,	 from	 the	 50-item	 full data	 set	 (6,288	 x	 50),	 sub-tests	 of	 n	 =	 30, 
n	=	20,	and	n	=	10	items	were	selected.	While	forming	sub-tests,	unidimensionality	
assumption	of	IRT	was	satisfied.	Unidimensionality	refers	to	having	a	single	common	
factor	underlying	examinees’	correct	responses	to	items.	In	order	to	select	the	item	that	
collectively	satisfy	unidimensionality,	exploratory	factor	analysis	on	the	tetrachoric	
inter-item	correlation	matrix	of	the	full	data	was	used	(Edelen	&	Reeve,	2007).	Items	
that	 had	 factor	 loadings	 less	 than	0.30	 for	 the	first	 factor	were	 removed	 from	 the	
data	as	 they	 failed	 to	 load	on	 the	first	 factor	adequately	 (Fidelman,	2012).	Out	of	
the	50	items,	30	items	that	had	the	highest	factor	 loadings	on	the	first	factor	were	
chosen	as	the	items	for	the	30-item	test.	The	tetrachoric	correlation	matrix	of	these	30	
items	was	computed	and	another	exploratory	factor	analysis	was	done	on	this	matrix.	
Then,	20	items	with	highest	factor	loadings	on	the	first	factor	were	selected	for	the	
20-item	test.	The	same	procedure	was	followed	to	select	the	items	for	10-item	test. 
A	summary	of	the	results	related	to	the	unidimensionality	assumption	and	the	factor	
loadings	can	be	found	in	Table	1.

Table	1
Summary of Exploratory Factor Analysis in Item Selection
Test	Length Variance λ1/	λ2 Range	of	Factor	Loadings
30-Item	Test 	37.50	% 8.50 	0.45	to	0.75
20-Item	Test 	43.78	% 8.15 	0.59	to	0.75
10-Item	Test 	51.29	% 6.10 	0.68	to	0.77

Note. Variance	=	Variance	accounted	for	by	the	first	factor,	λ1/	λ2	=	ratio	of	the	first	to	the	second	eigenvalue.

Lord	(1980)	suggests	that	if	the	first	eigenvalue	is	large	compared	to	the	second	
one,	and	if	the	second	one	is	not	much	larger	than	any	of	the	other	eigenvalues,	this	
can	be	taken	as	a	proof	of	unidimensionality.	These	were	observed	in	the	data	sets	
of	the	current	study.	Apart	from	these,	moderate	to	high	factor	loadings	for	the	first	
factor	and	moderate	to	high	variance	accounted	for	by	the	first	factor	were	also	taken	
as	proof	of	unidimensionality.	Upon	completing	the	item	selection	for	the	sub-tests,	
the	KR-20	internal	consistency	coefficient	was	calculated	for	each	test,	which	were	
found	to	be	0.76	(10-item	test),	0.85	(20-item	test),	and	0.88	(30-item	test).

Sampling of Examinees
After	selecting	the	items	that	would	be	used	for	each	sub-test	(10-item,	20-item,	

and	30-item),	nine	different	sample	sizes	(N	=	150,	250,	350,	500,	750,	1,000,	2,000,	
3,000,	and	5,000)	were	drawn	from	the	full	dataset	for	each	test	by	stratified	random	
sampling	 using	 the	 complex	 samples	module	 of	 SPSS	 20	 (International	Business	
Machines	Corporation,	2011).	This	was	done	in	order	to	simulate	different	research	
conditions	(e.g.,	250	examinees’	responses	to	20	items).	While	deciding	sample	sizes,	
the	sample	sizes	most	frequently	used	in	previous	IRT	research	on	sample	size	were	
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reviewed.	As	a	result,	sample	sizes	of	150,	250,	500,	1,000,	2,000,	3,000,	and	5,000	
were	found	to	be	used	the	most	in	similar	studies	(Akour	&	Al	Omari,	2013;	Baker,	
1998;	Goldman	&	Raju,	 1986;	Hulin	 et	 al.,	 1982;	Lord,	 1968;	Tang	 et	 al.,	 1993; 
Thissen	&	Wainer,	1982;	Yen,	1987). Samples	of	350,	which	had	never	been	tested,	
and	of	750,	which	had	only	been	previously	tested	once	(Lim	&	Drasgow,	1990),	were	
also	added	to	the	study	as	alternatives	to	500	and	1,000.	Moreover,	while	sampling	
the	examinees,	their	colleges	were	used	as	strata	to	reflect	examinee	diversity	in	the	
full	data	across	samples.	This	process	resulted	in	30	(See	Table	2)	different	data	sets,	
including	the	full	data	set	(marked	with	an	*).

Table	2
Data Sets of the Study

Sample	Size
Test	Length 150 250 350 500 750 1,000 2,000 3,000 5,000 6,288* Total

10 1 1 1 1 1 1 1 1 1 1 10
20 1 1 1 1 1 1 1 1 1 1 10
30 1 1 1 1 1 1 1 1 1 1 10
Total 3 3 3 3 3 3 3 3 3 3 30

Item Parameter Estimation
After sampling,	item	parameters	(item	difficulty	(b)	in	1PLM;	b	and	discrimination	(a)	

in	the	2PLM;	and	a,	b,	and	pseudo-chance	(c)	parameters	in	the	3PLM)	were	estimated	
under	90	different	research	conditions	(3	IRT	models	x	30	data	sets)	using	Xcalibre	4.1	
(Guyer	&	Thompson,	2011)	with	marginal	maximum	likelihood	estimation	(MMLE)	
and	the	default	options	readily	available	in	the	program.	The	item	parameters	estimated	
from	the	full	data	set	(N =	6,288,	n	=	50)	were	taken	as	the	“true”	(baseline)	parameters	
against	which	the	accuracy	of	the	item	parameters	estimated	from	the	other	samples	
in	the	study	could	be	compared	and	contrasted.	As	the	data	had	a	considerably	large	
number	of	examinees,	it	was	possible	to	estimate	item	parameters	with	a	reasonable	
amount	 of	 accuracy	 and	 thus	 could	 be	 considered	 as	 baseline	 parameter	 estimates	
(Swaminathan,	Hambleton,	Sireci,	Xing,	&	Rizavi,	2003).

Estimation Evaluation Criteria 
Accuracy	of	the	parameter	estimates	under	different	research	conditions	was	evaluated	

through	product-moment	correlations	(Gao	&	Chen,	2005;	Harwell	&	Janosky,	1991;	
Hulin	 et	 al.,	 1982;	 Swaminathan	 et	 al.,	 2003;	Tang	 et	 al.,	 1993;	Yen,	 1987)	 and	 the	
root-mean-squared	difference	(RMSD;	Gao	&	Chen,	2005;	Harwell	&	Janosky,	1991;	
Swaminathan	et	al.,	2003;	Yen,	1987)	between	the	baseline	and	estimated	parameters,	as	
has	been	done	in	similar	studies.	RMSD	is	defined	as	in	Equation	1	below.

RMSD	= 	 (1)
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p�i represents	one	of	 the	estimated	 item	parameters	(a,	b,	or	c)	 for	 item	 i,	and	pi  
represents	the	corresponding	baseline	parameter,	taken	as	the	true	item	parameter	for	
item	i.	Under	all	research	conditions,	correlations	of	r	≥	0.70,	which	is	considered	
acceptable	 (Yoes,	1995)	and	sometimes	as	high	 (Field,	2013),	and	RMSD	≤	0.33,	
which	 corresponds	 to	 the	 classical	 reliability	 value	 of	 0.90	 (Rudner,	 1998),	 were	
taken	as	the	criteria	for	minimum	feasible	sample	size	for	that	particular	test	length	
and	IRT	model.

Model Data Fit
An	item-by-item	fit	analysis	was	not	conducted;	rather,	an	overall	model-data	fit	

analysis	was	used	on	all	data	 sets	because	 it	might	be	possible	 to	have	 items	 that	
fit	one	item	response	model	in	a	data	set	while	failing	to	fit	the	model	in	other	data	
sets.	This	would	make	it	difficult	to	compare	the	same	items’	performances	in	three	
IRT	models	with	nine	sample	sizes	and	three	test	lengths	using	real	test	data	from	a	
limited	number	of	items.	As	the	indicator	of	overall	model-data	fit,	the	model	chi-
square	reported	by	Xcalibre	4.1	(Guyer	&	Thompson,	2011)	was	used.	As	chi-square	
is	 sensitive	 to	 large	 sample	 sizes,	 chi-square	 divided	 by	 the	 degrees	 of	 freedom 
(x2/df)	was	used	as	it	is	not	sensitive	to	large	sample	sizes	(Kline,	2005).	A	summary	
of	the	model-data	fit	analysis	based	on	x2/df	is	shown	in	Table	3.

Table	3	
Summary of the Model Data Fit Analysis Based on x2/df

N

n	=	10 n	=	20 n	=	30
1PLM 2PLM 3PLM 1PLM 2PLM 3PLM 1PLM 2PLM 3PLM
x2/df x2/df x2/df x2/df x2/df x2/df x2/df x2/df x2/df

150 0.4 0.4 0.6 0.5 0.5 0.5 0.5 0.4 0.4
250 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.4
350 0.6 0.8 0.9 0.5 0.4 0.5 0.6 0.4 0.4
500 0.6 1.0 1.4 0.5 0.4 0.4 0.5 0.4 0.4
750 1.2 0.9 1.5 0.7 0.5 0.5 0.8 0.4 0.4
1,000 0.9 0.9 2.1 0.6 0.5 0.6 0.9 0.5 0.5
2,000 2.1 1.7 2.7 0.9 0.7 0.8 1.3 0.5 0.6
3,000 2.7 2.5 4.7 1.0 0.7 0.9 1.9 0.6 0.7
5,000 4.0 3.3 8.0 1.4 1.4 1.3 2.9 0.8 0.8
6,288 5.0 3.9 9.4 1.7 1.6 1.5 3.4 0.9 0.9

Values	of	3	or	less	are	suggested	as	an	indicator	of	model	fit	(Chernyshenko,	Stark,	
Chan,	Drasgow,	&	Williams,	2001).	Table	3	indicates	misfit	of	few	large	data	to	the	
model.	These	were	ignored,	as	they	were	thought	to	result	from	the	very	large	size	of	
these	data	sets.
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Findings
Figures	 1,	 2,	 and	 3	 show	 correlations	 and	 RMSD	 values	 obtained	 from	 the	

parameter	estimates.	As	Figure	1	shows,	correlations	pertaining	to	the	b	parameters	
estimated	in	1PLM	ranged	between	0.939	(N	=	150,	n	=	10)	and	1.00	(N	=	5,000; 
 n =	10,	20,	and	30).	In	addition,	RMSD	values	pertaining	to	the	b	parameter	estimates	
ranged	between	0.33	(N	=	150, n	=	10)	and	0.01	(N	=	5,000;	n	=	10).	As	can	be	seen	
from	the	figures,	a	sample	of	150	met	both	criteria	for	being	deemed	acceptable	in	
1PLM	for	all	test	lengths.

Figure 1.	Correlations	(left)	and	RMSD	(right)	values	obtained	for	the	b	parameter	in	1PLM.

2a. Correlations	for	the	a	parameter	in	2PLM 2b. RMSD	for	the	a	parameter	in	2PLM

2c. Correlations	for	the	b	parameter	in	2PLM 2d. RMSD	for	the	b	parameter	in	2PLM
Figure 2.	Correlations	and	RMSD	values	obtained	for	the	a	and	b	parameters	in	2PLM.
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3a.	Correlations	for	the	a	parameter	in	3PLM 3b.	RMSD	for	the	a	parameter	in	3PLM

3c.	Correlations	for	the	b	parameter	in	3PLM 3d.RMSD	for	the	b	parameter	in	3PLM

3e.	Correlations	for	the	c	parameter	in	3PLM 3f.	RMSD	for	the	c	parameter	in	3PLM
Figure 3.	Correlations	and	RMSD	values	obtained	for	the	a, b,	and	c	parameters	in	3PLM.

The	correlations	pertaining	to	the	a	parameter	(Figure	2a)	in	2PLM	ranged	between	
-0.311	(N	=	250,	n	=	10)	and	1.00	(N	=	5,000;	n	=	20,	30).	The	RMSD	values	(Figure	
2b)	obtained	from	the	a	parameters	in	2PLM	varied	from	0.16	(N	=	150,	n	=	20)	to	
0.00	(N	=	5,000;	n	=	10,	20).	As	for	the	b	parameters,	the	correlations	(Figure	2c)	
ranged	between	0.940	(N	=	150,	n	=	10)	and	1.00	(N	=	2,000,	3,000,	5,000;	n	=	10,	
20,	30)	while	the	RMSD	values	for	the	b	parameter	(Figure	2d)	ranged	between	0.34	
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(N	=	150,	n	=	10)	and	0.02	(N	=	5,000;	n	=	10,	20).	In	line	with	these,	the	minimum	
sample	size	that	met	both	evaluation	criteria	for	both	parameters	(a	and	b)	estimated	
in	2PLM	was	750	(raâ =	0.706,	RMSD	=	0.09;	rbb̂	=	0.999,	RMSD	=	0.05)	for	 the 
10-item	 test,	 500	 (raâ =	0.795,	RMSD	=	0.08;	 rbb̂	 =	0.985,	RMSD	=	0.13)	 for	 the	
20-item	test,	and	250	(raâ =	0.830,	RMSD	=	0.10;	rbb̂	=	0.978,	RMSD	=	0.17)	for	the	
30-item	test	in	2PLM.

The	 correlations	 pertaining	 to	 the	 a	 parameter	 estimates	 in	 3PLM	 (Figure	 3a)	
ranged	between	0.207	(N	=	250,	n	=	10)	and	0.995	(N	=	5,000;	n	=	20,	30),	whereas	
the	RMSD	values	 obtained	 from	 the	a	 parameter	 estimates	 in	 3PLM	 (Figure	 3b)	
ranged	 between	 0.23	 (N	 =	 250,	 n	 =	 10)	 and	 0.02	 (N =	 5,000;	 n	 =	 10,	 20).	 The	
correlations	pertaining	to	the	b	parameter	estimates	(Figure	3c)	ranged	between	0.944	
(N	=	150,	n	=	10)	and	1.00	(N	=	2,000,	3,000,	5,000;	n	=	10,	20,	30)	while	the	RMSD	
values	obtained	from	the	b	parameter	estimates	(Figure	3d)	ranged	between	0.37	(N 
=	150,	n	=	10)	and	0.02	(N	=	5,000;	n	=	10).	As	for	the	c	parameter,	the	correlations 
(Figure	3e)	ranged	between	0.415	(N	=	350,	n	=	10)	and	0.996	(N	=	5,000,	n	=	20)	
whereas	the	RMSD	values	pertaining	to	the	c	parameter	estimates	(Figure	3f)	ranged	
between	0.05	(N	=	150,	n	=	30;	N	=	250,	n	=	10,	30)	and	0.01	(N =	1,000,	2,000,	
3,000,	5,000,	n =	10;	N =	5,000,	n =	20;	N =	3,000,	5,000,	n =	30).	As	a	result,	the	
smallest	sample	sizes	that	met	the	criteria	for	all	parameters	(a,	b,	and	c)	estimated	in	
3PLM	were	750	(raâ =	0.901,	RMSD	=	0.10;	rbb̂ =	0.998,	RMSD	=	0.10;	rcĉ	=	0.992,	
RMSD	=	0.03)	when	n	=	10;	750	(raâ =	0.840,	RMSD	=	0.11;	rbb̂ =	0.995,	RMSD	=	
0.11;	rcĉ	=	0.829,	RMSD	=	0.03)	when	n	=	20;	and	350	(raâ =	0.749,	RMSD	=	0.16;	rbb̂  

=	0.987,	RMSD	=	0.13;	rcĉ	=	0.734,	RMSD	=	0.03)	when	n	=	30.

Discussion
This	study	aimed	to	investigate	the	effects	of	sample	size	and	test	length	on	item-

parameter	estimation	accuracy	in	IRT-based	test	development.	The	results	indicate	an	
association	between	test	length	and	sample	size	that	amplifies	as	the	number	of	items	
in	the	test	and	the	number	of	parameters	in	the	model	increase.	As	mentioned	earlier,	
there	are	two	criteria	set	for	estimation	evaluation.	One	is	that	r	≥	0.70;	the	other	is	that 
RMSD	≤	0.33	between	the	baseline	and	estimated	item	parameters.	A	summary	of	
the	minimum	sample	sizes	that	met	both	of	these	criteria	in	all	IRT	models	can	be	
found	in	Table	4.

Table	4
Summary of the Findings

Test	Length 1PLM 2PLM 3PLM
10 150	 750	 750
20 150	 500	 750	
30 150	 250	 350	
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As	Table	4	illustrates,	the	findings	of	the	present	study	suggest	that	a	sample	of	
as	low	as	150	examinees	could	be	used	in	1PLM	with	tests	of	10,	20,	or	30	items	to	
accurately	estimate	the	b	parameter.	Such	a	result	was	partially	expected	as	there	had	
already	been	some	signs	regarding	the	viability	of	using	150	examinees	for	1PLM	
in	 the	current	 literature.	More	specifically,	 some	authors	have	already	suggested	a	
sample	size	of	around	200	as	appropriate	for	1PLM	(Demars,	2010;	Wright	&	Stone,	
1979)	with	no	specific	reference	to	test	length.	The	present	finding	is	important	as	
it	confirms	these	authors’	findings	with	a	specific	reference	to	test	length.	Moreover,	
some	previous	research	had	similar	findings,	like	N	=	250	(Goldman	&	Raju,	1986)	
or N =	300	(Guyer	&	Thompson,	2011)	with	78	and	50	items,	respectively.	These	
sample	sizes	and	test	lengths	were	the	smallest	sample	sizes	and	shortest	test	lengths	
tested	in	these	studies.	Thus,	the	present	finding,	which	suggests	a	sample	size	of	150	
in	tests	of	10,	20,	or	30	items,	may	constitute	a	viable	update	to	the	current	findings	
in	 the	 literature.	However,	 although	 the	 correlations	 and	RMSD	values	 similar	 to	
smaller	sample	sizes	confirmed	that	the	full	data,	as	well	as	N =	5,000	for	10-,	20-,	
and	30-item	tests	and	N = 3,000	in	30-item	tests,	fit	the	1PLM	as	parameter	invariance	
was	reached	among	the	samples,	the	findings	pertaining	to	1PLM	may	still	be	biased	
(as	x2/df	values	indicated	misfit)	and	need	to	be	interpreted	accordingly.

As	seen	in	Table	4,	the	minimum	sample	size	suggested	for	a	10-item	test	in	2PLM	
was	750.	This	was	an	interesting	finding	for	two	reasons.	First,	a	test	of	10	items	in	
2PLM	was	not	popular	in	previous	studies.	Only	three	studies	tested	10-item	tests	in	
2PLM	 (Baker,	 1998;	Stone,	 1992;	Yen,	 1987).	However,	 they	were	unable	 to	yield	
acceptable	accuracy	with	it.	The	sample	sizes	tested	in	these	studies	were	1,000	(Yen,	
1987);	30,	50,	60,	120,	and	500	(Baker,	1998);	and	250,	500,	and	1,000	(Stone,	1992).	
The	present	finding	differed	from	Yen’s	(1987)	and	Stone’s	(1992)	studies	as	they	did	
not	report	1,000	as	a	viable	sample	size	for	10	items.	On	the	contrary,	in	the	present	
study,	the	item	parameters	of	10	items	with	1,000	examinee	responses	were	estimated	
with	high	accuracy	(raâ =	0.864,	RMSD	=	0.03;	rbb̂  =	0.964,	RMSD	=	0.14).	Second,	
as	 stated	earlier,	 a	 sample	size	of	750	was	not	a	popular	alternative	 to	1,000	 in	 the	
previous	research.	Only	one	study	(Lim	&	Drasgow,	1990)	tested	the	performance	of	
750	with	20	items	and	reported	that	the	a	and	b	parameter	estimates	were	close	to	their	
true	values.	This	is	clearly	in	parallel	with	the	present	finding	with	a	shorter	test	length.

The	 present	 findings	 indicate	 that	 accurate	 estimates	 of	 item	 parameters	 can	 be	
obtained	when	N	=	500	and	n	=	20	in	2PLM.	There	have	been	studies	that	suggested	
a	 sample	 of	 500	 in	 2PLM	with	 30-	 (Hulin	 et	 al.,	 1982)	 and	 78-item	 (Goldman	&	
Raju,	1986)	tests.	However,	it	should	be	noted	that	Hulin	et	al.	(1982)	only	tested	15-,	
30-,	and	60-item	tests	and	used	joint	maximum	likelihood	estimation	(JMLE)	as	the	
parameter	estimation	method.	This	could	accordingly	cause	 less	accurate	estimation	
of	item	parameters	in	smaller	sample	sizes	and	shorter	test	lengths	as	JMLE	is	more	
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efficient	with	sample	sizes	of	over	1,000	and	tests	with	more	than	60	items	(Baker	&	
Kim,	2004).	Moreover,	it	should	also	be	noted	that	78	was	the	only	test	length	tested	
by	Goldman	and	Raju	(1986).	For	these	reasons,	the	comparability	of	these	two	studies	
with	the	present	study	is	poor.	However,	it	is	encouraging	to	compare	the	present	finding	
with	that	of	Stone’s	(1992),	who	reported	an	RMSD	value	of	approximately	0.30	when	
N	=	500	and	n	=	20,	indicating	a	parallel	finding	with	the	present	study.

The	results	of	the	present	study	also	suggest	that	using	a	sample	of	250	with	30	
items	in	2PLM	is	viable.	This	is	consistent	with	the	findings	of	Harwell	and	Janosky	
(1991),	who	obtained	accurate	a	and	b	parameter	estimates	with	a	25-item	test	when	
N	=	250.	Apart	from	this,	Hulin	et	al.	(1982)	suggested	a	sample	size	of	500	with	30	
items	in	2PLM.	As	mentioned	earlier,	due	to	the	estimation	method	(JMLE)	they	had	
employed	to	estimate	 item	parameters,	 it	would	not	be	wrong	to	assume	that	 they	
could	have	obtained	a	smaller	sample	size	with	30	items	if	they	had	used	the	MMLE	
estimation	method	used	in	the	present	study.	Moreover,	Guyer	and	Thompson	(2011) 
obtained	accurate	a	and	b	parameters	in	2PLM	when	N	=	300	and	n	=	50.	One	should	
note	that	n	=	50	was	the	shortest	test	length	and	N	=	300	was	the	smallest	sample	size	
they	tested,	which	means	the	present	study	obtained	similar	results	testing	a	smaller	
sample	size	and	shorter	test	length.

As	shown	in	Table	4,	acceptable	accuracy	is	reached	when	N	=	750	and	n	=	10	in	
3PLM.	Although	tests	with	10	items	had	been	previously	tested	in	two	studies	(Gao	
&	Chen,	2005;	Yen,	1987)	in	3PLM,	there	was	no	suggestion	for	this	test	length	in	
the	current	literature	for	3PLM	as	previous	research	did	not	yield	accurate	parameter	
estimates.	To	begin	with,	when	Gao	and	Chen’s	(2005)	study	was	analyzed	in	terms	
of	test	length	and	sample	size	(N	=	100,	500,	2,000;	n	=	10,	30,	60),	one	can	see	that	
the	closest	sample	size	to	750	was	500.	They	could	not	yield	accurate	estimates	of	the	
a	parameter	with	a	sample	of	500.	The	present	study	confirmed	that	500	examinees	
with	10	items	in	3PLM	yields	very	poor	estimates	for	the	a	parameter	(raâ	=	0.345,	
RMSD	=	0.19).	Gao	and	Chen	(2005)	did	not	test	750	or	even	1,000	in	their	study	as	
an	alternative	to	2,000.	However,	750	was	tested	in	the	present	study,	and	accurate	
estimates	of	the	a	parameter	have	been	obtained.	Secondly,	Yen	(1987)	obtained	poor	
accuracy	with	a	sample	of	1,000	and	10	items	in	3PLM.	On	the	contrary,	the	present	
findings	indicated	that	when	N	=	750	and	n	=	10	(raâ =	0.901,	RMSD	=	0.10;	rbb̂  = 
1.00,	RMSD	=	0.10;	rcĉ 	=	0.922,	RMSD	=	0.03),	the	item	parameters	were	estimated	
as	accurately	as	they	were	when	N	=	1,000	(raâ =	0.929,	RMSD	=	0.06;	rbb̂ 	=	0.999,	
RMSD	=	0.14;	rcĉ 	=	0.938,	RMSD	=	0.01)	with	the	same	test	length.

When	the	test	length	increased	from	10	to	20	items	in	3PLM,	the	sample	size	with	
which	acceptable	accuracy	was	reached	was	also	750.	Patsula	and	Gessaroli	(1995) 
and	Yen	(1987)	had	previously	studied	the	20-item	test	condition	and	both	suggested	
samples	of	1,000	with	20	items.	Yen	(1987)	studied	only	the	sample	of	1,000	and	
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Patsula	and	Gessaroli	(1995)	did	not	have	N =	750	in	their	research	design.	They	only	
had	samples	of	1,000	and	500	as	the	closest	alternatives	to	750.	They	found	that	500	
did	not	yield	accurate	enough	estimates,	which	was	also	the	case	in	the	present	study	
under	the	same	research	condition	(raâ =	0.614,	RMSD	=	0.15;	rbb̂ 	=	0.972,	RMSD	
=	0.19;	rcĉ 	=	0.820,	RMSD	=	0.03).	As	such,	 it	should	not	be	surprising	that	 they	
suggested	1,000	as	the	minimum	sample	size	for	they	did	not	have	the	opportunity	to	
test	750	as	an	alternative.	The	present	findings	also	indicate	that	750	is	a	highly	viable	
alternative	to	1,000	as	item-parameter	estimates	in	N	=	750	(raâ =	0.840,	RMSD	=	
0.11;	rbb̂ =	0.995,	RMSD	=	0.11;	rcĉ 	=	0.829,	RMSD	=	0.03)	are	as	accurate	as	when	
N	=	1,000	(raâ =	0.874,	RMSD	=	0.09;	rbb̂ 	=	0.989,	RMSD	=	0.12;	rcĉ 	=	0.915,	RMSD	
=	0.03)	and	n	=	20	in	3PLM.

As	 seen	 in	 Table	 4,	 the	 sample	 size	 suggested	 for	 estimating	 item	 parameters	
accurately	 in	 3PLM	with	 30	 items	was	 350.	 Previously,	 two	 studies	 had	 tested	 a	
sample	of	500	in	3PLM	with	30	items	(Akour	&	Al-Omari,	2013;	Gao	&	Chen,	2005).	
When	these	studies	were	further	analyzed,	it	can	be	seen	that	the	sample	sizes	of	100	
and	200	were	also	tested	in	these	studies	respectively.	Thus,	N	=	350	naturally	isn’t	
found	in	the	current	literature	as	it	was	never	tested	against	500.	Many	researchers	
(Goldman	&	Raju,	1986;	Harwell	&	Janosky,	1991;	Patsula	&	Gessaroli,	1995;	Ree	
&	Jensen,	1980;	Yoes,	1995)	instead	preferred	the	sample	size	of	250	as	a	smaller	
alternative	to	500.	That	the	present	finding	suggests	the	use	of	a	sample	size	of	350	as	
viable	with	30-item	tests	in	3PLM	thus	should	not	be	intriguing.

As	one	can	infer	from	the	discussion	in	the	previous	paragraphs,	the	findings	of	
the	present	study	not	only	support	the	findings	of	previous	research	in	the	field,	but	
also	further	its	findings	by	providing	researchers	with	more	data	in	terms	of	viable	
sample	sizes	for	IRT-based	test	development.	More	importantly,	Table	4	provides	IRT	
practitioners	with	a	detailed	blueprint	on	what	sample	size	to	use	with	which	model	
and	test	length.	In	addition,	the	findings	presented	in	Table	4	suggest	a	tremendous	
decrease	in	the	minimum	sample	size	required	for	IRT-based	test	development.	This	
means	 that	 IRT	 practitioners	 will	 need	 to	 reach	 fewer	 examinees	 to	 pretest	 their	
items,	and	this	will	make	the	data	collection	process	easier	and	more	budget-friendly.	
From	this	point	of	view,	the	findings	of	this	study	will	not	only	be	beneficial	for	IRT	
practitioners	who	can	only	reach	a	limited	number	of	examinees,	but	it	will	also	help	
to	decrease	the	data	collection,	item	analysis,	test	production,	and	personnel	costs	for	
companies	and	institutions	that	need	to	recruit	more	staff	to	meet	the	requirements	of	
IRT-based	test	development.	

In	 order	 to	 develop	 similar	 tests	 with	 similar	 qualities,	 the	 key	 reliability	 and	
validity	aspects	taken	under	control	in	this	study	may	need	to	be	followed.	First	of	
all,	 the	KR-20,	which	 is	a	variant	of	 the	alpha	 internal	consistency	coefficient	 for	
binary	items,	was	high	for	the	tests	that	were	drawn	from	the	full	test	in	the	present	
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study.	Moreover,	 the	sub-tests	formed	in	the	study	were	highly	unidimensional.	In	
subsequent	studies,	tests	with	high	internal	consistency	and	high	unidimensionality	
may	be	needed	in	order	to	obtain	similar	results.	As	part	of	content	validity	concerns,	
the	items	in	the	developed	test	were	written	by	subject	matter	experts	in	accordance	
with	 course	 curriculum,	 and	multiple	 expert	 opinions	were	 taken.	Afterwards,	 the	
test	was	administered	as	a	real	test	to	real	examinees.	A	similar	approach	may	also	be	
necessary	in	order	to	obtain	similar	results.	

Present	 findings	 should	 not	 be	 deemed	 as	 definitive.	However,	 they	 should	 be	
deemed	as	a	call	for	further	research	on	minimum	sample	size	necessary	to	estimate	
item	parameters	accurately.	One	should	note	that	the	present	findings	may	only	be	
limited	 to	 language-test	 development	 and	 short	 test	 lengths	 up	 to	 30	 items	 with	
qualities	similar	to	those	used	in	the	present	study.	Moreover,	the	parameter	estimates	
were	obtained	using	MMLE,	so	the	present	findings	may	be	limited	to	item	parameter	
estimation	with	MMLE.

This	study	has	thrown	up	some	questions	in	need	of	further	investigation.	A	natural	
progression	of	this	work	would	be	to	conduct	studies	on	the	following	topics	by	using	
real	and	simulated	test	data.	A	language	test	data	was	used	in	this	study.	Replicating	
this	 study	with	data	 from	 tests	other	 than	 language	 tests	would	be	of	value	 to	 the	
practitioners	 in	 the	 field.	 It	 would	 also	 be	 a	 valuable	 contribution	 to	 the	 field	 to	
investigate	feasibility	of	using	small	sample	sizes	in	item-parameter	estimation	for	
tests	with	more	than	30	items.
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