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________________________________________________________________________ 

 
Educational data mining can miss or misidentify key findings about student learning without a transparent 

process of analyzing the data. This paper describes the first steps in the process of using low-level logging data 

to understand how middle school students used Alice, an initial programming environment. We describe the 
steps that were required and the decisions that were made in building a tool to translate the low-level logging 

data into a form that can be used to investigate educational questions about problem solving strategies for a 

range of different programming tasks. This work contributes to efforts to analyze educational data, and is 
important for researchers and tool builders involved with the design of logging systems for other programming 

environments and software tools. 

________________________________________________________________________ 
 
 

1 INTRODUCTION  

The field of educational data mining is growing (Baker & Yacef, 2009), but to date, few 

teams have tried to make logging data directly useful to educators (Macfadyen & 

Dawson, 2010). Logging data is computer-generated data that tracks actions made by the 

user; the exact content depends on how the logging data system is designed. There is 

great potential for these data to inform how students learn and problem solve while 

producing technology such as creating computer games, if the analysis is driven by both 

theoretical and empirical approaches. To this end, the field would benefit from a careful 

description of the steps required and the types of decisions that will need to be made in 

order to translate large amounts of data into meaningful information.  

This paper describes the first steps in the process of analyzing low-level logging data 

of middle school students using Alice, a 3D environment using drag-and-drop 
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programming, a language that is closely related to Java, and many other modern 

imperative programming languages (Dann et al, 2009). We describe the steps that were 

required and problems encountered in building a tool to translate the low-level logging 

data into high-level actions that can be used to investigate educational questions about 

problem solving strategies for a range of different programming tasks. We specifically 

are interested in developing a transferable process that others can use to understand how 

students approach different tasks: open-ended (e.g., programming games) and closed-

ended (e.g., completing a performance assessment). 

In this paper we describe the first steps to prepare the data to address several types of 

research questions, such as: Can logging data reveal the conditions under which students 

notice and use key features of Alice? Do students recognize problem patterns and try 

creative solutions or do they keep repeating the same ineffective strategies when problem 

solving in Alice? Do students’ strategies vary, depending on whether they are working on 

a closed-ended or open-ended Alice task? Are student actions related to the sophistication 

of the Alice games they produce? In particular, we are exploring ways of leveraging 

logging data to create new models of adaptive expertise by drawing on multiple 

disciplines: computer science (specifically computer science education, machine learning, 

data analytics, and programming), the learning sciences, and psychology. Hatano (1988) 

describes adaptive expertise as the meaningful and well-connected knowledge that can be 

applied to new tasks. To our knowledge, no other studies have used logs to distinguish 

the development of routine expertise, where learners develop a core set of skills that they 

use with increasing efficiency, from adaptive expertise; which involves a balance 

between innovation and efficiency where learners develop meaningful knowledge so they 

can adapt their skills in response to new situations (Alexander, 2003). Most assessments 

are limited by their focus on how students develop routine expertise, so there is a need for 

strategies to assess how students try out ideas, when and how they receive feedback, and 

how they respond to that feedback (Bransford et al., 2006). 

The focus of the current article is to describe the first step in how to use the logs to 

understand learning. Before Alice logging data can be used to understand students’ 

computer programming and problem solving strategies, it is necessary to understand the 

internal structure of the logs and how that maps to higher level actions of students using 

Alice and to make a series of decisions that determine how the logs will be parsed. This 

paper describes the problems we have encountered and discoveries we have made, 

starting with creating an Alice log parser, and then applying it to logs created during both 

open-ended and closed-ended tasks. The parser is automated to combine low-level 
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individual log entries into higher level actions that we call high-level Alice actions 

(HLAAs) each corresponding to functionality provided at the user interface level of the 

Alice programming environment.  

The description of our process is especially important for researchers who work with 

systems whose logging subsystems record only low-level actions, and we describe how 

parts of our process are applicable to logging systems in many other domains. 

Additionally, this work is important for researchers of Alice, who can also use our Alice 

log parser to pre-process Alice logging data generated in a range of settings, and  analyze 

it to understand how students learn to program. Finally, this work is relevant to tool 

builders involved with the design of activity logging systems for other programming 

environments and software tools, and we include recommendations based on our 

experience with building our Alice log parser.     

 

2 PREVIOUS WORK IN LEARNING ANALYTICS AND APPLICATION OF 
THIS TO ALICE LOGS 

There is a long-standing interest in novice programming, which forms the basis for our 

analysis of Alice logs. Publications in the 1980s described how children develop 

programming skills and ways of thinking (Soloway et al., 1983; Soloway & Spohrer, 

1989). Studies of higher education have used phenomenology to analyze interviews with 

students in an introductory Java programming course to reveal how they experience the 

act of learning to program (Bruce et al., 2004). In addition, researchers have studied the 

strategies used by expert programmers with the hope that this information can be used to 

teach novices more effective strategies (Robins et al., 2003). Robins et al. write, “Experts 

can typically retrieve relevant plans from memory, and then generate code from the plan 

in linear order (from initialisation, to calculation, to output). Novices must typically 

create plans. ….Code generation begins with the central calculation, and builds the 

initialisations and other elements around it.” (p. 144). However, most of this research has 

relied on observations and interviews with small samples, which are time consuming and 

have limitations in their precision and generalizability. These data are neither detailed 

enough nor extensive enough to distinguish between paths to different types of expertise. 

Educational data mining techniques have been useful to build models of student 

behavior when using traditional intelligent tutoring systems. Baker (2007) has 

successfully developed models transferable to different tasks for structured problem 

solving activities where there are designated correct responses. Dimitracopoulou (2005) 

describes work using traces of expected interactions to guide collaborations. In addition, 
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progress has been made with understanding and modeling students’ exploratory use of 

interactive simulation systems where there is no clear identification of correct use. Initial 

approaches involved time-consuming (manual) identification of activity by domain 

experts (Merten & Conti, 2007). More recent work (Amershi & Conti, 2009) describes a 

data mining approach used to identify behavioral patterns that then require human 

labeling in order to model students’ use of these unstructured learning environments. For 

example, they create a data point for each student consisting of the frequency of use of 

every tool action and the mean and standard deviation of the latency between actions 

representing reflection time. Additionally, they collect student pre- and post-test domain 

knowledge. 

Logging data has incredible untapped potential for adding to our understanding of 

how children learn or fail to learn with technology, especially the class of unstructured 

learning environments called initial programming environments. The developers of these 

environments intend for the learners to “be interested to explore, and to represent their 

explorations” (Fincher & Utting 2010). In work by Choquet and Iksal (2007), one case 

study described how characterizations of new users’ exploration activities, such as 

sequences of use and time of use, derived from log files can be compared to ‘typical 

exploration activities’ by successful novice users of the same software. An implication of 

this is that it can be determined when new users are unsuccessful at exploring new 

software. In a groundbreaking study (Piech et al., 2012); researchers used machine-

learning techniques to analyze approximately 200,000 logs of code snapshots from 

beginning university-level students using Karel the Robot, an initial programming 

environment. Their results are that the patterns discovered using machine-learning 

techniques were more predictive for students’ performance on midterm exams than the 

grades they received on the submitted program solution. One implication of this is that 

the process of programming was more predictive than the end result. In addition, the 

researchers were able to show applicability of their methodology for use with Java code 

snapshot logs of beginning university-level programming students.  

Our study focuses on Alice, a widely used initial programming environment (Utting 

et al., 2010), and one of few for which logs can be captured (Kelleher, 2006). Kelleher 

built an Alice logging system and distinguished a log entry as belonging to one of three 

different categories of Alice activities: programming, scene layout, or program play.  She 

found time-based usage patterns when doing open-ended tasks to be different for 12-year 

old girls using two different variants of Alice: Storytelling Alice or Generic Alice 

(without storytelling support) over a 4-hour period. Identification of these high-level 
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categories is an informative first step in analyzing the Alice logs. However, despite the 

use of Alice in many K-12 and college classrooms across the US, there are over 23,500 

members in the Alice online community forum, there is no existing system for 

capitalizing on these logs to understand novices and how they learn to computer program 

(S. Cooper, personal conversation, January 24, 2011).   

The research we describe here will contribute to the growing number of efforts to use 

educational data mining techniques, and especially learning analytics to describe how 

students interact with computers and the implications for learning. Eventually, this 

knowledge can be used to inform strategies for teaching and assessing the learning of 

novice programmers, as well as for improving programming environments. Specifically, 

we hope it will help us understand how novice programmers develop adaptive expertise.     

  

3 RESEARCH QUESTIONS 

Building on prior research described above, our first investigative step was to create a 

parser for these Alice logs, use it to translate the low-level logs into logs containing high-

level user actions or HLAAs, categorize these HLAAs into categories similar to those 

Kelleher used in her Alice logging work, and determine whether the distribution of 

HLAAs into these categories varies across programming tasks. Our research questions 

were:  

 Can Alice logs be translated into logs of high-level Alice actions (HLAAs)?  

 How do we create a parser to do this?  

 Can we place the HLAAs into one of three categories (programming, scene 

layout, and program play) in a way that agrees with the findings of Kelleher? 

 Can we determine the time a programmer spends in each of these categories?  

 Do student actions as represented by characterizations of the HLAAs vary 

across different types of programming tasks?      

 

4 OUR ANALYTIC APPROACH 

4.1 Logging Data 

Our data were collected as part of a study of the development of computational thinking 

(CT) among middle school students programming computer games.  We define CT as the 

application of computer science concepts to identify and solve problems by creating a 

model (e.g., a game), effectively automating ideas, and transferring that knowledge to 

new situations (e.g., the assessment).   
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Students used two variants of the Alice programming environment: Storytelling Alice 

(SA) and Alice 2.2. See Figure 1 for a screen shot from the Alice 2.2 programming 

environment containing a scene from one of our student’s games. We show this to give 

readers an idea of the learning environment and the complexity of the user interface. The 

user interface has multiple panels. Starting from the top left corner and moving 

clockwise, there is: the object tree showing all objects currently in the program, the scene 

editor, the event handler editor used to program for user interaction, the program code 

editor, and details about available operations and characteristics for each of the program’s 

objects. Additionally, across the top there are buttons for playing the program, for undo 

and redo of user actions, and file operations to open existing Alice programs and to create 

new ones. In the rest of this paper, we will use Alice to mean both Storytelling Alice and 

Alice 2.2 unless it is important to differentiate.  

We have logs collected from students working on two tasks. The first is an open-

ended task where students program a computer game, either alone or with a partner. 

Students spent approximately 10 hours making their game, and were allowed to make any 

type of game, with the only limitation that it be appropriate for school. The second is a 

close-ended task that we call the Fairy Assessment (FA) done by each student 

individually. The FA was built in the style of an Alice computer game and students are 

asked to complete three subtasks. 

     

Figure 1: Student-created ‘Wizard Duel’ game. 

Instructions for the FA’s three assessment tasks come from character dialogue and a 

list at the bottom of the play window. The analysis of students’ performance on the FA is 

described in an earlier paper (Werner et al., 2012). The results suggest that the 
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assessment was successful in picking up a range of CT across students and a variety of 

types of CT.  

4.2 PARTICIPANTS 

The data come from 320 middle school students who were enrolled in voluntary after-

school or elective (during-school) technology courses. The classes were randomly 

assigned to a pair programming (McDowell et al., 2006) or solo programming condition.  

These students ranged in age from 10-14 years (mean=12) and they had, on average, 2.7 

computers at home. Students were primarily white (46%) or Latino/a (37%). Out of the 

134 students who said they spoke another language at home at least some of the time, 108 

(81%) of these students named Spanish or Spanish and another language. Table 1 

includes key descriptives on all participants that completed a post-course survey, and 

shows that there were more male than female students, more enrolled in during-school 

electives than after-school classes, and there was a range of mother’s education.  

 

 Table 1: Key Descriptives on Participants (n = 320). 

By Gender Total 

Female 118 

Male 202 

Totals: By Gender 320 

By Setting  

During School 198 

After School 122 

Totals: By Setting 320 

Mothers’ Education  

1: Less than high school 33 

2: Completed high school 37 

3: Some post-secondary (w/o community college or university degree) 97 

4: University degree with or without post grad degree 102 

Totals: mothers’ education 269 

Mean mother’s education (standard deviation) N=269 3(1.006) 

 

4.3 ANALYSIS PROCESS 
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Our effort to combine the low-level log entries into high-level Alice actions (HLAAs) 

extends the work by Kelleher in several ways. Kelleher dealt only with individual log 

entries (C. Kelleher, personal communication, July 14, 2008) but we have found that 

combining sequences of one or more low-level log entries into HLAAs is necessary to 

create the ‘pieces’ that mirror the user actions and that correspond to functionality 

provided at the user interface level of the Alice programming environment. Sequences of 

these HLAAs can be recognized as specific problem solving strategies. We built a parser, 

Ana2, to translate the logs of low-level log entries into logs of HLAAs, based on an 

earlier version called Ana, written by then UCSC undergraduate student Ben Smith 

(Smith, 2010).  

Following are some of the questions that guided the design, and building of Ana2, and 

our interpretation of the data it generates. In the rest of this paper, we discuss our 

approaches to answering these questions, the reasons for the choices we made, and the 

lessons learned for the analysis and interpretation of other logging data systems.  

 Can a single log entry be used to identify an HLAA? 

 How can log entries be translated into HLAAs? 

 How sensitive are the initial key metrics to possible errors in the translation of 

log entries into HLAAs? 

 Into what category (programming, layout, play) of HLAAs do we allocate scene 

changes? 

 How should the time between HLAAs be treated? 

 How important is an HLAA’s elapsed time (i.e., the time from the start of an 

HLAA until the last timestamp on log entries still designated as part of that 

HLAA) and how should it be treated? 

 How can we determine whether gap times are due to the student reflecting or to 

the student being off-task?  

 Does the identification of HLAAs distinguish between programming behavior in 

closed versus open-ended tasks? 

 

4.4 CAN A SINGLE LOG ENTRY BE USED TO IDENTIFY AN HLAA? 
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Based on Kelleher’s description of her research (C. Kelleher, personal communication, 

July 14, 2008), each individual log entry is ignored or assigned to one of three categories 

(programming, layout, or play) according to the value of the EVENT field of the log 

entries, with a few exceptions that also look at values of other fields. In our efforts to 

understand the structure of the Alice logs, it became clear that individual low-level log 

entries were insufficient for identifying HLAAs. This is because some user actions each 

result in sequences of log entries that include a combination of Kelleher’s three different 

categories:  programming, layout, or play. For example, the programming HLAA 

(INSERT_EVENT) we have identified in Figure 2, which results from inserting a mouse 

click event handler into the program, contains low-level log entries that would fall into 

the programming category and other low-level log entries that would fall into the layout 

category based on Kelleher’s categorization (see Table 2). 

Table 2: Kelleher's categorization of low-level log entries (C. Kelleher, personal 

communication, July 14, 2008). Log entries without these EVENT field values are 

ignored. 

Log entry EVENT field Exceptions Category 

oneshot  layout 

insertChild  layout 

deleteChild  layout 

insertResponse  program 

deleteResponse  program 

insertCallToUserResponse  program 

deleteCallToUserResponse  program 

propertyChange not a localTransformation or vehicle 

change 

program 

objectArrayInsert mentions response program 

objectArrayDelete mentions response program 

  

4.5 HOW CAN LOG ENTRIES BE TRANSLATED INTO HLAAS? 

Our efforts to separate log entries into HLAAs were challenged by the lack of formal 

documentation for the Alice logging system. The source code is public, but it contains 

essentially no comments. We learned the format of the log entries from original 

documentation about the creation of Alice (Conway, 1997), from research results by a 

member of our team (Smith, 2010), from conversations with Alice programmers and 
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… 

TIME=<1262899238818> EVENT=<insertChild> 
CHILDTYPE=<edu.cmu.cs.stage3.alice.core.behavior.MouseButtonClickBehavior>… 

TIME=<1262899238984> EVENT=<objectArrayInsert> ELEMENT=<World.Scene 2 event2> 

OBJECTARRAYPROPERTY=<behaviors> PROPERTYOWNERTYPE=… 
TIME=<1262899238986> EVENT=<insertChild> CHILDTYPE=<edu.cmu.cs.stage3.alice.core.Variable> 

CHILDKEY=<World.Scene 2 event2.x> PARENTKEY=<World.Scene 2 event2> NEWINDEX=<0> 

TIME=<1262899238987> EVENT=<propertyChange> PROPERTYNAME=<valueClass> 
PROPERTYOWNER=<World.Scene 2 event2.x> OLDVALUE=<null> NEWVALUE=… 

TIME=<1262899238988> EVENT=<objectArrayInsert> ELEMENT=<World.Scene 2 event2.x> 

OBJECTARRAYPROPERTY=<details> PROPERTYOWNERTYPE=… 

TIME=<1262899238990> EVENT=<insertChild> CHILDTYPE=<edu.cmu.cs.stage3.alice.core.Variable> 

CHILDKEY=<World.Scene 2 event2.y> PARENTKEY=<World.Scene 2 event2> NEWINDEX=<1> 

TIME=<1262899238992> EVENT=<propertyChange> PROPERTYNAME=<valueClass> 
PROPERTYOWNER=<World.Scene 2 event2.y> OLDVALUE=<null> NEWVALUE=… 

TIME=<1262899238993> EVENT=<objectArrayInsert> ELEMENT=<World.Scene 2 event2.y> 

OBJECTARRAYPROPERTY=<details> PROPERTYOWNERTYPE=… 
TIME=<1262899238995> EVENT=<insertChild> 

CHILDTYPE=<edu.cmu.cs.stage3.alice.core.question.PickQuestion> CHILDKEY=… 

TIME=<1262899238996> EVENT=<objectArrayInsert> ELEMENT=<World.Scene 2 event2.what> 
      OBJECTARRAYPROPERTY=<details> PROPERTYOWNERTYPE=… 

… 

researchers (C. Kelleher, personal communication, July 14, 2008, S. Cooper, personal 

communication, January 24, 2011), and from the use of reverse-engineering techniques.  

Figure 2: Excerpt from a log corresponding to one programming HLAA – ‘insert a mouse click event 

handler’ 

These contacts explained that every log file is composed of records called entries; one 

or more low-level entries (events) are written for each HLAA. Figure 2 shows an 

example of an HLAA (INSERT_EVENT in Table 3) resulting from inserting a mouse 

click event handler, which is composed of ten low-level log entries. As indicated by the 

ellipses, most of these log entries have additional fields that are not shown in the figure to 

save space. Each log entry has two required fields and a variable number of optional 

fields, each with field values. The required fields are TIME (where the field value is a 

timestamp in milliseconds) and EVENT (with possible field values: insertChild, 

deleteChild, objectArrayInsert, objectArrayDelete, insertCallToUserResponse, 

deleteCallToUserResponse, insertResponse, deleteResponse, oneshot, World, 

propertyChange, or objectArrayShift). The number and type of other fields in each log 

entry are dependent on the value of the EVENT field. For example, if EVENT=World, 

then the log entry has three fields: TIME, EVENT, and TYPE. The field value for TYPE 

in that case can be either start, stop, or save, corresponding to the Alice actions of play 

the animation, stop the animation, and a save of the Alice world to a file. Only a few of 

the log entries are this simple. Most log entries have many fields and many of the values 

of the fields are dependent on objects, operations, and other pieces of the story narrative 

the student chooses to model with their Alice program.  
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The first version of the Alice log parser, Ana, relied entirely on the time gaps between 

log entries in order to combine the log entries into the HLAAs. Ana used a total 

accumulated time threshold of 800 milliseconds (ms). This means that an HLAA was 

composed of a log entry and all subsequent log entries provided the total elapsed time 

was less than 800ms (Smith, 2010). Although easy to implement, this did not produce an 

acceptable translation from low-level events into HLAAs. 

The threshold of 800ms was somewhat arbitrary and we found that sometimes 

multiple HLAAs could be found in a sequence of log entries with an elapsed time less 

than 800ms (e.g. multiple quick mouse clicks to adjust the position of an object would 

each be a single layout HLAA). Furthermore, we also discovered examples of single 

HLAAs that spanned more than 800ms (e.g. switching to a different scene with many 

objects). In our first attempt to refine this, we used the time gap between two consecutive 

log entries, rather than the total elapsed time accumulated to decide when to start a new 

HLAA. If the time gap between two consecutive log entries exceeded a threshhold value, 

which we will call the maximum log entry time gap (MLEG), then a new HLAA was 

assumed to start with the log entry following that gap. This seemed to do a better job of 

separating low-level log entries into HLAAs corresponding to single user actions, but we 

were still unable to find an appropriate value for the MLEG using experimentation 

varying the MLEG between 200 and 500ms that satisfactorily separated the sequences of 

entries into HLAAs. 

We were able to create a grammar (i.e., a set of rules) to unambiguously combine 

some low-level log entries into HLAAs. For a simple example, a start log event followed 

by a stop log event is one PLAY HLAA regardless of the time gap between the two log 

entries. Unfortunately, it is not possible to unambiguously reconstruct all of the 

individual HLAAs (listed in Table 3) from the logs using a grammar that ignores the time 

gaps. For example, the sequence of log entries shown in Figure 3 has a 281ms gap 

between the timestamps for the 2nd and 3rd entries. This could be interpreted as a 

sequence of two HLAAs, INSERT_SOUND followed by INSERT_METHOD, or just 

one: INSERT_SOUND. INSERT_SOUND can come from either the insertion of an 

existing sound (just the first two entries in the figure) or the insertion of a play sound 

method call selecting the “record new sound” option (all four entries).  In the case of 

inserting an existing sound, the programmer may, but not always, follow this with the 

addition of a play sound method call (the last two entries).  The only way to decide 

between these two choices is based on the time gap between the entries having EVENT 

field values of objectArrayInsert and insertResponse, which has been observed to be 
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anything from zero milliseconds to many seconds in the log files we analyzed.  If the 

time gap is many seconds, then this sequence is clearly two HLAAs; if the time gap is 

zero or just a few milliseconds, then clearly it is one HLAA. This means we are left 

making a judgment call about the size of the time gap if it, alone, is used to separate two 

or more HLAAs. To resolve this problem, our current version of the Alice log parser, 

Ana2, uses a combination of a maximum log entry time gap (MLEG) with a grammar for 

the types of HLAAs we expect to see in the logs. 

Fortunately, for some analyses, the choice between one or two HLAAs is irrelevant 

provided we categorize both HLAAs the same way (as programming HLAAs in this 

case). However, we can envision situations where it might matter. For example, we might 

decide that recording of sounds is more like scene layout and should be included in the 

layout category rather than the programming category. If it were seen as one HLAA, it 

would be a programming HLAA. If it were seen as two HLAAs, it would be a layout 

HLAA followed by a programming HLAA.  

 

 

 

 

 

 

 

 

Figure 3: Events yielding one or two HLAAs depending upon the inter-log-entry gap. 

We have identified 33 different HLAAs. The complete list is shown in Table 3 using 

names that are suggestive of the high-level user action to which they correspond. Space 

does not permit us to provide a detailed description of each of these HLAAs. To verify 

our translation process, we used the Alice 2.2 programming environment with logging 

enabled and created four short Alice programs, manually recording all high-level user 

actions as we worked. We used various layout, programming, play, and save actions. 

Some actions were intentionally executed quickly; others slowly. Each of these programs 

were animations within which a variety of objects were used and moved within each of 

the four scenes; we used built-in methods and created methods and event handlers. We 

then ran the low-level log files through Ana2 and are pleased to report that each of the 

four log files were translated into files with the correct sequence of HLAAs.  

After an initial unsatisfactory attempt to combine low-level log entries into HLAAs 

using the time gap between two consecutive low-level entries, we created a grammar (set 

TIME=<1267653277921> EVENT=<insertChild> 
CHILDTYPE=<edu.cmu.cs.stage3.alice.core.Sound> ... 

TIME=<1267653277937> EVENT=<objectArrayInsert> 

ELEMENT=<World.Jock.chicken> OBJECTARRAYPROPERTY=<sounds> ... 

TIME=<1267653278218> EVENT=<insertResponse> 

 RESPONSETYPE=<edu.cmu.cs.stage3.alice.core.response.SoundResponse> … 

TIME=<1267653278234> EVENT=<objectArrayInsert> 
ELEMENT=<World.Jock.punch.__Unnamed9__> ... 

 

22 Journal of Educational Data Mining, Volume 5, No 2, August, 2013



of rules) to do the combining. We soon discovered that ignoring the time gaps altogether 

was also insufficient. The final parser uses a set of rules taking into account the time gap 

(MLEG) when required to resolve amibiguities.  The resulting parser combines all low-

level events from the 3122 student logs into identifiable HLAAs. Although we have no 

way to confirm that the HLAAs for those logs are exact matches for what the students 

actually did, we have also tested the parser on a small number of logs where we manually 

recorded the actual user actions, and in every case the HLAAs identified exactly matched 

the high-level user actions as expected. 

Table 3: High-Level Alice Actions (HLAAs) by category. 

Layout Programming Other  

CHANGE_POSE CHANGE_PROPERTY PLAY_ANIMATION 

CREATE_SCENE CREATE_METHOD PLAY 

DELETE_OBJECT DELETE_CALL SAVE 

INSERT_3D_ANIMATION_TEXT DELETE_METHOD  

INSERT_CHARACTER INSERT_CALL  

INSERT_MODEL INSERT_EVENT  

INSERT_OBJECT INSERT_METHOD  

INSERT_PERSON INSERT_SOUND  

INSERT_POSE INSERT_VARIABLE  

MOVE_CAMERA INSERT_WORLD_START  

MOVE_CHANGE_VISUAL_PROP MODIFY_ARRAY  

MOVE_OBJECT MOVE_METHOD  

MOVE_OR_MODIFY MOVE_METHOD_CALL  

MOVE_SUBJECT_ARROWS OBJECT_ARRAY_SHIFT  

MOVE_SUBJECT_DRAG   

RESIZE   

 

4.6 HOW SENSITIVE ARE THE INITIAL KEY METRICS TO POSSIBLE 
ERRORS IN THE TRANSLATION OF LOG ENTRIES INTO HLAAS? 

Any choice of MLEG is likely to result in either some high-level user actions being split 

into two HLAAs because of a large time gap, or two high-level user actions being 

combined into one HLAA because of a small time gap between the end of the first high-

level user action and the start of the next. In this section we examine how sensitive our 

initial metrics are to our choice of MLEG and discuss our search for an MLEG that 

would affect the fewest number of HLAAs.  
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Table 4 shows the distribution of gap times preceding programming HLAAs and layout 

HLAAs for our entire set of log files. These HLAAs are built from log entries using an 

MLEG of zero. That is, log entries are combined either because their timestamps are 

identical (i.e., they are separated by zero milliseconds) or because the grammar we have 

developed unambiguously identifies the sequences of log entries as specific types of 

HLAAs. For those sequences of log entries where we must rely on the MLEG to decide 

where to end one HLAA and begin the next, using a separation of one or more 

milliseconds results in the split of many would-be HLAAs. With an MLEG of zero, only 

log entries that are known to always go together, regardless of the time gap between the 

two consecutive log entries, are combined. For example, an HLAA that starts with an 

insertCallToUserResponse log entry will always be followed by either a propertyChange 

or objectArrayInsert log entry so they will be combined regardless of the time gap 

between the two.  

As you can see in Table 4, for layout HLAAs formed using an MLEG of zero, there is 

roughly a uniform distribution of gap times between 300ms and 999 milliseconds. For 

programming HLAAs, the distribution of gap times in this same range is small enough to 

be of little or no consequence with less than 0.3% of the log entries separated by gaps in 

the range 200-1000ms. Therefore, with respect to programming HLAAs, the choice of 

the MLEG is not important.  

Table 4: Distribution of gap times (HLAA gap times). 

(ms) 

0- 

99 

100- 

199 

200- 

299 

300- 

399 

400- 

499 

500- 

599 

600- 

699 

700- 

799 

800- 

899 

900- 

999 ≥1sec. 

program 28554 536 92 54 12 22 16 16 12 48 61626 

layout 28350 2040 4136 1872 1564 1508 1428 1500 1328 1494 90352 

 

Based on our manual inspection of the logs, using an MLEG greater than 300ms will 

result in combining HLAAs that were quite likely from two separate, but closely spaced, 

high-level user actions. Choosing an MLEG less than 300ms moves us down into an area 

in Table 4 where we see many potential HLAAs with small gap times (4136 in the range 

200-299ms) but we have not seen clear evidence of log entry sequences that should be 

split using these small gap times (below 300ms). The identification, via manual 

inspection, of HLAAs that are separated by approximately 300ms combined with the 

small drop in the distribution for layout gap times at 300ms has led us to use a value of 

300ms for the MLEG. Thus, we programmed the parser to split HLAAs when the inter-

log-entry gap exceeded an MLEG of 300ms, unless it was overruled by a grammar rule 
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that unambiguously separates or combines the two adjacent log entries (e.g. a stop 

EVENT immediately followed by a save EVENT which would always be separated). 

To test the sensitivity of using different MLEGs to further assist us in selecting an 

appropriate MLEG, we ran our parser generating results using MLEGs of 100ms, 200ms, 

300ms, and 400ms (see Table 5). Using an MLEG of 100ms, the parser split some 

sequences of log entries into multiple HLAAs that were unidentifiable, meaning they did 

not correspond to any possible high-level user action but were part of some larger HLAA. 

This argues we should use an MLEG greater than 100ms. As shown in Table 4, choosing 

an MLEG in the range of 300-399ms is near the low end of an area of relatively uniform 

distribution of gap times. 

Table 5: Key metrics to test gap sensitivity. 

Key Metrics 

Gap Time (MLEG) 

100ms 200ms 300ms 400ms 

prog time/layout time 1.627 1.627 1.627 1.627 

avg prog gap time (secs) 28.30 28.54 28.58 28.60 

avg layout gap time (secs) 10.43 10.56 10.84 10.96 

 

A key metric reported by Kelleher is the ratio of programming time to layout time. 

This metric is useful for determining whether students spend most of their time doing 

layout, programming, or a balance of the two. Table 5 shows the results of our 

exploration of how this metric changes when we assume different MLEGs to resolve 

ambiguities, as discussed in the previous section. The table also includes two additional 

key metrics: average gap time prior to a programming HLAA, and average gap time prior 

to a layout HLAA. As shown in Table 5, the results are relatively insensitive to an MLEG 

choice anywhere in the 100-400ms range. The ratio of total programming time to total 

time doing layout is unchanged when rounded to four significant digits. In addition, in the 

200-400ms range, the average gap time prior to a programming HLAA varies by less 

than one-tenth of a second and the average gap time prior to a layout HLAA varies by 

less than one-half of a second. The larger change for the average gap time prior to a 

layout HLAA is expected because this is where we see many individual high-level user 

actions in close succession (minor adjustments to the position of a character) that are 

indistinguishable, based on our analysis, from compound layout actions triggered by a 

single high-level user action. When identification is ambiguous using our knowledge of 

Alice and its logging system, our use of an MLEG of approximately one-third second 

(i.e., 300ms) allows us to identify quick mouse clicks while doing scene layout as 

individual layout HLAAs (provided the user pauses for at least 300ms), yet correctly 
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identifies as a single layout HLAA many long sequences of log entries generated when 

using the right mouse button to execute a scene layout action.  

In a few specific situations, primarily related to the initial loading of a scene done for 

a program play HLAA or related to a scene layout HLAA when done using the right 

mouse button, we allow even larger inter-log-entry times, up to 5 seconds for log entries 

within a single HLAA. These gaps always precede a log entry with ‘propertyChange’ as 

the value of the EVENT field. We found 96 instances where this long gap exception 

occurred in all of the log files we analyzed consisting of a total of over 800,000 log 

entries combined into over 200,000 HLAAs. 

In summary, at least as measured by the key metrics in Table 5, our translation from 

low-level log entries into HLAAs is relatively insenstive to the choice of MLEG 

anywhere in the range 100-400ms. Not surprisingly, we also observed that the possibility 

of serveral layout events in quick succession did result in some sensitivity to the choice 

of MLEG when examing the time gap preceeding an HLAA. This further suggests that 

our choice of MLEG will have a greater impact on the composition of layout HLAAs 

than on programming HLAAs. 

 

4.7 INTO WHAT CATEGORY (PROGRAMMING, LAYOUT, PLAY) OF HLAAS 
DO WE ALLOCATE SCENE CHANGES? 

Storytelling Alice allows students to easily create new scenes, place objects into scenes, 

and easily create code to change between scenes.  However, because the logging data 

cannot tell us what the students’ intentions were when they changed scene, it is difficult 

to know whether to categorize these actions into programming or layout. The problem 

arises when the student moves between scenes while in program development. Usually, a 

student moves to a scene in preparation for adding more objects to that scene. However, 

sometimes a student moves to a scene to determine the specific object with which to 

work for any programming activity that follows, even though the usual way to find the 

object with which to program is to use the object tree. In Alice 2.2, since the creation and 

movement between multiple scenes is handled differently (i.e., the student moves the 

camera view to another location within the single scene available, places objects at that 

point, etc.), movement from scene to scene is indistinguishable from other scene layout 

actions. Therefore, for consistency between the two Alice versions, our choice for log 

analysis was to place the scene movement HLAAs into the layout category.  

This decision exemplifies the limitations of any analysis tool based on logs to infer 

the intent of the programmer. We are trying to infer two different categories of 
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programmer activity (programming and layout); however, the same user interaction with 

the tool can result from two very different types of mental processes. 

 

4.8 HOW SHOULD THE TIME BETWEEN HLAAS BE TREATED? 

During the time interval between HLAAs the student may think about or reflect on what 

was just done, or plan what to do next, or some combination of both of these. We call this 

time “reflection time.” When the two bordering HLAAs are both in the same category of 

either programming or scene layout, then it is reasonable to conclude that the time was 

spent reflecting about programming or scene layout, respectively. However, when the 

two bordering HLAAs are from different categories, was the student reflecting on what 

they just did, or was the student reflecting about what to do next? Of course, it is also 

possible in either situation that the time between HLAAs could be due to other actions, 

such as taking a break, or waiting for a question to be answered. When the HLAAs are 

from different categories, we associate the reflection time with the second HLAA; that is, 

viewing the time primarily as reflecting about what to do next. For example, the time 

between a programming HLAA until the start of the following scene layout HLAA is 

associated with the scene layout HLAA.  

An exception to this reflection time allocation involves the ‘save’ HLAA. Typically 

students using Alice save their work for three different reasons: because they have 

completed a series of changes they don’t want to lose, because a ‘save’ prompt appears, 

or because they are ready to quit their work with Alice. If a student does a save and then 

quits, we allocate the time leading up to the save as reflection time for the save. If a 

student does a save and then continues to do more work with Alice, then the time leading 

up to the one or more saves and the time following the save until the next non-save 

HLAA is allocated as reflection time for this following HLAA. The reasoning for this 

becomes clear when one considers the scenario of saving because a ‘save’ prompt 

appears. During this scenario, the student is thinking about the next action; is interrupted 

by the ‘save’ prompt; saves; then continues with thoughts about the next action. Clearly, 

all of this reflection should be allocated to thinking about the action following the save 

HLAA. 

Although it came up during our work to verify the accuracy of our translation from 

low-level log events to HLAAs by examining some key metrics (see Table 5), the 

allocation of reflection time surrounding SAVE HLAAs is an example of the next higher 

level of analysis. We have identified two patterns of HLAAs that each contain one or 

more PLAY HLAAs. In one case the entire sequence is viewed as programming and in 
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the other it is viewed as layout. It is quite possible that future analysis will reveal other 

situations where the reflection time should not be allocated to the category of the 

subsequent HLAA but rather should be viewed as reflecting upon what was just done, 

and thus allocated to the category of the preceeding HLAA. This is a question that needs 

to be pursued by researchers analyzing programmers’ problem solving strategies. 

 

4.9 HOW IMPORTANT IS AN HLAA’S ELAPSED TIME (I.E., THE TIME 
FROM THE START OF AN HLAA UNTIL THE LAST TIMESTAMP ON 
LOG ENTRIES STILL DESIGNATED AS PART OF THAT HLAA) AND 
HOW SHOULD IT BE TREATED? 

Our analysis suggests that it is necessary to identify the conditions under which it is 

important. Each HLAA consists of one or more log entries. Each of these log entries has 

a timestamp and there is often a non-zero amount of elapsed time from the timestamp of 

the first of these entries until the timestamp of the last of these entries (unless of course 

the HLAA is represented by only one log entry as is the case for the save HLAA). We 

call this time the ‘action time’ for the HLAA. The action time for 96.4% of HLAAs is 

less than 100ms and 99.4% are less than 500ms. To help us decide if it is important 

where to allocate the action time of an HLAA (i.e., should we assume the programmer is 

thinking about what to do next or actively thinking about the action as it happens?) we 

computed the total action time and total reflection time for each of the categories of 

HLAAs. We found that the ratio of the total action time for programming HLAAs to the 

total reflection time allotted to programming HLAAs to be 0.0005, consequently, how we 

categorize the action time of programming HLAAs is of no consequence when trying to 

understand what programmers are doing when using Alice. Similarly, for scene layout 

HLAAs, excluding object animations using the right mouse button (see discussion 

below), the ratio is 0.0030, so even if we ignore this time or include it with layout time, 

the layout time will change by less about 0.3%.  

For two specific HLAAs the action times are significant and thus deserved careful 

consideration. In the case of PLAY HLAAs, the total action time is 1.7 times the total 

reflection time preceding the PLAY HLAAs. For PLAY_ANIMATION HLAAs that are 

executed by using the right mouse button (object animations), the ratio is 0.40. Thus, 

failure to properly account for these action times could significantly alter conclusions 

about programmer behavior. 

For PLAY_ANIMATION HLAAs, the action time is significant. The use of the right 

mouse button while in the scene layout editor of Alice (PLAY_ANIMATION HLAA) 

provides another way for programmers to position an object or object part (e.g., left hand 
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of robot or windup key of clown car), often giving more precision than using other parts 

of the Alice scene editor such as the mouse control buttons. In this mode, every object 

has a limited set of methods from which the object can respond; most objects have 

‘move’, ‘look at’, and ‘turn away from’ in addition to other methods appropriate to that 

class of objects. These user actions result in usually short animations as the object 

executes the selected action and an often-lengthy sequence of log entries are written to 

the log file, but in some cases the animations can be many seconds. It seems safe to 

assume that in most cases the student watches the animation to see if the desired effect is 

achieved. Similarly, during the action time of a PLAY HLAA, students are probably 

watching the animation.  

Thus, although the action time for programming HLAAs could safely be ignored, for 

consistency, when computing the total time for a category (layout, programming, and 

program play) we combine the sum of the action times and the reflection times associated 

with each HLAA in that category. 

 

4.10 HOW CAN WE DETERMINE WHETHER GAP TIMES ARE DUE TO THE 
STUDENT REFLECTING OR TO THE STUDENT BEING OFF-TASK? 

Baker (2007) found off-task behavior to be negatively correlated to learning, whereas 

reflection is an essential part of learning (Bransford et al, 2006). Thus, it is important to 

determine whether gap times are a time of reflection or inactivity. As a first step, we use 

a time-only single parameter model to determine a threshold above which the entire gap 

time period will be discarded. Baker developed a model for determining off-task behavior 

in a study of student close-ended mathematics problems using the Cognitive tutoring 

system (Baker, 2007). His model is composed of six parameters, the first of which was 

better at identifying off-task behaviors than a time-only single parameter model. He 

identified ‘slow actions’ (i.e., those actions with long reflection times) preceding or 

following ‘fast actions’ (i.e., those actions with short reflection times) as more indicative 

of off-task behavior than repeated ‘slow actions.’ In the future, we hope to investigate a 

more sophisticated model, than the single parameter model we used, for determining 

time-off-task. However, because the tasks (both open-ended and close-ended) our 

students performed are very different than those Baker studied (Baker, 2007), his six 

parameter model is not directly applicable.  

We begin our investigation of off-task time by looking at the distribution of reflection 

times under the obviously false assumption that no time is “off-task” (i.e., using an 
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infinite cut-off threshold). The average reflection times and standard deviations for each 

category are shown in Table 6.  

Table 6: Mean and standard deviation of reflection times in seconds assuming no time 

is “off-task”. 

HLAAs Category mean standard deviation 

Layout 11  38 

Programming 29  57 

Program Play 21  77 

Save 32  181 

 

In our observations of our student population, 120 seconds was chosen to indicate a 

long enough time that students were probably “off-task.” For programming and layout 

HLAAs, treating gaps that went for 120 seconds or longer as times during which the 

student is “off-task” would label a student as “on-task” during all gaps before 

programming and layout HLAAs within two standard deviations of the mean. For 

program play gap time, the threshold would need to be almost three minutes in order to 

retain all times within two standard deviations of the mean.  “Reflection” time before a 

save is only allocated to the SAVE HLAA if this save is the last HLAA in the file. In all 

other cases, the time before a save is allocated to the category of the HLAA following the 

save on the assumption that most saves are in response to a periodic prompt from the 

system. The large standard deviation for SAVE HLAAs possibly reflects off-task time 

culminating in a save due to the prompt when quitting Alice. 

To help us understand whether our initial key metrics were sensitive to the choice of 

what gap times should be considered off-task, we examined a range of upper thresholds 

(see Table 7). We see from the table that even using a large upper threshold (i.e., 10 

minutes) has a noticeable impact on these key metrics. 

 

Table 7: Key metrics for various upper thresholds with MLEG = 300ms. 

upper threshold-> 2min 3min 5 min 10 min Infinite 

prog time/layout time 1.613 1.676 1.703 1.699 1.627 

avg prog reflect time (secs) 21.10 23.39 25.27 26.90 28.58 

avg layout reflect time (secs) 7.89 8.53 9.12 9.76 10.84 

total prog reflect (hours) 184.8 208.3 226.9 242.4 258.0 

total layout reflect (hours) 114.1 123.8 132.8 142.3 158.2 

total play reflect (hours) 43.2 51.1 58.7 66.7 89.0 
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Decisions about which upper threshold to use can be informed by observations of the 

students. For example, an analysis of video recordings we made of student pairs using 

Alice suggests that the threshold should be less than five minutes (O. Ruvalcaba, personal 

conversation, February 3, 2012). It is possible that pairs use Alice differently than solo 

programmers, but we do not have video recordings of solos programming with Alice to 

confirm this hypothesis. In summary, more work needs to be done in this area. Certainly 

video recordings would give us confidence about our decisions about time off-task.   

 

4.11 DOES THE IDENTIFICATION OF HLAAS DISTINGUISH BETWEEN 
PROGRAMMING BEHAVIOR IN CLOSED VERSUS OPEN-ENDED 
TASKS? 

As a first-check to see if our identification of HLAAs and the categories adopted from 

Kelleher were useful for understanding behavior in initial programming environments, 

we compared the key metric of the ratio of programming time to screen layout time for 

two different activities. As shown in Table 8, the metrics are very different for students 

using Alice when doing the Fairy assessment (FA) versus open-ended game 

programming. Since we expected students to do little, if any, layout when doing the FA, 

we were not surprised at the ratio of programming time to layout time for the FA and thus 

this comparison serves as a validation of our process. 

Table 8: Comparing a key metric for Fairy Assessment (FA) vs. open-ended game 

programming. 

 FA  Games All 

prog time/layout time 8.512 1.435 1.627 

 

 Table 9 shows a summary of our findings for percentages of time spent in layout, 

programming, and program play, and compares them to the findings of Kelleher 

(Kelleher, 2006). Kelleher’s data are from a study of 88 middle school girls using either 

Generic Alice (GA in the table) or Storytelling Alice (SA). Because Kelleher’s time 

calculation is based on timestamps between log entries; in order to make a comparison of 

Kelleher’s results to ours, we combined the action times with the reflection times for 

these same HLAA categories. The fact that our values are somewhat similar to Kelleher’s 

is an additional validation of our analysis process. The differences we see could be 

attributed to our allocation of the reflection time of SAVE HLAAs to the reflection time 

of the actions following the SAVE unless it is a SAVE prior to quitting Alice since 

Kelleher doesn’t consider save low-level events in her calculations. 
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Table 9: Distribution of time by category from our analysis and that of Kelleher 

(2006). 

 Ana2 Kelleher GA Kelleher SA 

Programming 39.0% 34.0% 48.3% 

Layout 24.0% 40.8% 22.3% 

Program play 37.0% 25.1% 29.3% 

Other (not SAVE) 0.1% 0.1% 0.1% 

 

5 DISCUSSION 

This work has implications for tool developers implementing logging systems for 

programming environments and other software tools, as well as efforts to analyze logging 

data to understand how programmers are engaging with the environments. Here we make 

recommendations for logging systems. They are: 

 Integrate the logging into the design of the software in a way that captures individual 

high-level user actions. The challenges involved in identifying the HLAAs for 

sequences of low-level log entries reduce the usefulness of the data for informing 

tool developers and educators. If the software was designed and built with high-level 

action logging where every user interface action was logged, then an entry would be 

logged for each high-level action and every high-level action could have a 

corresponding log entry or easily identifiable and unique sequence of log entries (e.g. 

beginAction … endAction).  

 Include a ‘start’ log entry when the software opens. With Alice it is not possible to 

know how much reflection time is present before the current first log entry in each 

file. Currently, the first HLAA in each file has a zero reflection time.  

 Include a special log entry when a new file/project is opened, or when a new project 

is created. These are critical boundaries that are obscured in the current Alice 

logging system. 

 Consider the important questions to be asked from analysis of the logs before the 

design of the logging system is complete, and use them to dictate the fields to 

include in the logs. For example, we want to use the logs to determine whether 

novices use different successful problem solving strategies than experts. For 

example, researchers have used terms like tinkering and flailing to describe two 

different problem solving strategies. To see flailing in logs, the use of undo and redo 

must to be captured. 
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 Provide a mechanism to detect inactivity time. One approach is to set up the display 

to fade out after a certain period of keyboard or mouse inactivity. When a 

programmer makes a keystroke, a log entry is made to record the time from the fade 

out until the keystroke. This will not capture reflection time during which a student 

goes to another student or the teacher for help, however, it does correctly identify 

other time-off-task. 

 Design and develop an open data repository for logs from novice programming 

environments as well as other learning environments. Alice has a logging system that 

needs modification to make it more easily usable for the educational data mining 

community using the recommendations we give here. BlueJ has a logging system 

that has been used to study novice compilation behavior (Jadud, 2005; Jadud & 

Henriksen, 2009). Other programming environments designed for novices such as 

Scratch, Kodu, Agentsheets, Stagecast Creator, and Greenfoot would benefit from 

logging features. Alternatively, design the logging data to be consistent with the 

standards being developed by the PSLC DataShop group (Koedinger et al, 2010). 

DataShop is an open data repository of logs from intelligent tutoring systems 

designed for the educational data mining community. 

 The interface to the Alice programming environment has an undo/redo function. This 

provides an undo mechanism to the Alice programmer so that any HLAA back to the 

start of an Alice session can be undone. Similarly, HLAAs can be redone if they 

have been undone. Unfortunately, the Alice logging system does not capture any 

redo/undo actions; we have no record of any redo or undo actions a programmer has 

done. Future logging systems should ensure that these important high-level user 

actions are captured in the log. 

 

6 CONCLUSIONS AND FUTURE WORK 

The study described in this paper adds to the body of literature in learning analytics in 

five ways:  

 We built a parser called Ana2 that can be used for the pre-processing of Alice log 

files. The output of Ana2 is a log of HLAAs where each HLAA corresponds to a 

function provided at the user interface level of the Alice programming environment 

instead of at the much lower level of operations found in the logging system built 

into Alice. This higher level representation facilitates pedagogical inquiry about the 

instructional worth of the Alice programming environment as well as investigation of 

learning strategies of the students using the environment.  For example, researchers 

33 Journal of Educational Data Mining, Volume 5, No 2, August, 2013



can look for functionality provided by the Alice programming environment that is 

seldom used or that is seldom used successfully to identify parts of Alice that are 

difficult to use. If all initial programming environments had logging at the functional 

level, comparisons of various environments can be made that could support 

discussions about the ‘best’ programming environment for programmers of a specific 

age. Since Ana2 produces logs of HLAAs, the sequence of HLAAs in a log 

represents the sequence of operations by a student at the problem solving level. 

When the student was creating a computer game, this is a representation of the 

problem solving strategy used while working on an open-end task. Eventually, we 

hope this knowledge can be used to inform strategies for teaching and assessing the 

learning of novice Alice programmers as well as for improving the Alice 

programming environment.  

 We described the process we used to create Ana2, a tool that takes as input the low-

level Alice log files and translates them to high-level operations or HLAAs. 

Researchers can use this case study to learn about the fine-grained tuning that is 

necessary to make sense of low-level logging data. For researchers in the field of 

learning analytics, this kind of fine-grained tuning is necessary when usage logs are 

at a low level.  

 We have demonstrated that Ana2 can distinguish between close-ended situations and 

open-ended ones. Our findings have the potential to provide insight into learner 

modeling for constructivist learning environments (Jonassen, 1999).  In order to 

inform the development of tools to scaffold learning, it is important to know how 

novices think and the misconceptions they have. Computer log data can be used to 

describe what is actually happening in the process of interacting with the computer, 

and give insight into how educators and tool developers can make improvements. 

For example, learning analytics approaches can draw on cognitive learning theories 

that focus on how knowledge and skills are organized, rather than on whether a 

student has mastered a particular subject. To this end, these approaches can build on 

diSessa’s (2006) suggestion to think of mistakes as a window into how students 

think, rather than as an indication of flawed knowledge. 

 We made recommendations for the design of logging systems motivated by the 

problems we encountered with the pre-processing of the Alice logs. The 

improvements we suggest can be used to improve the Alice logging system and can 

be used when designing logging systems for other learning environments. Our 

recommendations should make learning analytics easier and more efficient.  
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 Logging data can contribute to the growing number of conversations about how to 

increase ‘computational thinking’ (Wing, 2010). It will allow us to address pressing 

research questions about what and how students learn from both open ended (e.g., 

exploratory activities) and closed-ended tasks. Relevant questions related to 

computational thinking build on unsupervised and supervised classification 

techniques similar to those described by Amershi et al. (Amershi & Conti, 2009): 

o Can logs be used to distinguish between programming strategies (e.g. linear 

development based on a plan vs. central algorithm followed by initializations) 

used by novices when programming games?  

o Can logs be used to distinguish between problem solving strategies (e.g. flailing 

vs. tinkering) used by novices when working on close-ended assessments like 

the FA? Can a strategy such as flailing be identified in real-time? If so, we are 

on the path to developing a user-specific adaptive learning environment. 

o Can logs be used to distinguish between programming strategies used by 

students working in pairs versus those working alone?  

o Logs can show there are differences in the findings for the closed versus open-

ended tasks. What do these differences mean? 

In summary, we believe that what we have learned while pre-processing Alice logs 

can be applied to other domains of programming or problem solving as well as for 

creating and analyzing the logs generated by other software tools. The Alice HLAAs are 

relatively generic such that the use of learning analytics on HLAAs may discover learner 

strategies that are applicable to other novice programming environments. The 

transferability of learner strategies to other learning environments is an interesting 

question and would have to be researched. Additionally, there are implications for the 

development of logging systems in new or existing software.  The lessons learned from 

the pre-processing of the Alice logs can be used to increase the transparency of logging 

data systems, thus increasing the potential accuracy and depth of the findings and 

decreasing the amount of time needed to parse the data and do the analyses. Finally, our 

method of pre-processing of Alice logs can inform others of how to prepare logging data 

for analysis—the required steps and decisions that need to be made before analyses can 

begin.  
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