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ABSTRACT:	New	high-frequency	multimodal	data	 collection	 technologies	and	machine	 learning	
analysis	 techniques	 could	 offer	 new	 insights	 into	 learning,	 especially	 when	 students	 have	 the	
opportunity	to	generate	unique,	personalized	artifacts,	such	as	computer	programs,	robots,	and	
solutions	engineering	challenges.	To	date	most	of	the	work	on	learning	analytics	and	educational	
data	mining	has	been	 focused	on	online	courses	and	cognitive	 tutors,	both	of	which	provide	a	
high	degree	of	structure	to	the	tasks,	and	are	restricted	to	 interactions	that	occur	 in	 front	of	a	
computer	 screen.	 In	 this	 paper,	 we	 argue	 that	 multimodal	 learning	 analytics	 can	 offer	 new	
insights	 into	 student	 learning	 trajectories	 in	 more	 complex	 and	 open-ended	 learning	
environments.	We	present	several	examples	of	this	work	and	its	educational	applications.	
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1 INTRODUCTION 

The	same	battle	is	fought	in	every	field	of	educational	research	and	practice:	the	champions	of	the	direct	
instruction	of	well-defined	content	pitted	against	those	who	encourage	student-centred	exploration	of	
ill-defined	domains.	These	wars	have	taken	place	repeatedly	over	past	decades,	and	partisans	on	each	
side	have	been	reborn	in	multiple	incarnations.	The	first	tradition	tends	to	be	aligned	with	behaviourist	
or	 neo-behaviourist	 approaches,	 while	 the	 second	 favours	 constructivist-inspired	 pedagogies.	 In	
language	 arts,	 the	 battle	 has	 been	 between	 phonics	 and	 the	 whole	 word	 approach.	 In	 math,	 war	 is	
wagged	between	teaching	algorithms	versus	instruction	in	how	to	think	mathematically.	In	history,	they	
clash	 over	 the	 relative	 merits	 of	 critical	 interpretations	 and	 the	 memorization	 of	 historical	 facts.	 In	
science,	they	clash	about	inquiry-based	approaches	versus	direct	instruction	of	formulas	and	principles.	
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The	educational	research	community	has	always	maintained	that	the	debate	would	end	when	research	
results	 inevitably	 demonstrated	 the	 superiority	 of	 one	 of	 the	 sides.	 Yet	 this	 conclusion	 has	 eluded	
scholarship	for	decades.	One	of	the	reasons	for	this	interminable	contest	is	that	the	underlying	rationale	
for	 the	differences	concerns	 individual	values	and	societal	beliefs	and	will	not	be	resolved	by	a	purely	
scientific	approach.	In	fact,	the	whole	debate	may	serve	the	educational	research	community	in	quite	a	
different	capacity.	More	specifically	 the	debates	may	reveal	 the	underlying	visions	 for	what	education	
should	be	about,	for	different	groups,	and	we	might	more	profitably	re-examine	the	nature	and	purpose	
of	 our	 schools.	 More	 fundamentally,	 is	 education	 a	 tool	 for	 filtering,	 ranking,	 emancipation,	 social	
equalization,	economic	progress,	meritocracy,	or	for	the	promotion	of	social	Darwinism?	

Educational	scholars	would	greatly	differ	in	their	answers	—	rendering	the	question	of	“which	approach	
is	better,”	and	“what	evidence	suffices,”	pointless.	As	with	the	debates	on	public	healthcare	and	fiscal	
policy,	despite	our	best	efforts	to	generate	reliable	research,	the	“best”	way	to	conduct	education	will	
always	 be	 controversial	 and	 dependent	 on	 larger	 societal	 and	 political	 winds.	 But	 the	 fundamental	
problem,	and	the	motivation	for	this	article,	is	that	the	prevailing	issue	is	not	who	“wins”	the	debate,	but	
rather	the	existence	of	a	healthy	debate.	Fostering	a	healthy	debate	requires	some	level	of	symmetry.	
However,	 as	 it	 stands,	 the	 playing	 field	 is	 not	 symmetrical.	 The	 “direct	 instruction”	 approach	 is	
inherently	 easier	 to	 test	 and	 quantify	 using	 currently	 available	 tools	 that	 include	mass-production	 of	
content	 and	 decades	 of	 research	 concerning	 psychometrics	 and	 standardized	 testing	 strategies.	
Meanwhile,	 the	 constructivist	 side	 counts	 on	 laborious	 interventions,	 and	 complex	 mixed-mode	
research	methods.	The	result	of	this	asymmetry	is	that	public	systems,	more	dependent	on	high-profile	
research	results,	are	 left,	by	 inertia,	 to	 the	designs	of	 the	proponents	of	 traditional	approaches,	while	
only	 affluent	 schools,	 private	 or	 public,	who	 can	 experiment	more,	 can	 afford	 to	 implement	modern,	
constructivist	approaches	to	learning.	

Learning	analytics	could	deepen	this	asymmetry,	or	help	eliminate	it.	The	elimination	of	the	asymmetry	
could	re-establish	a	healthy	public	debate	around	education,	where	both	sides	would	have	comparable	
and	credible	 results	 to	show,	and	policy	makers	would	be	able	 to	make	choices	based	on	 their	values	
and	visions	for	education.	However,	the	deepening	of	this	asymmetry	could	be	a	significant	impediment	
to	progressive	education	and	the	vision	of	creating	alternative	 learning	environments	that	can	reach	a	
more	diverse	population	of	 learners.	 Should	public	education	succumb	to	 the	 temptation	of	 the	 fiscal	
benefits	supposedly	offered	by	total	automatization	and	its	much	lower	baseline	for	cost	and	quality,	all	
other	 options	would	 be	 driven	 into	 the	 ground	 as	 economically	 unfeasible:	who	 could	 compete	with	
virtually	 free	computerized	tutors	and	videos?	How	many	years	would	the	debate	take,	while	children	
caught	in	the	“experimental”	years	are	being	victimized?	

Consequently,	we	propose	that	an	important	goal	of	learning	analytics	is	to	equalize	the	playing	field	by	
developing	methods	 that	 examine	 and	 quantify	 non-standardized	 forms	 of	 learning.	We	 suggest	 that	
this	need	for	a	level	playing	field	is	more	necessary	than	ever,	given	the	increasing	demand	for	scalable	
project-based,	interest-driven	learning	and	student-centred	pedagogies	(e.g.,	Papert,	1980).	Within	our	
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increasingly	 interconnected	 societal	 and	 economic	 environment	 —	 which	 has	 become	 pervaded	 by	
technology	 and	 threatened	 by	 challenging	 global	 problems	 such	 as	 climate	 change	—	both	 K–12	 and	
university-level	 engineering	 education	 (Dym,	 1999)	 demand	 higher-level,	 complex	 problem-solving	 as	
opposed	 to	 performance	 in	 routine	 cognitive	 tasks	 (Levy	 &	 Murnane,	 2004).	 Approaches	 that	 place	
premiums	 on	 student-centred,	 constructivist,	 self-motivated,	 self-directed	 learning	 have	 been	
advocated	for	decades	(e.g.,	Dewey,	1902;	Freire,	1970;	Montessori,	1965;	Barron	&	Darling-Hammond,	
2010)	but	have	 failed	 to	become	 scalable	 and	prevalent,	 and	have	 come	under	 attack	during	 the	 last	
decade	(e.g.,	Kirschner,	Sweller,	&	Clark,	2006;	Klahr	&	Nigam,	2004).	

New	 high-frequency	 data	 collection	 technologies	 and	machine	 learning	 could	 offer	 new	 insights	 into	
learning	 in	 tasks	 in	 which	 students	 are	 allowed	 to	 generate	 unique,	 personalized	 artifacts,	 such	 as	
computer	programs,	robots,	movies,	animations,	and	solutions	to	engineering	challenges.	To	date	most	
of	the	work	on	learning	analytics	and	educational	data	mining	has	focused	on	tasks	that	are	computer-
mediated	and	are	more	structured	and	scripted.	In	this	work,	we	argue	that	multimodal	data	collection	
and	 analysis	 techniques	 (“multimodal	 learning	 analytics”	 or	 MMLA)	 could	 yield	 novel	 methods	 that	
generate	 distinctive	 insights	 into	 what	 happens	 when	 students	 create	 unique	 solution	 paths	 to	
problems,	interact	with	peers,	and	act	in	both	the	physical	and	digital	worlds.	

Assessment	 and	 feedback	 is	 particularly	 difficult	 within	 these	 open-ended	 environments,	 and	 these	
limitations	have	hampered	many	attempts	to	make	such	approaches	more	prevalent.	Automated,	fine-
grained	data	 collection	and	analysis	 could	help	 resolve	 this	 tension	 in	 two	ways.	 First,	 such	capacities	
would	 give	 researchers	 tools	 to	 examine	 student-centred	 learning	 in	 unprecedented	 scale	 and	 detail.	
Second,	 these	 techniques	 could	 improve	 the	 scalability	 of	 these	 pedagogies	 since	 they	make	 feasible	
both	 assessment	 and	 formative	 feedback,	 which	 are	 typically	 very	 complex	 and	 laborious	 in	 such	
environments.	They	might	not	only	reveal	students’	 trajectories	throughout	specific	 learning	activities,	
but	 they	 could	 also	 help	 researchers	 design	 better	 supports,	 pedagogical	 approaches,	 and	 learning	
materials.	

At	 the	 same	 time,	 in	 the	 well-established	 field	 of	multimodal	 interaction,	 new	 data	 collection	 and	
sensing	 technologies	are	making	 it	possible	 to	capture	massive	amounts	of	data	 in	all	 fields	of	human	
activity.	 These	 technologies	 include	 the	 logging	 of	 computer	 activities,	 wearable	 cameras,	 wearable	
sensors,	 biosensors	 (e.g.,	 that	 permit	 measurements	 of	 skin	 conductivity,	 heartbeat,	 and	
electroencephalography),	 gesture	 sensing,	 infrared	 imaging,	 and	eye	 tracking.	 Such	 techniques	enable	
researchers	 to	 have	 unprecedented	 insight	 into	 the	 minute-by-minute	 development	 of	 a	 number	 of	
activities,	especially	those	involving	multiple	dimensions	of	activity	and	social	interaction.	However,	the	
technologies	just	mentioned	have	not	yet	become	popular	in	the	field	of	learning	analytics.	We	propose	
that	 multimodal	 learning	 analytics	 could	 bring	 together	 these	 multiple	 techniques	 in	 more	
comprehensive	 evaluations	 of	 complex	 cognitive	 abilities,	 especially	 in	 environments	 where	 the	
processes	or	outcomes	are	unscripted.	Thus,	the	goal	of	this	paper	is	to	demonstrate	the	feasibility	and	
power	of	novel	assessment	techniques	in	several	modalities	and	learning	contexts.	



	

(2016).	Multimodal	learning	analytics	and	education	data	mining:	Using	computational	technologies	to	measure	complex	learning	tasks.	Journal	
of	Learning	Analytics,	3(2),	220–238.	http://dx.doi.org/10.18608/jla.2016.32.11	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	

	

223	

2 STATE OF THE FIELD 

In	considering	the	current	sensing	and	assessment	modalities	possible	using	MMLA,	we	see	three	non-
mutually	 exclusive	 areas:	 assessing	 student	 knowledge,	 assessing	 student	 affect	 and	 physiology,	 and	
assessing	student	intentions	or	beliefs.	At	the	crux	of	all	these	forms	of	student	characterization	is	the	
underlying	 invocation	of	data	analysis	 to	generate	useful	models	 from	 large	 sets	of	quantitative	data.	
Hence,	what	varies	in	the	different	forms	of	student	assessment	is	the	source	of	the	raw	data	and	how	
that	 data	 is	 translated	 into	 computable	 data.	 Once	 the	 translation	 has	 been	 completed,	 the	 data	 is	
processed	 using	 a	 collection	 of	 machine	 learning	 algorithms.	 In	 what	 follows,	 we	 present	 several	
methods	 being	 used	 to	 capture	 and	 process	 student	 data.	 There	 are	 several	 techniques	—	web	 data	
mining,	user	data	mining,	simple	web-based	surveys,	etc.	—	but	the	following	technologies	have	been	
selected	for	inclusion	because	they	live	on	the	cutting-edge	of	technology	and	help	promote	the	notion	
of	 “natural”	 assessment	 (Zaïane,	 2001).	 Furthermore,	 while	 each	 of	 these	 technologies	 represents	 a	
research	contribution	in	and	of	itself,	our	interest	in	including	them	is	to	bring	to	the	forefront	a	wider	
variety	 of	 non-traditional	 approaches	 that	 education	 researchers	 and	 educational	 data	 scientists	 can	
begin	to	combine	in	their	learning	analytics	research.	For	the	first	three	techniques	we	mention	—	text	
analysis,	 speech	 analysis,	 and	 handwriting	 analysis	 —	 our	 discussion	 will	 be	 very	 cursory,	 as	 these	
represent	 areas	 of	 research	 that	 have	 received	 considerable	 attention	 with	 the	 computer	 science	
community,	and	have	started	to	get	traction	within	the	learning	analytics	community.	Nonetheless,	we	
want	to	make	the	reader	aware	of	some	of	the	current	capabilities	and	research	in	these	areas.	For	the	
latter	analyses	that	we	discuss,	we	will	engage	in	a	more	detailed	and	descriptive	explanation	of	each,	as	
these	domains	remain	relatively	new,	even	among	the	computer	science	community.	

2.1 Text Analysis 

While	 text	 analysis,	 or	 natural	 language	 processing,	 has	 been	 around	 for	 decades	 it	 is	 only	 in	 recent	
history	 that	 education	 has	 begun	 to	 benefit	 from	 this	 technology,	 and	 researchers	 have	 targeted	
learners’	 text	 explicitly.	Despite	 the	 fact	 that	 text	 itself	 is	 not	multimodal,	 text	 analysis	 allows	 for	 the	
interpretation	of	open-ended	writing	tasks,	differently	from	multiple-choice	tests.	Given	that	collecting	
text	 from	 students	 is	 unproblematic	 both	 technically	 and	 logistically,	 it	 constitutes	 one	 of	 the	 most	
promising	modalities	for	MMLA:	text	can	be	easily	gathered	from	face-to-face	and	online	activities,	from	
tests	 and	exams,	 and	 from	expert-generated	prose	 from	 textbooks	 and	online	 sources	 (often	used	as	
baseline).	 For	 example,	 Sherin	 (2013)	 has	 been	 doing	 pioneering	 work	 in	 the	 analysis	 of	 text	 in	 the	
learning	 sciences	 community.	 He	 uses	 techniques	 from	 topic	 modelling	 and	 clustering	 to	 study	 the	
progression	of	students’	 ideas	and	 intuitions	as	 they	describe	 the	explanation	 for	 the	existence	of	 the	
four	seasons	(Sherin,	2013).	More	specifically,	he	shows	that,	as	students	explain	the	seasons,	invoking	
different	types	of	scientific	explanations,	it	is	possible	to	identify	which	type	of	explanation	each	student	
is	 referring	 to	 at	 different	 points	 in	 time.	 He	 also	 goes	 beyond	 this	 to	 show	 how	 students	 can	 be	
accurately	 clustered	 without	 using	 a	 pre-defined	 set	 of	 exemplar	 responses,	 but	 instead	 by	 using	
automatically	 derived	 topics	 models	 from	 the	 corpus	 itself.	 This	 approach	 of	 clustering	 segments	 of	
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students’	text	based	on	the	descriptions	of	their	peers	is	a	powerful	tool	that	can	allow	researchers	and	
practitioners	 to	draw	meaningful	commonalities	and	differences	among	 large	populations	of	students,	
without	having	to	explicitly	read	and	compare	the	entirety	of	each	transcript.	Given	the	prevalence	of	
text-based	assessment	and	the	 intensive	use	of	text	 in	face-to-face	and	online	 learning,	this	promising	
method	 will	 likely	 accelerate	 discourse-based	 research,	 and	 open	 new	 possibilities	 for	 large-scale	
analysis	of	open-ended	text	corpora.	

2.2 Speech Analysis 

Speech	analysis	shares	many	of	same	goals	and	tools	as	text	analysis.	Speech	analysis,	however,	further	
removes	the	student	from	the	traditional	assessment	setting	by	allowing	them	to	demonstrate	fluency	
in	 a	more	 natural	 setting.	 For	 example,	Worsley	&	 Blikstein	 (2011)	 studied	 how	 elements	 of	 student	
speech,	 as	 inferred	 by	 linguistic,	 textual,	 and	 prosodic	 features,	 can	 be	 predictive	 for	 identifying	
students’	level	of	expertise	on	open-ended	engineering	design	tasks.	In	addition	to	traditional	linguistic	
and	 prosodic	 features,	 speech	 signals	 can	 be	 analyzed	 for	 a	 wealth	 of	 other	 characteristics.	 Various	
research	 tools	 have	 been	 developed	 to	 help	 researchers	 in	 the	 process	 of	 extracting	 these	 features,	
however,	several	challenges	remain	in	knowing	how	to	analyze	student	learning	appropriately	using	said	
features.	

Other	 researchers	 have	 moved	 away	 from	 raw	 analysis	 of	 the	 speech	 signal	 to	 leverage	 speech	
recognition	capabilities.	 In	particular,	Beck	and	Sison	 (2006)	demonstrated	a	method	 for	using	speech	
recognition	to	assess	reading	proficiency.	As	an	extension	of	Project	LISTEN	—	an	intelligent	tutor	that	
helps	 elementary	 school	 students	 improve	 their	 reading	 skills	—	 researchers	 completed	 a	 study	 that	
combines	 speech	 recognition	with	 knowledge	 tracing,	 a	 form	of	 probabilistic	monitoring.	 By	 having	 a	
language	model	that	was	largely	restricted	to	the	content	of	each	book	being	learned,	the	work	required	
for	doing	automatic	speech	recognition,	and	subsequent	accuracy	classification,	was	greatly	simplified.	
Outside	of	 the	 education	domain	 there	have	been	decades	of	work	 in	 developing	 speech	 recognizers	
and	 dialogue	 managers.	 However,	 to	 date,	 such	 technologies	 are	 still	 not	 widely	 used	 in	 education	
because	 of	 the	 challenges	 associated	 with	 building	 a	 satisfactory	 language	 model	 that	 can	 reliably	
recognize	speech.	Munteanu,	Peng,	and	Zhu	(2009)	have	made	some	progress	 in	this	area	by	showing	
how	to	 improve	speech	 recognition	of	 lectures	 in	college-level	STEM	class.	A	primary	consideration	 in	
the	 area	 of	 speech	 recognition,	 therefore,	 will	 be	 to	 identify	 the	 most	 effective	 ways	 to	 use	 this	
technology	in	real-world	educational	settings.	Although	using	it	to	transcribe	lectures	might	be	feasible,	
the	 challenge	 of	 collecting	 and	 interpreting	 student	 data	 seems	 extremely	 difficult.	 Differently	 from	
other	 applications	 of	 speech	 recognition	 (smartphones,	 personal	 assistants,	 dictation),	 educational	
applications	 need	 to	 address	 simultaneously	 classroom	 noise,	 multiple	 overlapping	 speakers,	 and	
logistical	difficulties	in	voice	training	—	very	ambitious	challenges	that	have	not	been	solved	yet.	
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2.3 Handwriting Analysis 

A	 different	 form	 of	 text	 analysis	 is	 handwriting	 analysis,	 which	 is	 important	 in	 educational	 settings	
because	 a	 considerable	 part	 of	 the	 work	 done	 by	 students	 is	 still	 handwritten.	 Anthony,	 Yang,	 and	
Koedinger	(2007)	highlight	the	affordances	of	combining	handwriting	recognition	with	intelligent	tutors	
for	 algebra.	 Based	on	 their	 study	 of	 high	 school	 and	middle	 school	 students,	 introducing	 handwriting	
recognition	halved	the	time	students	needed	to	complete	tutoring	activities	because	students	no	longer	
had	 to	deal	with	cumbersome	keyboard	and	mouse-based	entry.	This	 is	 significant	because	 it	enables	
students	 to	 focus	 on	 understanding	 the	 material	 using	 familiar	 forms	 of	 interaction	 as	 opposed	 to	
struggling	 to	 learn	 a	 new	 interface.	 Accordingly,	 handwriting	 recognition	 can	 facilitate	more	 effective	
learning	 by	 eliminating	 the	 barriers	 to	 using	 certain	 computer-based	 interfaces.	 It	 also	 permits	 the	
student	 to	 learn	 in	 such	 a	 way	 that	 more	 closely	 parallels	 the	 usual	 mathematics	 environment	 (i.e.,	
utilizing	a	writing	tool	as	opposed	to	a	keyboard),	which	may	increase	transfer.	

Researchers	 also	 studied	 the	 use	 of	 handwriting	 recognition	 technology	 among	 school-aged	 children	
(Read,	 2007),	 examining	 the	 length	 and	 quality	 of	 stories	 produced	 by	 students	 using	 different	 input	
methods.	A	primary	finding	of	this	work	was	that	students	were	more	willing	to	engage	 in	the	writing	
process	when	using	digital	ink	than	when	using	traditional	keyboard	input.	However,	the	team	still	found	
that	 handwriting	 recognition	 technology	 was	 not	 yet	 comparable	 to	 traditional	 paper	 and	 pencil.	
Similarly	 to	Anthony	 et	 al.	 (2007),	 Read	 (2007)	 emphasizes	 the	 affordances	 of	 handwriting	 as	 a	more	
natural	form	of	authorship	that	may	help	students	better	engage	in	learning.	

More	 recent	 work	 extends	 handwriting	 recognition	 to	 mid-air	 “writing”	 that	 achieves	 high	 levels	 of	
accuracy	by	utilizing	a	combination	of	computer	vision,	multiple	cameras,	and	machine	learning	(Schick,	
Morlock,	 Amma,	 Schultz,	 &	 Stiefelhagen,	 2012).	 This	 approach	 highlights	 some	 of	 the	 more	 recent	
opportunities	 in	 handwriting	 recognition	 in	 novel	 learning	 environments	 and	 contributes	 to	 the	
discussion	around	the	expansive	possibilities	available	away	from	traditional	keyboards	and	screens.	

2.4 Sketch Analysis 

Whereas	 handwriting	 analysis	 is	 primarily	 concerned	with	 looking	 for	words,	 others	 researchers	 have	
embarked	on	work	that	looks	at	both	text-based	and	graphic-based	representations.	Fundamental	work	
on	 object	 recognition	 and	 sketches	 is	 that	 of	 Alvarado,	 Oltmans,	 and	 Davis	 (2002)	 and	 Alvarado	 and	
Davis	 (2006).	 These	 researchers	 developed	 a	 framework	 for	 performing	 multi-domain	 recognition	 of	
sketches	 using	 Bayesian	 networks	 and	 a	 predetermined	 set	 of	 shapes	 and	 patterns	 for	 each	 domain.	
With	the	predefined	shapes	and	patterns,	their	algorithm	is	able	to	decipher	messy	sketches	from	the	
domains	of	interest.	

Ken	 Forbus	 and	 colleagues	 also	 describe	 seminal	 work	 in	 the	 development	 of	 both	 systems	 and	
techniques	 for	 analyzing	 and	 comparing	 sketches	 among	 learners.	 For	 example,	 Jee,	Gentner,	 Forbus,	
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Sageman,	&	Uttal	(2009)	explain	the	design	and	implementation	of	CogSketch,	a	tool	used	to	study	how	
students	 of	 different	 levels	 of	 experience	 describe	 common	 scientific	 concepts	 in	 geology	 through	
sketches	(Forbus,	Usher,	Lovett,	Lockwood,	&	Wetzel,	2011).	CogSketch	pays	particular	attention	to	both	
the	content	and	the	process	of	the	sketches	being	developed.	Chang	and	Forbus	(2012)	extend	this	work	
on	 qualitative	 sketching	 to	 include	 quantitative	 analysis	 of	 sketching,	 which	 allows	 them	 to	 garner	 a	
more	accurate	representation	and	understanding	of	the	sketches.	

Sketching	is	particularly	 important	given	the	current	focus	on	conceptual	 learning	in	STEM.	One	of	the	
most	 popular	 forms	 of	 eliciting	 student	 knowledge	 in	 science	 has	 been	 the	 creation	 of	 diagrams	 and	
concept	maps.	From	this	prior	work,	it	is	apparent	that	a	number	of	research	groups	have	demonstrated	
the	ability	to	do	meaningful	analyses	of	sketches	in	order	to	study	cognition	and	learning.	

2.5 Action and Gesture Analysis 

Action	recognition	has	recently	received	considerable	attention	within	the	computer	vision	community.	
For	example,	work	by	Weinland,	Ronfard,	&	Boyer	 (2006)	and	Yilmaz	and	Shah	 (2005),	among	others,	
has	demonstrated	the	ability	to	detect	basic	human	actions	related	to	movement.	The	work	of	Weinland	
et	 al.	 (2006)	 involved	developing	a	 technique	 that	 could	 capture	user	 actions	 independent	of	 gender,	
body	size,	and	viewpoint.	The	work	of	Yilmaz	and	Shah	(2005)	involved	human	action	recognition	using	
uncalibrated	moving	cameras,	which	might	prove	useful	 for	 the	dynamic	nature	of	 classrooms	and/or	
laboratories.	

This	kind	of	work	is	currently	being	applied	to	classroom	settings	as	well.	Raca,	Tormey,	and	Dillenbourg	
(2014),	for	instance,	are	pioneering	ways	of	capturing	student	engagement	and	attention	by	conducting	
frame-by-frame	analyses	of	videos	taken	from	the	teacher’s	position.	They	show	that	students’	motion	
and	level	of	attention	can	be	estimated	using	computer	vision,	and	that	individuals	with	lower	levels	of	
attention	are	slower	to	react	than	focused	students.	This	line	of	work	opens	the	door	for	new	kinds	of	
feedback	 loops	 for	 teachers,	 by	 providing	 not	 only	 real-time	 information	 about	 students	 but	 also	
aggregate	measures	of	their	levels	of	attention	over	time.	

Other	work	in	the	area	of	gesture	recognition	has	leveraged	infrared	cameras	and	accelerometers	that	
are	affixed	to	the	research	subject.	Using	infrared,	one	avoids	some	of	the	complications	that	may	exist	
with	 camera	 geometry,	 lighting,	 and	 other	 forms	 of	 visual	 variance.	 Using	 this	 approach	 Schlömer,	
Poppinga,	Henze,	and	Boll	(2008)	demonstrate	the	ability	to	construct	a	gesture	recognition	system	by	
capturing	and	processing	accelerometer	data	from	a	Nintendo	Wiimote.	Their	technique	allows	them	to	
reliably	capture	gestures	for	squares,	circles,	rolling,	the	shape	“Z,”	etc.	

More	recent	work	has	taken	advantages	of	the	Microsoft	Kinect	sensor	and	simple	infrared	detectors	as	
low	cost	tools	for	capturing	and	studying	human	gestures.	The	Mathematical	Imagery	Trainer	(Howison,	
Trninic,	Reinholz,	&	Abrahamson,	2011)	uses	hand	gestures	captured	by	the	Kinect	sensor	as	a	way	for	
studying	 student	 understanding	 of	 proportions.	 Students	 use	 their	 hands	 to	 indicate	 the	 relationship	
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between	two	values,	and	benefit	from	visual	feedback	on	the	correctness	of	their	hand	placement.	This	
system	 also	 enables	 teachers	 to	 give	 students	 real-time,	 immediate	 feedback	 and	 change	 their	
instruction	as	they	perceive	students’	difficulties	(and	not	only	after	the	fact),	and	points	to	one	of	the	
main	benefits	of	multimodal	learning	analytics.	As	an	even	more	basic	example,	the	Kinect	sensor	can	be	
used	to	give	teachers	and	students	immediate	feedback	about	the	amount	of	gesticulation	that	they	are	
doing.	Hence,	without	requiring	a	set	of	recommended	actions,	low-cost	sensing	of	movement	could	be	
useful	in	helping	students	and	teachers	be	more	aware	of	their	own	behaviours.	

Related	to	the	measurement	of	student	gesticulation,	early	work	in	this	domain	by	Worsley	and	Blikstein	
(2013)	involved	a	comparison	of	hand/wrist	movement	between	experts	and	novices	as	they	completed	
an	engineering	design	task.	In	particular,	the	researchers	used	hand/wrist	movement	data	from	a	Kinect	
sensor	to	examine	the	extent	of	two-handed	action,	and	found	that	experts	were	much	more	likely	to	
employ	 two-handed	 actions	 than	 novices.	 These	 preliminary	 results	 aligned	 with	 theories	 associated	
with	 two-handed	 inter-hemispheric	 actions,	 and	 provided	 initial	 motivation	 for	 studying	 gestures	 in	
complex	learning	environments.	

In	 a	 similar	 line	 of	 work,	 Schneider	 and	 Blikstein	 (2014)	 used	 a	 Kinect	 sensor	 to	 evaluate	 student	
strategies	when	interacting	with	a	Tangible	User	Interface	(TUI):	their	task	was	to	learn	about	the	human	
hearing	system	by	interacting	with	3D-printed	organs	of	the	inner	ear.	Using	clustering	algorithms,	the	
authors	 found	 that	 students’	body	postures	 fell	 into	 three	prototypical	positions	 (Figure	1):	 an	active,	
semi-active,	or	passive	state.	The	amount	of	time	spent	 in	the	active	state	was	significantly	correlated	
with	higher	learning	gains,	and	the	time	spent	in	the	passive	state	was	significantly	correlated	with	lower	
learning	 gains.	More	 interestingly,	 the	 number	 of	 transitions	 between	 those	 states	was	 the	 strongest	
predictor	of	 learning.	 Those	 results	 suggest	 that	 successful	 students	went	 through	cycles	of	 reflection	
and	action,	which	helped	them	gain	a	deeper	understanding	of	the	domain	taught.	This	approach	shows	
the	potential	of	using	clustering	methods	on	gestures	data	to	find	recurring	behaviours	associated	with	
higher	learning	gain.	

	

	

Figure	1:	Using	k-means	on	student	body	posture	(Schneider	&	Blikstein,	2014).	The	first	state	(left)	
is	active,	with	both	hands	on	the	table;	the	second	(middle)	is	passive,	with	arms	crossed;	the	third	

(right)	is	semi-active,	with	only	one	hand	on	the	table.	
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As	 a	 whole,	 the	 advances	 in	 action	 and	 gesture	 recognition,	 and	 the	 introduction	 of	 low-cost,	 high-
accuracy	sensors	is	creating	additional	opportunities	for	action	and	gesture	recognition	to	be	included	in	
education	research.	

2.6 Affective State Analysis 

Studying	 students’	 affective	 states	 can	 often	 be	 challenging	 and	 hard	 to	 validate.	 However,	 several	
studies	 have	 demonstrated	 that	 identifying	 affect	 can	 be	 done	 consistently,	 and	 that	 affect	 is	 an	
important	marker	in	studying	and	understanding	learning.	

2.6.1 Human Annotated Affective States 
Baker,	D’Mello,	Rodrigo,	&	Graesser	(2010)	and	Pardos,	Baker,	San	Pedro,	Gowda,	&	Gowda	(2013)	are	
examples	of	work	using	human	annotated	affective	states.	In	Pardos	et	al.	(2013),	the	researchers	used	
the	 Baker-Rodrigo	 Observation	 Method	 Protocol	 (BROMP)	 (Ocumpaugh,	 Baker,	 &	 Rodrigo,	 2012)	 to	
correlate	 student	 behaviour	 and	 affect	 while	 participating	 in	 cognitive	 tutoring	 activities	 with	
performance	on	standardized	tests.	They	found	that	the	learning	gains	associated	with	certain	affective	
states,	namely	boredom	and	confusion,	are	highly	dependent	on	the	level	of	scaffolding	that	the	student	
is	 receiving.	 This	 finding	 builds	 on	 prior	 work	 that	 studies	 affective	 state	 as	 students	 participate	 in	
cognitive	 tutoring	 activities	 (e.g.,	 Litman,	Moore,	 Dzikovska,	 &	 Farrow,	 2009;	 Forbes-Riley,	 Rotaru,	 &	
Litman,	2009).	

2.6.2 Automatically Annotated Affective State 
Other	 work,	 using	 the	 Facial	 Action	 Coding	 System	 (FACS),	 has	 demonstrated	 that	 researchers	 can	
recognize	 student	 affective	 state	 by	 simply	 observing	 their	 facial	 expressions.	 In	 the	 case	 of	 Craig,	
D’Mello,	Witherspoon,	 and	 Graesser	 (2008),	 researchers	 were	 able	 to	 perceive	 boredom,	 stress,	 and	
confusion	 by	 applying	 machine	 learning	 to	 video	 data	 of	 the	 student’s	 face	 throughout	 the	 tutoring	
experience.	Data	was	collected	while	students	interacted	with	AutoTutor,	an	intelligent	tutoring	system	
for	learning	science.	The	technique	that	Craig	et	al.	(2008)	validated	is	a	highly	non-invasive	mechanism	
for	 realizing	 student	 sentiment,	 and	 can	 be	 coupled	 with	 computer	 vision	 technology	 to	 enable	
machines	to	detect	changes	 in	emotional	state	or	cognitive-affect	automatically.	Worsley	and	Blikstein	
(2015)	utilize	the	Facial	Action	Coding	System	to	compare	two	different	experimental	conditions.	More	
specifically,	 the	 authors	 compared	 the	 frequency	 and	 rate	 of	 transitions	 among	 four	 automatically	
derived	affective	states	that	are	conjectured	to	be	important	for	learning.	In	particular,	they	were	able	
to	 show	 that	 the	 two	experimental	 conditions	expressed	 significantly	different	 rates	of	 confusion	and	
differed	 in	 how	 frequently	 they	 transitioned	 from	neutral	 to	 surprise,	 and	 from	neutral	 to	 confusion.	
Being	 in,	 or	 transitioning	 to	 a	 confused	 expression	 was	 generally	 associated	 with	 good	 outcomes,	
whereas	 being	more	 surprised,	 or	 transitioning	 to	 an	 expression	 of	 surprise	was	 generally	 associated	
with	less	favourable	outcomes.	
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Researchers	have	also	used	conversational	cues	to	realize	students’	emotional	states.	Similar	to	Craig	et	
al.	(2008),	D’Mello,	Craig,	Witherspoon,	McDaniel,	&	Graesser	(2008)	designed	an	application	that	could	
use	spoken	dialogue	to	recognize	the	states	of	boredom,	frustration,	flow,	and	confusion.	Researchers	
were	able	 to	 resolve	 the	validity	of	 their	 findings	 through	comparison	 to	emote-aloud	 (a	derivative	of	
talk-aloud	 where	 participants	 describe	 their	 emotions	 as	 they	 feel	 them)	 activities	 while	 students	
interacted	with	AutoTutor.	

2.6.3 Physiological Markers of Affective State 
More	recent	work	in	this	space	was	able	to	accurately	predict	the	affective	state,	and	the	source	of	the	
change	 in	 affective	 state	 for	 users	 as	 they	 interact	with	 a	 computer-based	 tutoring	 system	 (Conati	&	
MacLaren,	2009).	In	particular,	the	system	was	able	to	predict	when	students	experienced	joy,	distress,	
and	admiration	effectively.	 In	the	past	years,	other	researchers	have	expanded	the	detection	of	affect	
within	educational	contexts	to	leverage	physiological	markers	(Hussain,	AlZoubi,	Calvo,	&	D’Mello,	2011;	
Chang,	Nelson,	Pant	&	Mostow,	2013).	

Especially	when	dealing	with	web-based	and	tutoring	activities,	 identifying	 the	 intensity	and	the	time-
occurrence	of	the	emotional	state	is	an	important	clue	to	distinguish	an	affective	learning	process	from	
a	 pleasant,	 but	 not	 learning-effective,	 computer-based	 activity.	 Seeking	 clarity	 on	 this	 distinction,	
Muldner,	 Burleson,	 and	 VanLehn	 (2010),	 used	 physiological	 (skin	 conductance	 sensor	 and	 pupil	
dilatation),	 behavioural	 (speaking	 aloud	 protocol,	 posture	 in	 the	 chair,	 and	 mouse	 clicks)	 and	 task-
related	 data	 to	 predicted	 moments	 of	 excitement	 associated	 to	 learning,	 referred	 to	 as	 a	 “yes!”	
moment.	 They	 found	 that	 the	 “yes!”	 moment	 was	 associated	 with	 more	 reasoning,	 effort,	 and	
investment	 in	 solving	 the	 task,	 suggesting	 that	 the	 intensity	 of	 this	 positive	 emotion	 after	 the	
achievement	of	a	goal	may	be	a	predictor	of	increased	learning.	

This	same	physiological	approach	is	also	useful	to	identify	negative	feelings	and	reactions,	which	in	turn	
is	 associated	 with	 lower	 performance	 in	 cognitive	 tasks.	 An	 increase	 in	 physiological	 reactivity	 was	
observed	by	Lunn	and	Harper	(2010)	to	be	associated	with	a	frustrating	web-based	activity.	Moreover,	
Choi	et	al.	 (2010)	demonstrated	that	 tense	emotions	 induced	by	an	external	 stimulus	have	a	negative	
effect	on	performance	in	a	subsequent	cognitive	task.	

The	 various	 studies	 of	 student	 affect	 emphasize	 the	 potential	 for	 empowering	 educators	 through	
student	 sentiment	 awareness.	 Using	 one,	 or	 more,	 of	 the	 modalities	 of	 speech,	 psychophysiological	
markers,	 and	 computer	 vision,	 researchers	 are	 able	 to	 better	 understand	 the	 relationship	 between	
affect	and	learning,	and	at	a	much	more	detailed	level.	

2.7 Neurophysiological Markers 

Though	briefly	mentioned	in	the	previous	section,	there	is	a	growing	cadre	of	researchers	doing	work	on	
psychophysiology,	and	its	relationship	to	cognition	and	learning.	Burt	and	Obradović	(2013)	provide	an	
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overview	of	this	domain,	while	also	pinpointing	key	areas	for	researchers	to	pay	attention	to	when	doing	
this	work.	Other	researchers,	such	as	Stevens,	Galloway,	and	Berka	(2007),	describe	the	IMMEX	system	
used	 to	 study	 the	 electroencephalograms	 (EEGs)	 of	 students	 as	 they	 participate	 in	 a	 computer-based	
environment.	In	their	work,	they	also	present	preliminary	findings	on	the	relationship	between	EEG	and	
cognitive	load,	distraction,	and	engagement.	One	unexpected	finding	of	the	research	was	that	even	as	a	
student’s	skill	level	increased,	the	workload	remained	the	same.	This	unexpected	result	highlights	one	of	
the	 key	 affordances	 of	 these	 new	multimodal	 modes	 of	 analysis:	 they	may	 challenge	 researchers	 to	
question	previously	held	assumptions	or	 intuitions	about	 student	 learning.	The	study	of	Stevens	et	al.	
(2007)	 is	 only	 one	 among	 a	 host	 of	 cutting-edge	 publications	 that	 examine	 cardiovascular	 physiology	
(Cowley,	 Ravaja,	 &	Heikura,	 2013),	mid-frontal	 brain	 activity	 (Luft,	 Nolte,	 &	 Bhattacharya,	 2013),	 and	
other	connections	between	cognition	and	physiology	(Burt	&	Obradović,	2013).	

Moreover,	studies	vary	in	the	number	of	sensors	used	as	well	as	in	the	types	of	analyses.	Using	a	single	
channel	portable	EEG	device,	Chang,	Nelson,	Pant	&	Mostow	(2013)	were	able	to	distinguish	easy	and	
difficult	sentences	read	by	children	and	adults.	In	a	more	complex	task,	nine	EEG	channels	were	used	to	
identify	 differences	 from	 solutions	 created	 by	 students	 when	 solving	 a	 maze	 problem	 that	 required	
physics	 concepts.	 Students	 with	 better	 solutions	 (reduced	 number	 of	 leans	 used)	 had	 higher	 theta	
power	in	the	frontal	areas	of	the	brain,	which	is	related	to	mental	effort,	concentration,	and	attention	
(She	 et	 al.,	 2012).	 Neuroimaging	 techniques	 increased	 the	 comprehension	 about	 brain	 mechanisms	
involved	 in	 learning	 as	 well	 in	 learning	 disabilities.	 Understanding	 brain	 mechanisms	 required	 for	
cognitive	processing	and	learning	is	important	to	either	adapt	learning	methodologies	to	specific	topics	
or	create	interventions	for	students	with	specific	needs.	

2.8 Eye Gaze Analysis 

Another	area	applicable	to	educational	research	is	eye	tracking	and	gaze	analysis.	While	this	technology	
has	 long	 been	 used	within	 the	 field	 of	 research	 on	 consumer	 electronics	 and	 software	 usage,	 recent	
work	 in	 a	 variety	 of	 learning	 environments	 has	 shown	 eye	 tracking	 can	 be	 useful	 for	 understanding	
student	 learning.	 One	 of	 the	 constructs	more	 related	 to	 eye	 gaze	 is	 attention.	 For	 example,	 Gomes,	
Yassine,	Worsley,	 and	 Blikstein	 (2013)	 captured	 eye-tracking	 data	 from	 high	 school	 students	 as	 they	
completed	a	collection	of	engineering	design	games.	By	using	machine	learning	to	cluster	the	students	
based	on	their	gaze	patterns,	the	team	identified	that	the	highest	performing	students	used	very	similar	
patterns	in	where	they	looked,	how	longed	they	looked,	and	their	level	of	systematicity.	

Data	from	eye	tracking	also	helps	to	understand	what	kind	of	approaches	are	useful	in	helping	students	
to	enhance	learning.	Mason,	Pluchino,	Tornatora,	and	Ariasi	(2013)	demonstrated	that	using	pictures	in	
a	scientific	text	is	better	than	using	only	text.	However,	based	in	the	number	of	fixations	in	the	final	part	
of	the	text,	the	authors	conclude	that	using	an	abstract	picture	that	represents	the	topic	studied	(physics	
phenomena)	appears	to	be	more	efficient,	 i.e.,	same	performance	but	 less	cognitive	 load	than	using	a	
concrete	illustration	about	the	same	topic,	
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However,	 de	 Koning,	 Tabbers,	 Rikers,	 and	 Paas	 (2010)	 argue	 that	 looking	 at	 specific	 stimulus	 can	
represent	the	student’s	shifting	of	attention	to	possible	areas	of	interest,	but	does	not	always	mean	that	
they	are	 learning.	 In	 their	 study,	students	 looked	 longer	and	more	often	at	an	 instructional	animation	
with	cues	compared	to	the	same	animation	without	cues,	but	the	authors	could	not	confirm	that	giving	
cues	would	reduce	the	student’s	cognitive	load	or	even	increase	conceptual	understanding.	

Notwithstanding,	 the	most	 promising	 use	 of	 eye-tracking	 technology	 in	 education	 has	 been	 to	 study	
small	collaborative	 learning	groups.	The	overall	 framework	 for	 this	 type	of	work	 is	 to	synchronize	two	
eye-trackers	and	compute	the	number	of	times	a	particular	group	achieves	joint	visual	attention	(JVA).	
JVA	has	been	studied	extensively	in	a	variety	of	disciplines	(developmental	psychology,	communication,	
learning	sciences)	and	 is	known	as	a	strong	predictor	of	a	group’s	quality	of	collaboration.	Richardson	
and	Dale	 (2005),	 for	 instance,	 found	 that	 the	degree	of	 gaze	 recurrence	between	 individual	 speaker–
listener	 dyads	 (i.e.,	 the	 proportion	 of	 alignment	 of	 their	 gazes)	 was	 correlated	 with	 the	 listeners’	
accuracy	 on	 comprehension	 questions.	 In	 a	 remote	 collaboration,	 Jermann,	 Mullins,	 Nüssli,	 and	
Dillenbourg	(2011)	describe	how	“good”	programmers	tend	to	have	a	higher	recurrence	of	 joint	visual	
attention	when	having	productive	interactions,	compared	to	less	proficient	programmers.	Additionally,	
recent	 work	 by	 Schneider	 and	 Pea	 (2013)	 suggests	 that	 JVA	 is	 not	 just	 a	 proxy	 for	 predicting	
collaboration,	but	can	also	be	influenced	to	improve	communication	between	students.	They	designed	
an	 intervention	 in	 which	 students	 worked	 in	 pairs	 (in	 different	 rooms).	 In	 one	 condition,	 the	 two	
participants	 could	 see	each	other’s	gaze;	 in	 the	other	 condition,	no	 such	augmentation	was	provided.	
Their	task	was	to	study	a	set	of	diagrams	to	learn	about	the	human	visual	system.	Those	who	could	see	
the	gaze	of	their	partner	in	real	time	on	the	screen	achieved	significantly	higher	learning	gains	and	had	a	
higher	quality	of	collaboration.	Those	findings	highlight	the	potential	of	using	gaze-awareness	tools	for	
augmenting	student	interactions	in	various	learning	environments	and	settings.	It	should	be	noted	that	
those	examples	are	limited	to	remote	collaborations.	Schneider	et	al.,	(2015)	extends	this	line	of	work	to	
co-located	 settings.	 Using	 mobile	 eye-trackers	 and	 computer	 vision	 algorithms,	 they	 were	 able	 to	
replicate	the	findings	above:	in	a	side-by-side	collaboration,	JVA	was	found	to	be	a	significant	predictor	
of	student	learning	gains	and	performance	on	a	problem-solving	task.	

Finally,	Schneider	and	Pea	(2014)	are	expanding	what	can	be	predicted	when	combining	JVA,	network	
analysis	 and	 machine	 learning.	 In	 this	 work,	 they	 describe	 networks	 where	 nodes	 represent	 visual	
fixations	and	edges	represent	saccades.	Their	findings	suggest	that	when	those	networks	characterize	a	
dyad	(i.e.,	the	size	of	a	node	represents	the	amount	of	joint	visual	attention	on	one	particular	area	of	the	
screen),	different	properties	of	the	network	are	associated	with	different	facets	of	a	good	collaboration.	
For	instance,	the	extent	to	which	students	reach	consensus	during	a	problem-solving	task	is	associated	
with	 the	 average	 size	 of	 the	 strongly	 connected	 components	 of	 the	 graphs.	 They	 found	 that	 other	
dimensions	 of	 a	 productive	 collaboration	 (sustaining	 mutual	 understanding,	 dialogue	 management,	
information	 pooling,	 reaching	 consensus,	 task	 division,	 task	 management,	 technical	 coordination,	
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reciprocal	 interaction,	 individual	 task	 orientation)	 could	 similarly	 be	 predicted	 by	 applying	 machine-
learning	algorithms	on	the	features	of	those	graphs.	

These	studies	suggest	interesting	opportunities	to	understand	and	enhance	collaborative	learning	using	
eye-tracking	 data.	More	 specifically,	 they	 provide	 new	ways	 to	 study	 small-group	 visual	 coordination	
and	 its	 relationship	 to	 productive	 learning	 strategies.	 Recent	 work	 is	 generalizing	 this	 line	 of	 inquiry	
across	various	settings,	which	opens	promising	new	doors	 for	predicting	and	 influencing	collaboration	
among	students.	

2.9 Multimodal Integration and Multimodal Interfaces 

Having	 considered	 several	 example	 modalities	 currently	 being	 used	 by	 researchers	 to	 study	 student	
learning	individually,	we	now	turn	to	a	final	example	that	entails	analysis	using	multiple	modalities.	As	
previously	noted,	Multimodal	Learning	Analytics	also	builds	on	the	 idea	of	multimodal	 integration	and	
multimodal	 interfaces.	Multimodal	 integration	 is	 the	 synchronous	 alignment	 and	 combination	of	 data	
from	different	modalities	(or	contexts)	in	order	to	get	a	clearer	understanding	of	the	learning	cues	that	
students	 are	 producing.	Worsley	 (2014)	 and	Worsley	 and	Blikstein	 (2014)	 discuss	 and	employ	 various	
multimodal	 learning	 analytics	 techniques.	 Worsley	 (2014)	 considers	 the	 impact	 of	 using	 different	
multimodal	 data	 fusion	 approaches.	 Specifically,	 the	 paper	 highlights	 naïve	 fusion,	 low-level	 (or	 data-
level)	fusion	and	high-level	(or	quasi	feature-level)	fusion	as	having	differing	levels	of	utility,	and	as	being	
associated	with	different	underlying	research	questions.	Naïve	fusion	was	the	label	given	to	multimodal	
analyses	that	built	machine-learning	classifiers	from	the	summary	statistic	generated	from	each	of	the	
data	streams	or	features.	In	many	cases,	these	features	are	first	subjected	to	feature	selection	in	order	
to	reduce	the	feature	space	down	to	something	reasonable.	Low-level	fusion	(or	feature	fusion)	involved	
synchronizing	the	data	at	each	time	step	and	conducting	analyses	on	the	features	after	they	have	been	
fused	together.	Finally,	high-level	fusion	is	described	as	extracting	one	of	more	semantic	level	features	
from	one	 or	more	 data	 streams	 before	 fusing	 them	with	 the	 other	 data	 streams.	 An	 example	 of	 this	
would	 be	 to	 do	 gesture	 recognition	 or	 speech	 recognition	 before	 aligning	 the	 hand/wrist	movement	
and/or	audio	channels	with	the	other	data	sources	available	for	analysis.	

In	Worsley	 and	 Blikstein	 (2014),	 the	 authors	 present	 a	multimodal	 comparison	 from	 a	 two-condition	
experiment,	 in	which	 students	worked	 in	pairs	 to	 complete	an	engineering	design	 challenge.	By	using	
hand/wrist	movement,	electro-dermal	activation,	and	voice	activity	detection,	the	authors	were	able	to	
identify	 a	 set	 of	 representative	 multimodal	 states	 that	 students	 used,	 and	 subsequently	 used	 those	
states	 to	 model	 each	 student’s	 design	 approach.	 Interestingly,	 students	 in	 the	 two	 experimental	
conditions	used	markedly	different	approaches.	In	this	way,	then,	the	analysis	served	to	reveal	some	of	
the	behavioural	differences	associated	with	the	two	different	experimental	conditions.	The	analysis	also	
revealed	 that	 the	 multimodal	 behaviours	 observed	 had	 clear	 correlations	 with	 prior	 work	 on	
epistemological	framing	(Russ,	Lee,	&	Sherin,	2012).	
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The	strategies	used	in	Worsley	(2014)	and	Worsley	and	Blikstein	(2014)	represent	a	small	fraction	of	the	
work	being	done	 in	the	multimodal	analysis	community,	which	spans	a	variety	of	complex	approaches	
for	doing	multimodal	fusion	at	different	levels	of	analysis,	as	well	as	using	a	variety	of	algorithms,	data	
representations,	 and	 strategies	 for	 training	 and	 testing	 said	 algorithms	 (see	 Song,	Morency,	 &	 Davis,	
2012;	Scherer	et	al.,	2012;	and	Ngiam	et	al.,	2011	for	more	details.)	A	particular	challenge,	however,	is	
reconciling	the	complexities	of	these	computational	approaches	with	actionable	 ideas	and	theories	for	
learning.	

Taken	together,	the	prior	research	points	to	a	wealth	of	technology	and	methodologies	that	can	be	used	
for	 doing	 multimodal	 analysis	 of	 student	 learning	 across	 a	 diversity	 of	 environments.	 By	 studying	
learning	 through	 these	 different	 lenses	we	 can	 better	 identify	 how	 students	 are	 changing,	 and	make	
more	 sense	 of	 their	 changes.	 Furthermore,	 multimodal	 analysis	 enables	 researchers	 to	 get	 far	 more	
nuanced	 and	 complex	 understandings	 of	 student	 learning	 processes,	 something	 that	 we	 have	 only	
begun	to	study	at	scale.	

3 CONCLUSION 

In	 this	 article,	 we	 have	 presented	 a	 review	 of	 the	 literature	 on	 what	 we	 have	 termed	 “multimodal	
learning	analytics”	—	a	set	of	techniques	employing	multiple	sources	of	data	(video,	logs,	text,	artifacts,	
audio,	 gestures,	 biosensors)	 to	 examine	 learning	 in	 realistic,	 ecologically	 valid,	 social,	 mixed-media	
learning	environments.	

The	 incorporation	of	multimodal	 techniques,	which	are	extensively	used	 in	the	multimodal	 interaction	
community,	 should	enable	 researchers	 to	examine	unscripted,	complex	 tasks	 in	more	holistic	ways.	 In	
particular,	we	have	 focused	on	describing	a	 set	of	modalities	 that	have	been	 the	 topic	of	multimodal	
analysis	 for	 decades,	 as	well	 as	modalities	 that	 have	 recently	 emerged	 as	 new	 data	 streams	 through	
which	researchers	can	study	human	interaction	and	behaviour.	
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