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The evidence-centered design (ECD) framework is a powerful tool that supports careful and critical thinking about 

the identification and accumulation of evidence in assessment contexts . In this paper, we demonstrate how the ECD 

framework provides critical support for designing simulation studies to investigate statistical methods within an ill-

defined methodological domain like games-based assessment. We discuss the design and selected findings of a 

complex simulation study to investigate the utility of statistics derived from a non -parametric method called 

epistemic network analysis; this method is used in practice for the analysis of real data from a suite of digital 

learning environments called epistemic games. We present findings that show that one marginal ENA statistic, the 

weighted density statistic from social network analysis, has some ability to detect differences among a variety of 

simulated learners when they play different types of simulated games. Detection strength ranged from weak to 

strong, depending jointly on game design characteristics and the types of learners being compared. Our work 

illustrates the complex challenges of how best to describe, justify, and evaluate design decisions for simulation 

studies in the context of games-based assessment.  
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1. INTRODUCTION 

This special issue is concerned with the design, implementation, and data-analysis for diagnostic 

assessments in digital learning environments guided by the evidence-centered design (ECD) framework 

[e.g. Mislevy et al. 2006; Mislevy et al. this issue]. In this paper we demonstrate how the ECD framework 

can also be used to provide critical support for the design of simulation studies that investigate the 

performance of statistical methods in games-based assessments, which are a relatively ill-defined 

methodological domain. We specifically report on a simulation study with which we investigated the 

utility of statistics derived from a non-parametric analytic method called epistemic network analysis 

(ENA) [e.g., Bagley and Shaffer 2010; Nash and Shaffer 2011; Shaffer et al. 2010; see also Rupp et al. 

2010], which are applied to the analysis of real data from a suite of digital learning environments called 

epistemic games [e.g. Bagley and Shaffer 2009; Shaffer 2006a; see also www.epistemicgames.org]. 

1.1 Epistemic Games and Land Science 

One of the primary educational objectives of epistemic games is the development of ways of reasoning, 

acting, and communicating that are commensurate with those of professionals in a specialized domain 

such as urban planning, journalism, or archaeology [Shaffer 2006a]. This could be achieved through an 

internship in a professional workplace, for example. However, such professional development 

opportunities may not always be widely available, which is where epistemic games come in.  

Epistemic games are designed to help learners develop those skills by engaging them in scenarios that 

emulate, through a digital medium, the core task objectives, task constraints, and problem-solving 

processes in which real-life experts in a professional domain engage. We specifically use the example of 

an epistemic game called Land Science in this paper. In Land Science learners are presented with a series 

of authentic complex problem-solving activities around issues of land use, conservation, and community 

development, in which they engage individually or in groups under the guidance of a professional mentor. 

Learners become interns at the office of a fictitious urban and regional design firm. They weigh the trade-

offs of land use decisions in ecologically-sensitive areas, interact with virtual stakeholders, and use 

interactive tools to develop land use plans for local and national sites. Game play is comprised of 

approximately four stages, the latter three of which were the ones that we modeled via our simulation 

study.  

At the beginning of the epistemic game learners are welcomed as interns. The first task is the creation 

of an online biographical web page, which serves as a way for learners to familiarize themselves with the 

game interface and basic game mechanics. It is also the first time they are exposed to descriptions of the 

key competencies of domain-specific reasoning that the game targets. The game developers have 

described these as types of skills (S) and knowledge (K), facets of identity (I), kinds of values (V), and 

http://www.epistemicgames.org/


 

185  JEDM Special Issue, Article 5, Volume 4, Fall 2012 

 

ways of epistemological reasoning (E) – SKIVE elements for short. Theoretically, their joint usage is 

guided by the epistemic frame of the learners [Shaffer 2006b], which is their discipline-specific 

framework for reasoning, acting, and communicating.  

Second, learners engage in a virtual visit of the site that is to be re-zoned. Within the context of the 

game this site visit is much like a needs analysis. Learners virtually tour the city area that should be re-

zoned. During this tour, learners meet with members of multiple stakeholder groups to which they are 

randomly assigned (e.g. business community representatives, park and recreation representatives, 

environmental representatives). Virtual characters from each stakeholder group present learners with their 

concerns about how land is being used and their ideas for how the land should be rezoned in order to best 

achieve their goals. During the virtual site visit, contextual and historical information about the city area 

is made available to the learners as well. 

Third, after meeting with other learners from the stakeholder group, learners complete their first 

proposal, which is called a preference survey. This proposal is a simplified version of the game's 

culminating task. Learners must develop a rezoning proposal that will address the concerns of the 

stakeholder group they were assigned to. The preference survey is then assessed by the stakeholder group 

(i.e. via automated scoring rules and human mentors) and feedback is given to learners indicating to what 

extent they successfully captured that stakeholder group’s objectives. The preference survey and the 

feedback provided are later used by learners as resources in order to solve the game's final task. The re-

zoning activities are done in an interactive interface called iPlan, which is shown in Figure 1. 

 

 

Fig. 1. Screen shot of iPlan during re-zoning actions in Land Science with a particular parcel being re-zoned using code C1. 
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Although learners collaborate with one another and discuss how the preference survey is to be completed 

in light of their stakeholder group‘s interests, each learner submits his or her own proposal and also 

independently submits justifications for those decisions.  

In the fourth stage of the game, learners from all of the different stakeholder groups are mixed and 

asked to develop a redevelopment proposal that integrates the perspectives of all stakeholder groups. This 

redevelopment proposal is very similar to the preference survey except that learners must now develop a 

plan which addresses the conflicting needs of multiple stakeholder groups. In other words, for the 

preference survey learners are assigned to homogeneous groups that represent a single stakeholder group 

but for the final redevelopment proposal learners are assigned to heterogeneous groups whose 

responsibility is to represent all different stakeholder groups within the virtual community. The final 

redevelopment proposal has two components: a final rezoning plan submitted through iPlan as well as a 

notebook entry consisting of a narrative that presents this plan and justifies the proposed redevelopment 

changes. 

By game design there is generally no single solution that can be construed as optimal in either the 

homogeneous or heterogeneous stakeholder groups. The key idea of Land Science – and urban planning 

more generally – is to have learners develop consensus-building strategies within both versions of the 

rezoning task. It is this reasoning through a complex problem that is at the core of epistemic game play: 

learners have to reconcile diverse stakeholder interests in ways that require reliance on the postulated 

SKIVE elements as guided by their epistemic frame. 

1.2 Evidence Identification and Accumulation in Land Science 

In ECD terminology, the specification of the SKIVE elements – with a potential breakdown into 

subelements – as well as a specification of their interrelationships using epistemic frame theory 

constitutes the specification of the global student model for an epistemic game. The individual SKIVE 

elements are the student model variables. Technically, different subsets of SKIVE elements (i.e. student 

model variables) could be used for different reporting purposes; thus, one could also construct and speak 

of multiple different student models for different reporting purposes. 

Epistemic games like Land Science are collaborative, dynamic, and complex, and the process of 

making inferences about learner development and emergent expertise within epistemic game 

environments is non-trivial. In ECD parlance, any analysis of the data generated within these 

environments serves to create an evidence-based narrative. Learners’ observable actions are used to infer 

their competency profile on the underlying SKIVE elements and to reason about their epistemic frame 

that guides their use. This reasoning process shares many similarities with the development, 
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implementation, and analysis of complex performance assessments in the domains of educational and 

psychological measurement [see Mislevy et al. this issue].   

In epistemic games like Land Science, a key source of observable evidence about SKIVE elements is 

learners’ utterances during online chat as they work together to collaboratively solve problems and 

complete essential tasks; Figure 2 shows such a chat excerpt. 

  

 

Fig. 2. Chat excerpts for learners playing Land Science. 

 

Evidence identification, which is part of the evidence model in the conceptual assessment framework  

(CAF) of ECD, involves the segmentation, sorting, and scoring of those utterances. Choices about how 

this is done are driven by content, sequential, and game design considerations within a particular activity 

structure. In ECD parlance, how design features of the game form meaningful evidentiary boundaries / 

evidentiary segments for evidence identification purposes is part of the task model specification.  

Figure 3 on the next page illustrates the process of evidence identification in Land Science. Learners’ 

utterances are captured during group chat sessions and ordered sequentially in a database. The content of 

that dialogue is then coded automatically at a fine grain size using a series of automated scoring rules. 

Each scoring rule assigns ‘0’s and ‘1’s to indicate the presence of absence of individual keywords – or 
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particular combinations of keywords – that have been identified by the game developers as indicators that 

students rely on the underlying SKIVE elements during their activities.  

These codes could also be rescored for a more coarse-grained coding for sets of utterances that 

correspond to meaningful task or thematic boundaries (i.e. learners could receive a ‘1’ if they use relevant 

keywords in at least one of the constituent utterances within an evidentiary boundary). A similar coding 

scheme could also be used to aggregate up the binary codes for the 19 subcomponents to create five 

higher-order SKIVE codes (i.e. learners could receive a ‘1’ for a particular SKIVE element within an 

evidentiary boundary if they use relevant keywords for at least one of the subcomponents within that 

boundary). 

Once evidentiary boundaries / segments have been identified and utterances have been scored, the 

resulting vector of binary codes for a particular evidentiary segment and learner is transformed into an 

adjacency matrix using basic logic rules; a sample matrix for a single learner for a single evidentiary 

segment with five student model variables is shown is shown in Table I. Put simply, an adjacency matrix 

shows the co-occurrences between SKIVE elements; the entries in the matrix in Table I, for example, 

indicate that the learner jointly relied on the elements S, K, and V in this particular evidentiary segment.  

 

Table I. Sample Adjacency Matrix for an Individual Learner for a Single Segment / Task 

 S K I V E 

S 0 1 0 1 0 

K 1 0 0 1 0 

I 0 0 0 0 0 

V 1 1 0 0 0 

E 0 0 0 0 0 

 

Beliefs about SKIVE elements (i.e. student model variables) get updated across evidentiary segments 

continuously throughout the epistemic game; in Land Science this is most frequently the case when a 

learner participates in discussions via group chat. The evidence for learners’ emerging expertise can then 

be summarized across any range of evidentiary segments simply by summing the individual entries in the 

relevant adjacency matrices. 
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Fig. 3. Utterances coded into 19 binary observable variables that are color-coded by the five SKIVE elements.
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The resulting matrix is called a cumulative adjacency matrix; extending the previous example, Table II 

shows such a matrix calculated for an individual learner across three evidentiary segments.  

 

Table II. Cumulative Adjacency Matrix for an Individual Learner across Three Evidentiary Segments 

 S K I V E 

S 0 2 1 2 1 

K 2 0 1 3 1 

I 1 1 0 1 1 

V 2 3 1 0 1 

E 1 1 1 1 0 

 

This matrix shows, for example, that the learner has used several competencies multiple times, which led 

to two associations between S and K as well as S and V, three associations between V and K, and one 

association between the remaining pairs of elements across the segments.  

The counts in the cumulative adjacency matrix are viewed by the game developers as evidence of the 

mastery of the individual competencies as well as the connections between them, the latter being the 

conceptual hallmark of emerging expertise under epistemic frame theory. In the language of ECD, the 

creation of cumulative adjacency matrices and the computation of statistics for them is the process of 

evidence accumulation, which is also a part of the evidence model in the CAF. 

1.3 The Weighted Density Statistic of Epistemic Network Analysis 

The data that arise from the above evidence identification and accumulation processes are multivariate in 

nature, consist of discrete indicators, are collected longitudinally within a game, and may be available 

only for a small set of learners within a single classroom or program. Consequently, there is currently no 

prototypical statistical analytic method – certainly no parametric one that we know of – that can be 

applied directly to these data. 

This was the impetus for the development of ENA, which is a non-parametric analysis approach. 

While different variants of ENA have been proposed in recent years by members of the game 

development team [e.g. Bagley and Shaffer 2010 use multidimensional scaling in the process and Nash 

and Shaffer 2011 use tools from social-network analysis] we focus on the social-network based variant of 

ENA.  
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We specifically focus on one of the key marginal statistics under this approach, which is known as the 

weighted density (WD); it is defined as follows: 

 

𝑊𝐷𝑡 = √∑ ∑ 𝑎𝑘𝑘′,𝑡
2

𝑘≤𝑘′

𝐾

𝑘=1

 

 

where k  = 1,…,K indexes a particular SKIVE element and akk’,t is simply a particular entry in the 

cumulative adjacency matrix at evidentiary segment t (see Table II); only entries in the lower off-triangle 

are effectively used. 

Put differently, the WD statistic summarizes, for each learner, the total number of unique pair-wise 

associations / connections between SKIVE elements. This summary can be done for a single evidentiary 

segment, if computed only for the adjacency matrix of that segment, or across multiple evidentiary 

segments, if computed for the cumulative adjacency matrix across the relevant segments.  

1.4 Study Objective & Research Questions 

Digital learning environments are becoming increasingly flexible and dynamic while researchers are just 

beginning to map out the specific learning processes within these environments. While the designs of 

these environments are often in flux in early stages of development, there is typically an immediate need 

for understanding how reliable and valid characterizations of learners can be constructed. Ideally, 

statistics that support such characterizations would be useful for guiding individual learners’ interactions 

with each other and with the system. They might also be used to provide game developers with 

information about how to fine-tune the design of an epistemic game to optimize learning overall.  

The strongest evidence for the performance of any statistic under novel conditions is generally 

collected via simulation studies. Simulation studies are designed statistical experiments that can provide 

reliable scientific evidence about the performance of statistical methods. As noted concisely by Cook and 

Teo [2011]: 

 

In evaluating methodologies, simulation studies: (i) provide a cost-effective way to quantify 
potential performance for a large range of scenarios, spanning different combinations of sample 
sizes and underlying parameters, (ii) allow average performance to be estimated under repeat 
Monte Carlo sampling and (iii) facilitate comparison of estimates against the “true” system 
underlying the simulations, none of which is really achievable via genuine applications, as 
gratifying as those are. (p. 1) 
 

(1) 
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In our collaboration with the game development team, we sought to investigate the performance of the 

WD statistic under a range of data-analytic conditions. We specifically wanted to address the following 

two research questions:  

1. How useful is the WD statistic for characterizing the performance of individual learners when 

they play differently designed epistemic games? 

 

2. How useful is the WD statistic for characterizing the performance of pairs of learners when 

they play differently designed epistemic games? 

 

In the next section, we describe the design and implementation of the simulation study while in the 

subsequent section we describe the results of the simulation study. We close this paper with a critical 

review of the key findings, a discussion of the generalizability of our findings, and a reflection on the use 

of the ECD framework for simulation study designs in games-based assessment contexts.    

2. DESIGNING AND IMPLEMENTING THE SIMULATION STUDY 

We designed and implemented this simulation study during early stages of game development so that the 

results of the study could inform decisions about the game design. Consequently, only some of the design 

features of the game were stable enough to be operationalized as simulation design conditions because the 

game developers were still exploring how best to apply what they had learned in their domain analysis for 

urban planning practices to the specification of the learning environment.  

This illustrates nicely a tension that many researchers who are working in games-based assessment and 

related design-based research contexts are facing. On the one hand, design teams want to incorporate 

some evidence about the performance of their analytic methods early on in the game development 

process. On the other, statisticians require clear guidelines for operationalizations of game design features 

to design and implement well-targeted simulation studies that can produce evidence that is both 

statistically sound and practically relevant. 

Negotiating this tension can be particularly challenging within interdisciplinary teams comprised of 

members who come from different methodological traditions and are accustomed to discipline-specific 

standards for evidence. We found that the ECD framework supported the design of our simulation study 

by providing a much-needed conceptual and rhetorical structure that team members could use to 

effectively communicate with one another. In particular, it helped all members to articulate the core 

drivers of their targeted evidentiary assessment argument: the characteristics of the learners, the tasks, and 

their associated interactions.   
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2.1 Design Summary  

Our simulation study design can be viewed as a setup where 21 distinct types of learners – or (
21
2

) = 210 

pairs of learners – play 2 (game length)  21 (task parameter)  4 (design matrix) = 168 different games. 

Table III shows an overview of these design conditions; note that we use the term task  synonymously 

with evidentiary segment for the rest of this paper as it lends itself naturally to communicating the 

evidentiary and conceptual story of this study.  

 

Table III. Summary of Simulation Design Conditions 

ECD Model Factor Levels # of levels 

Learner Characteristics 

Student Model 

# of Student Model Variables S, K, I, V, E 1 

Type of trajectory 
Linear 15 

Curvilinear 6 

Total # of learner conditions  21 

Game characteristics 

Task Model 
Task 

specification 

Task difficulty Various types 7 

Task specificity 

 

Low, moderate, 

high 
3 

Assembly Model 

# of segments / tasks 60, 120 2 

Design matrix 

specification 

Task complexity Constant, varying 2 

Task content Constant, varying 2 

Total # of game conditions  168 

# of replications per learner-by-game condition 100 

 

As we discuss in the next section, we relied on the ECD framework to ensure a defensible mapping of 

our simulation parameters onto features of the real-life epistemic games. We utilized principles from item 

response theory (IRT) [e.g. de Ayala 2009; Reckase 2009] and diagnostic classification modeling (DCM) 

[e.g. Rupp et al. 2010] to define learner and task parameters. We then characterized the expected behavior 

of learners with different learning trajectories for games comprised of tasks of varying difficulty, 

complexity, and content. These characterizations were operationalized as probabilities of successful 

activation or suppression of SKIVE elements (i.e. student model variables). These probabilities were then 

used to generate response data so that the WD statistic could be repeatedly computed on the generated 

data sets across replications. 
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2.2 Learner Parameters 

As noted earlier in the paper, specifying the number of SKIVE elements, their grain size, and their 

development over time constitutes the core of the specification of the student model. Learners’ 

differential engagement with the game and consequent differential development of expertise was evident 

in qualitative observations of learners in real-life implementations of different epistemic games as well as 

from pre / post interviews. Through a series of conversations with the design team about how learners of 

varying ability levels differentially acquire expertise over the course of game play, we identified several 

types of learners which we sought to represent in our simulation study.  

We first conceived of each of the SKIVE elements (i.e. student model variables) as possessing two 

mastery states (‘mastered’ or ‘non-mastered’) at each evidentiary segment / task in the game. We then 

specified distinct trajectories of mastery probabilities for each of these variables across the different 

segments / tasks that comprise the game. Some learners were specified to progress toward mastery 

steadily throughout the game play, some learners were specified to learn quickly at the outset of a game 

with minimal gains later on, some learners were specified to learn slowly initially with rapid gains later in 

the game, and some learners were specified as remaining at their initial mastery levels throughout the 

game.  

These learning trajectories were operationalized using 15 linear and six curvilinear trajectories that are 

shown in Figures 4 and 5, respectively, on the next page. In each of the figures, a point on the X-axis 

corresponds to an evidentiary segment / task and a point on the Y-axis corresponds to the mastery 

probability for a particular SKIVE element (i.e. student model variable). Although trajectories were 

designed to represent different types of learners observed during pilot administrations of the game, they 

were necessarily an abstraction of how learners develop their epistemic frames over time in real life. To 

keep the design of the simulation study further manageable – and because more fine-tuned theories of 

development were not available at the time of the study – we generated data such that the mastery 

trajectories for all SKIVE elements (i.e. student model variables) were identical.  

As noted in Table III above, the results in this paper focus only on conditions with five student model 

variables representing a relatively coarse definitional grain size of the SKIVE variables. Even though this 

is computationally realistic, it is also a limitation of this study. Yet, it facilitates simpler descriptions of 

the resulting patterns as well as a sharper focus on the use of the ECD framework during the study design 

process for the purposes of this paper. 
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Fig. 4. Linear trajectories of mastery probabilities for SKIVE elements (i.e. student model variables) across evidentiary segments / tasks. 

 

 

Fig. 5. Curvilinear trajectories of mastery probabilities for SKIVE elements (i.e. student model variables) across evidentiary segments / tasks. 

  

Evidentiary segment / task t 

Evidentiary segment / task t 
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2.3 Specification of Task Parameters  

With the game still in development, we relied on the principles of modular task model specification / task 

design as described within the ECD framework. We operationalized the influence of key task design 

features via task parameters, which we viewed as reasonably representative abstractions of possible 

measurement properties. 

More concretely, modern latent-variable models for assessment data such as multidimensional IRT 

models [e.g. Reckase, 2009] contain ‘difficulty’, ‘discrimination’, and ‘guessing’ parameters to reflect the 

operating characteristics of assessment tasks. DCMs [Rupp et al. 2010; Rupp et al. this issue], which are 

also multidimensional models, contain analogous task parameters that are formulated relative to the 

mastery states of the learner; they are referred to as ‘slipping’ and ‘guessing’ parameters in the literature. 

We chose to use DCMs for the purposes of this study due to slightly simpler operationalizations that 

result from this choice. 

Slipping parameters, typically denoted by the letter s, represent probabilities of responding 

inappropriately when learners have mastered a particular targeted skill or a set of targeted skills; thus, the 

reverse probability of (1 – s) is the probability of providing an appropriate response. Guessing 

parameters, typically denoted by the letter g, represent probabilities of responding appropriately when 

learners have not mastered a particular targeted skill or a set of targeted skills. In other words, (1 – s) and 

g are the task-specific probabilities that a learner will demonstrate their mastery of a particular student 

model variable for a given task when it is expected by game design. 

Within the context of epistemic games, the focus is not simply whether or not a learner produces a 

correct response to a particular task, however, either in absolute or in graded terms. Because the 

pedagogical goal is for learners to develop ways of reasoning through authentic problems with the kind of 

economic application of skills that characterizes professional expertise, learners are expected to produce 

efficacious solutions to tasks. That is, learners are expected to produce solutions that are both effective 

(i.e. they solve the problem at hand) and efficient (i.e. they draw only on the key epistemic frame elements 

that are necessary and sufficient).  

To acknowledge this characteristic of epistemic games, we defined four core task parameters for this 

simulation study that are derivatives of DCM parameters; one obtains eight probabilities from these four 

because of the complementary events with total probabilities that sum to one for each pair. These 

parameters describe the extent to which learners’ reliance on SKIVE elements matches the expected 

activation pattern (i.e. the usage pattern of an expert / professional in the field). We distinguish between 

guessing and slipping parameters for each SKIVE element (i.e. student model variable) when an expert 

would utilize (i.e. activate) a particular skill to complete a task (𝑄𝑡𝑘= 1) and when the expert would not 

utilize (i.e. suppress) a particular skill to complete a task (𝑄𝑡𝑘 = 0).  
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We use  to denote one of the K SKIVE elements (i.e. student model variables), Qtk to denote an 

expected response to task t for SKIVE element k , Xtk to denote the observed learner response to task t for 

SKIVE element k , and a parenthetical superscript to denote whether the slipping or guessing parameter is 

for the response of ‘1’ (activation) or the response of ‘0’ (suppression). Thus, we defined our eight 

conditional response probabilities based on our four task parameters as follows: 

 

𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 1) =  1 − 𝑠
𝑡𝑘

(1)
  (2) 

 

𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 1) =  𝑠
𝑡𝑘

(1)
   (3) 

 

𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 0) = 1 − 𝑠
𝑡𝑘

(0)
  (4) 

 

𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 0) = 𝑠
𝑡𝑘

(0)
   (5) 

 

𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 1) =  𝑔
𝑡𝑘

(1)
   (6) 

 

𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 1) =  1 − 𝑔
𝑡𝑘

(1)
  (7) 

 

𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 0) =  𝑔
𝑡𝑘

(0)
   (8) 

 

𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 0) =  1 − 𝑔
𝑡𝑘

(0)
  (9) 

 

For example, 1 − 𝑠𝑡𝑘
(1)

 in equation (2) is the probability that a learner who has mastered a particular 

SKIVE element successfully activates it when expected while 𝑔𝑡𝑘
(1)

in equation (6) is the probability that a 

learner who has not mastered it successfully activates it when expected. Similarly, 1 − 𝑠𝑡𝑘
(0)

 in equation 

(4) is the probability that a learner who has mastered a particular SKIVE element successfully suppresses 

it when expected while 𝑔𝑡𝑘
(0)

in equation (6) is the probability that a learner who has not mastered it 

successfully suppresses it. The remaining four probabilities (3), (7), (5) and (9) are the complements of 

these. 

These slipping and guessing parameters comprise the statistical and conceptual building blocks for the 

definition of task features according to what we called task difficulty and task specificity. We defined task 

difficulty as a function of the slipping and guessing parameter values for the successful activation of 

SKIVE elements (i.e. 1 − 𝑠𝑡𝑘

(1)
 and 𝑔𝑡𝑘

(1)
) and task specificity as a function of the slipping and guessing 

parameter values for the successful suppression of SKIVE elements (i.e.  1 − 𝑠𝑡𝑘
(0)

 and 𝑔𝑡𝑘
(0)

).    
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Again, because a simulation study narrative is a statistical narrative at its core, it was important that 

decisions about game segmentation and the decision of task parameters reflected efforts to balance 

statistical and practical considerations. Task parameters needed to be selected in a way that was reflective 

of an understanding of how the WD statistic is calculated to ensure that we induced sufficient variation in 

conditions to observe variation in the statistic.  

Since it is obviously easy to suppress (i.e. not use) a particular SKIVE element when it has not been 

mastered, we decided to set 𝑔𝑡𝑘
(0)

 = 1 for all conditions. For the other three task parameters, “low”, 

“medium”, and “high” levels were operationalized by sampling, for each evidentiary segment / task of the 

game, slipping and guessing parameters for each SKIVE element (i.e. student model variable) from four-

parameter Beta distributions with the following interval boundaries and means: High: (.20, .30), mean = 

.25; Medium: (.10, .20), mean = .15; Low: (.00, .10), mean = .05. The crossing of seven task difficulty 

conditions (1-7; see Table A-I) with three task specificity conditions (A, B, C; see Table A-II) yielded 21 

different task conditions (A1, A2, …,C6, C7). 

2.4 Task Assembly / Game Design 

Finally, we considered how tasks of varying difficulty and specificity might be combined to create an 

overall game, the composition of which we captured in four different design matrices. Design matrices 

reflect the way in which multiple tasks are strung together to comprise a complete game that has a 

plausible structure and flow, and are conceptually tied to what is referred to as the assembly model of the 

game in the ECD framework. 

Design matrices are also referred to as Q-matrices [e.g. Tatsuoka, 2009; Rupp et al. 2010] in the 

educational and psychological measurement literature. They are conceptually related to simple tables of 

specification for test designs as they specify which tasks are designed to measure (i.e. provide evidence of 

mastery of) a (latent) proficiency / dimension. Each evidentiary segment / task corresponds to a row in a 

design matrix and each of the SKIVE elements (i.e. student model variables) correspond to a column. If a 

task targets a particular SKIVE element this is indicated by a ‘1’ in the corresponding cell of the design 

matrix; otherwise a ‘0’ is recorded. Design matrix 1, which we will frequently refer back to later in the 

paper when we discuss results, is shown in Figure 6 on the next page. 

Operationalizing learners’ development of mastery over the course of game play requires that 

meaningful evidentiary segments be defined. As noted earlier, segments may be defined by game content, 

specifications of task objectives, or dynamically based on learners’ interactions with each other. To align 

with the number of evidentiary segments we had observed in practice, we specified two game lengths of T 

= 60 and T = 120 segments / tasks. They were then re-conceptualized as three distinct blocks of tasks 

representing the beginning, middle, and end portions of the activity flow of the game. These decisions 
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were consistent with the structure of the piloted version of Land Science which featured three delineable 

sets of activities which varied in focus and complexity (i.e. virtual site visit, preference survey, and 

redevelopment proposal). 

 

 

Fig. 6. Design matrix 1, which includes tasks that increase in complexity and focus on different SKIVE elements over the duration of game play.  

 

We then differentiated which SKIVE elements were targeted in each of the three blocks of tasks. For 

example, in design matrix 1 above the more “foundational” SKIVE elements S and K were specified to be 

targeted earlier in the game while more “advanced” SKIVE elements I, V, and E were specified to be 

targeted later in the game. Table IV summarizes the measurement properties of the four design matrices 

that we used in our simulation study.  
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A design matrix can be viewed as a structure wherein two prototypical task complexity designs are 

crossed with two prototypical SKIVE focus designs. For example, while both design matrices 1 and 2 

have a progression from low to medium to high complexity across the three blocks of 40 tasks each, 

design matrix 2 contains tasks that require the activation of all five SKIVE elements throughout the game 

whereas design matrix 1 focuses on the more “foundational” competencies S and K first, then on all 

SKIVE elements, and at the end specifically on the more “advanced” competencies I, V, and E. Similarly, 

while the mean and median counts of SKIVE elements across all tasks and the SKIVE focus across the 

game blocks are identical for design matrix pairs 1 and 3 as well as 2 and 4, they differ in task complexity 

across the game blocks.  

 

Table IV. Structure of Design Matrices across Three Blocks of 40 Tasks 

Q-matrix 

Task Complexity 

in Game Blocks 

SKIVE Focus  

in Game Blocks 

Marginal Counts 

across Game Blocks 
Marginal Means 

1 2 3 1 2 3 S K I V E Mean Median 

1 Low Med High S, K All I, V, E 77 82 72 73 71 3.13 3 

2 Low Med High All All All 69 76 57 57 47 2.55 2 

3 Low Low Low S, K All I, V, E 70 77 76 70 83 3.13 3 

4 Low Low Low All All All 65 70 60 59 52 2.55 2 

 
Note. The actual probability values for the occurrence of SKIVE elements in the three blocks of tasks for the four 

design matrices are available from the first author upon request.  

 

We note that the assignment of targeted SKIVE elements to particular tasks within the three blocks of 

tasks in a particular design matrix was done probabilistically so that the relative emphasis on particular 

SKIVE elements was not absolute. Although we empirically investigated the impact of game length 

during our analyses, the results in this paper focus only on games comprised of T = 120 segments. Results 

from preliminary analyses showed that learner differences were captured more sharply here versus games 

comprised of fewer segments. 

2.5 Data Generation 

Recall that inverse slipping and guessing parameters were defined above as probabilities of successfully 

activating or suppressing particular SKIVE elements (i.e. student model variables) when completing a 

particular task conditional on learners’ proficiency / mastery state for each variable. In order to generate 

data we computed, for each learner type, task type, and game type, the probabilities of producing 

responses of ‘1’ and ‘0’ across both possible mastery states of the SKIVE variables.  
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As shown in equations (10) – (13), these probabilities are functions of (a) the mastery probabilities for 

each of the student model variables – P(k = 1) for ‘mastery’ and P(k = 0) for ‘non-mastery’ – defined at 

each task of the game via the learners’ trajectories (see Figures 4 and 5), (b) the slipping and guessing 

parameters of the tasks (see Tables A-I and A-II), and (c) the design matrix entries Qtk: 

 

𝑃(𝑋𝑡𝑘 = 1|𝑄𝑡𝑘 = 1) = 𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 1)𝑃(𝛼𝑘 = 1) + 𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 1)𝑃(𝛼𝑘 = 0) 

                    = (1 − 𝑠𝑡𝑘

(1)
)𝑃(𝛼𝑘 = 1) + 𝑔𝑡𝑘

(1)
𝑃(𝛼𝑘 = 0)    (10) 

 

𝑃(𝑋𝑡𝑘 = 0|𝑄𝑡𝑘 = 1) = 𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 1)𝑃(𝛼𝑘 = 1) + 𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 1)𝑃(𝛼𝑘 = 0) 

                     = 𝑠𝑡𝑘
(1)

𝑃(𝛼𝑘 = 1) + (1 − 𝑔𝑡𝑘

(1)
)𝑃(𝛼𝑘 = 0)   (11) 

 

𝑃(𝑋𝑡𝑘 = 0|𝑄𝑡𝑘 = 0) = 𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 0)𝑃(𝛼𝑘 = 1) + 𝑃(𝑋𝑡𝑘 = 0|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 0)𝑃(𝛼𝑘 = 0) 

                     = (1 − 𝑠𝑡𝑘

(0)
)𝑃(𝛼𝑘 = 1) + 𝑔𝑡𝑘

(0)
𝑃(𝛼𝑘 = 0) 

                     = (1 − 𝑠𝑡𝑘

(0)
)𝑃(𝛼𝑘 = 1) + 𝑃(𝛼𝑘 = 0)   (12) 

 

𝑃(𝑋𝑡𝑘 = 1|𝑄𝑡𝑘 = 0) = 𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 1, 𝑄𝑡𝑘 = 0)𝑃(𝛼𝑘 = 1) + 𝑃(𝑋𝑡𝑘 = 1|𝛼𝑘 = 0, 𝑄𝑡𝑘 = 0)𝑃(𝛼𝑘 = 0) 

                     = 𝑠𝑡𝑘

(0)
𝑃(𝛼𝑘 = 1) + (1 − 𝑔𝑡𝑘

(0)
)𝑃(𝛼𝑘 = 0) 

                     = 𝑠𝑡𝑘

(0)
𝑃(𝛼𝑘 = 1)      (13) 

 

Recall that we set 𝑔𝑡𝑘

(0)
= 1, which implied 1 -  𝑔𝑡𝑘

(0)
= 0, so that equations (12) and (13) simplified.  

Put differently, each combination of SKIVE mastery probabilities, task parameters, and design matrix 

entries across evidentiary segments / tasks thus created a probability matrix for each simulated learner 

who played each type of simulated game. We then performed 100 replications by taking 100 independent 

Bernoulli draws from these probability matrices and transformed the random draws into an observable 

dichotomous score variable. This led to 100 generated data sets for each game design condition for each 

of the 21 learner types and 100  100 = 10,000 crossed data sets for pair-wise comparisons of learners. 

We performed all computations in R [R Development Core Team 2008] with code that is available from 

the first author upon request.  

2.5.1 Computation of Two Variants / Aggregations of the WD Statistic. The WD statistic can be 

calculated at any point during game play to summarize observed accumulated evidence for each learner’s 

emerging expertise as captured by the SKIVE elements (i.e. student model variables). In line with the 

interests of the game development team at the time, we chose to focus on two different analytic variants / 
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aggregations of the WD statistic. Both variants could technically be computed at any segment / task of the 

game, but we chose their computation at the final segment / task for illustrative purposes and simplicity. 

On the one hand, we examined the performance of the WD statistic when calculated for individual 

learners once at the conclusion of the game; this led to 100 values for each learner and game design 

condition based on the 100 replications.  

On the other hand, we focused on an aggregate value of the WD statistic for learner pairs, which was 

calculated across all segments / tasks based on the similarity of WD values at each segment / task. This 

variant was computed in three steps. First, we computed the WD statistic for the cumulative adjacency 

matrix at each segment / task for each learner type and game design condition, leading to 100 values at 

each segment / task. We then computed the 2.5th and 97.5th percentiles of these distributions of WD values 

at each segment / task for each learner type and game design condition, which resulted in what we would 

call empirical pseudo-confidence intervals. Finally, we computed the percentage of segments / tasks for 

which the 95% pseudo-confidence bands for a pair of learners overlapped (i.e. for which there was no 

notably sharp difference between pairs of learners). This resulted in a single percentage-overlap value for 

each pair of learners based on the 100 replications.  

We also performed factorial analyses-of-variance (ANOVA) on the resulting two variants / 

aggregations of the WD statistic with the game design factors as independent variables. The performance 

of the two WD variants is presented in the following section in three subsections for each, (1) general 

patterns, (2) ANOVA results, and (3) follow-up graphics for explanatory purposes. Additional results for 

these two WD variants and other ENA statistics that are not the focus of this paper are available from the 

first author upon request.  

3. Results 

3.1 WD Statistic for Individual Learners (Variant 1) 

3.1.1 General Patterns. Figure 7 shows the values of the WD statistic for the cumulative adjacency 

matrix of all 21 learner types at each segment / task over the duration of game play for a game built with 

design matrix 1. Each line depicts the median WD value calculated across all 100 replications; to aid in 

the visual interpretability of the patterns, the WD values for six representative learner types with 

relatively distinct trajectories are highlighted in color. 



 

203  JEDM Special Issue, Article 5, Volume 4, Fall 2012 

 

 
Fig. 7. Median values of the WD statistic for 21 learners for a game designed with design matrix 1.  

 

The meanings of the six highlighted trajectories are as follows: 

 

(a) red corresponds to an expert (flat trajectory / linear trajectory type 1) 

(b) green corresponds to a type of learner who starts off with low mastery and makes steady 

gains throughout the game until full mastery is achieved (linear trajectory type 2) 

(c) light blue corresponds to a type of learner who starts off with moderate mastery and 

does not progress at all (linear trajectory type 3)  

(d) dark blue corresponds to a type of learner who makes very quick learning gains early in 

the game and then makes progressively fewer gains (curvilinear trajectory type 1) 

(e) orange corresponds to a type of learner who makes quick learning gains early in the 

game but slower than the learner type shown in blue (curvilinear trajectory type 2) 

(f) purple corresponds to a type of learner who makes very slow gains initially until a 

learning spurt at the end of the game (curvilinear trajectory type 3) 

 

Figure 7 clearly shows that the trajectory of an expert learner, which is someone with perfect mastery of 

all SKIVE elements throughout the game, shows the largest values of the WD statistic throughout the 

game as one would expect. Similarly, one can see that “faster” learner types display WD trajectories that 

are closer to the expert trajectory, as one would also expect. Faster learners are those who approach high 

Segment / Task  

W
D

 

Prototypical Learner Trajectories  
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mastery probabilities earlier in the game and, thus, are more likely to utilize the SKIVE elements that are 

targeted by the tasks for a larger number of tasks compared to “slower” learners. Figure 3 also shows that 

the WD is more useful for differentiating between learner types when games are played longer because 

relative differences become more pronounced over time (i.e. more evidence about learner differences can 

be accumulated).  

3.1.2 ANOVA Results. To describe which game design factors are associated with the observed 

variation in the WD statistic for individual learners, we first conducted 21 four-way ANOVAs, one for 

each learner type. These analyses included task difficulty (7 conditions), task specificity (3 levels), task 

content (2 levels), and task complexity (2 conditions) as predictor variables for a total of 84 cells or 

design conditions. Table IV shows the median importance rankings and associated median effect sizes 

(i.e. median η2 values) for the main effects and two-way interaction effects computed across the 21 four-

way ANOVAs; the values of the median effect sizes for higher-order interaction effects are not shown 

here since they are even lower than the ones for the two-way interaction effects.  

 

Table IV. Median η2 for Four-way Factorial ANOVA for Version 1 of WD Statistic 

Effect Design Factor 
Median Median 

Rank η2 

Main 
Effect 

Task Complexity 1 .2827 

Task Difficulty 2 .2784 

Task Specificity 3 .1052 

Task Content 5 .0069 

2-way 
Effect 

Complexity*Difficulty 4 .0133 

Content*Complexity 6 .0029 

Complexity*Specificity 7 .0013 

Difficulty*Specificity 8 .0012 

Content*Difficulty 9 .0005 

Content*Specificity 14 .0001 

 

These ANOVA results suggest that task complexity and task difficulty explain the majority of the 

variance in the WD statistic with some effect of task specificity as well. It is interesting to note that 

modifying tasks so that they are more or less difficult (i.e. modifying the 1 − 𝑠𝑡𝑘

(1)
 and 𝑔𝑡𝑘

(1)
parameters) has 

an average effect on the WD statistic (median η2 = .28) that is essentially identical in magnitude to making 

changes to the complexity of the game (i.e. changing the number of SKIVE elements required for each 

task throughout the game; median η2 = .28 also). 
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3.1.3 Follow-up Graphical Analyses. Figure 8 shows the distribution of the WD statistic for individual 

learners for games designed according to design matrix 1; the distribution is computed across all learner 

types but is broken down by task difficulty and specificity conditions. Recall that the numbers 1-7 are 

used to indicate the seven task difficulty conditions as shown in Table A-I and that A, B, C are used to 

indicate the three task specificity conditions as shown in Table A-II.  

 

Fig. 8. Distribution of WD statistic for individual learners across learner types for games designed with design matrix 1. 

  

Clearly there is quite a bit of variation in WD values across task difficulty and specificity conditions. 

Furthermore, in accordance with Table IV, there are fewer differences in variation across task specificity 

conditions than across task difficulty conditions for games with this design matrix. Notably, there is 

slightly less variation in conditions associated with “easy” tasks (conditions A2, B2, and C2) and slightly 

more variation in conditions associated with “difficult” tasks (conditions A1, B1, and C1) with other 

conditions falling somewhere in between.  

The smallest distributional range is observed when the tasks are “easy” as well as “highly specific” 

(condition A2). In these games all learner types are likely to provide evidence of mastery of targeted 



 

206  JEDM Special Issue, Article 5, Volume 4, Fall 2012 

 

SKIVE elements, independent of whether they have actually mastered them or not. Moreover, learners 

who have mastered non-targeted SKIVE elements are unlikely to use them since the task parameters 

prevent such unnecessary use. Consequently, both novice and more expert learners are more likely to 

generate identical data strings. In contrast, the widest range of WD values is observed for “well-designed” 

tasks (conditions A1, B1, and C1); remaining conditions represent middle grounds between these.  

There is also a slight increase in the positive skew of the distributions across task specificity conditions 

(i.e. from condition A to B to C, independent of task difficulty settings). This reflects the fact that less 

specific tasks do not encourage learners to suppress the use of SKIVE elements thereby encouraging the 

use of unnecessary elements, which, in turn, increases values of the WD statistic. In other words, a 

combination of easy and less specific tasks, which generally leads to larger numbers of ‘1’s in cumulative 

adjacency matrices, will lead to more variance in the WD statistic across learners with different 

developmental trajectories.  

The distributions in Figure 8 were computed across all learners with all different developmental 

trajectories; hence, we subsequently broke these distributions down by learner type. Figure 9 on the next 

page shows the distributions of the WD statistic for the six learner types with prototypically distinct 

curvilinear and linear trajectories that we highlighted earlier in Figure 7 for games designed with design 

matrix 1. As in Figure 8, the distributions are broken down by task difficulty and task specificity 

conditions.  

Overall, it is noteworthy that the boxplots for learner types with distinct trajectories are well separated 

across task difficulty and specificity conditions. The overlap of the distributions mimics the similarity of 

the WD traces shown in Figure 7. That is, expert and “faster” learners have more similar distributions and 

the distributions for the learner types with the three distinct curvilinear trajectories are clearly separated in 

each game condition. The differential ranges of the distributions that we observed in Figure 8 above are 

reflected in Figure 9 as well. In conditions when the ranges of the WD distributions are wider – in 

particular in conditions with a ‘1’ as noted above – the distributions are separated best (i.e. learner 

differences are most pronounced). 

For real data the learner trajectories are of course not known. However, the results shown here suggest 

that learners with distinct learning trajectories will have ranges of values of the WD statistic that are 

reasonably distinct. Therefore, a descriptive inspection of the distribution of the WD values for all 

learners may provide some quick indication about learner differences. For example, when computed 

during gameplay, the WD statistic could be used as a quick screening tool to suggest pairings of learners 

who have likely different profiles for subsequent activities of the game (e.g. by pairing learners with 

lower and higher values of the WD statistic). More subtle nuances in developmental trends will of course 

not be captured by the statistic.   
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Fig. 9. Distribution of WD for six learner types for games designed with design matrix 1.

Prototypical Learner Trajectories 
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3.2 WD Statistic for Pairs of Learners (Variant 2)  

3.2.1 General Patterns. Figure 10 shows the WD values for individual learners calculated for the same 

six learner types with prototypical trajectories shown earlier in Figure 7 who play games designed with 

design matrix 1. Each solid line again depicts the median WD calculated at each evidentiary segment / 

task across all 100 replications while the dotted lines now show the 95% empirical pseudo-confidence 

bands for these learners.  

 

 
Fig. 10. Empirical 95% pseudo-confidence bands for WD statistic of six learner types for games designed with design matrix 1. 

 

The width of the pseudo-confidence bands increases slightly across segments / tasks, but five out of the 

six learners – the ones who make actual learning gains throughout the game (i.e. the ones who do not 

have a flat trajectory) – remain rather well separated after a few evidentiary segments / tasks. As noted in 

the methods section, the pseudo-confidence bands were used to determine whether the WD distributions 

for pairs of learners overlapped at each segment / task (‘1’ if they did, ‘0’ if they did not). The percentage 

of segments / tasks for which there was overlap was then recorded for each learner pair. 

3.2.2 Classification of Learners and ANOVA Results.  As with the patterns for the WD statistic for 

individual learners described in the previous subsection, we submitted the percentage-overlap values of 

the WD statistic to a factorial ANOVA. With 21 learning trajectories there were a total of  (
21
2

) = 210 

different pairs of learning trajectories, however. Consequently, the factor ‘type of learning trajectory pair’ 

would have had 210 levels making meaningful comparisons of specific cell means difficult, even with 

tools such as orthogonal post-hoc contrasts.  
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Hence, we decided to classify pairs of learner trajectories according to whether they produced 

“similar” mastery probabilities throughout the game. Specifically, each pair of learning trajectories was 

coded as follows to create three learning trajectory similarity groups; see Tables A-III and A-IV for 

details on the resulting classifications across trajectories: 

 

(1) ‘very similar’ if at least 75% of the evidentiary segments / tasks for the two trajectories had 

mastery probabilities that were within .20 of one another (N1 = 39 trajectory pairs), 

 

(2) ‘moderately different’ if between 25% and 75% of the evidentiary segments / tasks for the 

two trajectories had mastery probabilities that were within .20 of one another (N2 = 73 

trajectory pairs), and  

 

(3) ‘very different’ if at most 25% of the evidentiary segments / tasks for the two trajectories had 

mastery probabilities that were within .20 of one another (N3 = 98 trajectory pairs).  

 

This recoding scheme reduced the original set of 210 trajectory levels to a mere three trajectory group 

levels, which allowed us to make more meaningful interpretations within the context of a factorial 

ANOVA.  

We note that the classification choices were relatively arbitrary. We thus conducted a series of 

robustness analyses to investigate to what extent the classification of each pair of learner types and 

associated interpretational narratives would change if the coding scheme was altered. We calculated the 

relative similarity of trajectories using probabilities ranging between .05 and .35, rather than just .20. 

When we used .35, the similarity classifications began to obscure important practical distinctions between 

learners that gain expertise over the course of game play and an expert player. Using probability values of 

.05 and .10 resulted in essentially collapsing the three categories into two because so few trajectories were 

classified as being “very similar.” For intermediate values, most notably the classification of learners with 

flat trajectories changed, but these changes in classification did not alter the key findings of the analysis 

reported below. For the purposes of the following description, therefore, the recoding scheme as 

described above was used. 

We first conducted a five-way ANOVA with the percentage-overlap WD values as the outcome 

variable and learning trajectory group (3 levels), task difficulty (7 conditions), task specificity (3 levels), 

task content (2 levels), and task complexity (2 conditions) as design factors for a total of 252 cells or 

design conditions. Recall that a set of 100 replications resulted in a single percentage overlap value for the 

WD statistic so that the number of observations in each cell in the ANOVA design was the number of 

learner pairs in a particular trajectory group.  
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The results showed that differences in learner trajectories dominated all other sources of variation (2 

= 57.90 %) with a decreasing trend in mean percentage-overlap values across the three groups; all of the 

remaining effect size values were essentially zero. This is clearly expected given that this variant / 

aggregation of the WD statistic is designed to pick up differences between pairs of learners with distinct 

trajectories. 

However, it was not immediately clear how strong the influence of the game design factors on the 

variation of the percentage-overlap values was when conditioning on the trajectory similarity. We thus 

conducted three separate four-way ANOVAs, one for each trajectory group; results are shown in Table V 

with median η2 values for main effect and two-way interaction effects shown similar to Table IV. 

Contrary to the results for the WD statistic for individual learners, only a negligible amount of variation in 

the percentage-overlap values was accounted for by the game design factors. As we discuss in the next 

subsection though, this pattern is interpretable. 

 

Table V. Median η2 for Factorial ANOVA for Version 2 of WD Statistic 

 

 Effect Factor Very 
Similar 

(N1 = 45) 

Moderately 
Different 
(N2 = 75) 

Very 
Different 
(N3 = 90) 

 

Main 
Effect 

Task Specificity .0008 .0043 .0008 

 Task Complexity .0009 .0039 .0034 

 Task Difficulty .0224 .0197 .0179 

 Task Content .0004 .0004 .0005 

 

2-way 
Effect 

Content*Complexity .0001 .0000 .0000 

 Content*Difficulty .0004 .0005 .0002 

 Content*Specificity .0001 .0001 .0001 

 Complexity*Difficulty .0071 .0026 .0016 

 Complexity*Specificity .0000 .0019 .0001 

 Difficulty*Specificity .0008 .0008 .0004 

 

3.2.3 Follow-up Graphical Analyses. An inspection of the distributions of percentage-overlap values 

provided some insight into the non-significance of the game design factors observed in Table V. Figure 

11 on the next page shows the distributions of the percentage-overlap values for games designed with 

design matrix 1; as in Figures 8 and 9 the distributions are broken down by task difficulty and task 

specificity conditions. 
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Fig. 11. Distribution of percentage-overlap of WD statistic for learner pairs across trajectory groups and game conditions for a game designed with design matrix 1.  

Trajectory groups within each cell are ‘very similar’, ‘moderately different’, and ‘very different’ from left to right.
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Clearly, the relative locations and spreads of the distributions (i.e. the degree to which they overlap) 

across the three trajectory groups is as desired in that learner pairs with trajectories classified as ‘very 

similar’ show higher percentage-overlap values than learners who are classified as ‘moderately different’, 

who, in turn, show higher values than learners who are classified as ‘very different’. The relative maxima 

of these distributions are highest for task difficulty conditions 2, 3, 5, and 7, and lowest for conditions 1, 

4, and 6. This pattern is consistent across games comprised of tasks that are “highly constrained” 

(conditions A), “moderately constrained” (conditions B), or “relatively unconstrained” (conditions C). 

Thus, the same game design conditions that lead to the most reliable differentiations between learner 

types using the WD statistic also lead to the most reliable differentiations using the percentage-overlap 

variant of the WD statistic. 

4. Discussion 

In this section we briefly (a) review the key findings of the study, (b) discuss the generalizability of the 

results, and (c) reflect on the utility of the ECD framework for guiding simulation work for digital 

learning environments. 

4.2 Critical Review of Findings 

This simulation study showed that there is some utility in using the WD statistic for understanding the 

performance of learners who play epistemic games with different design characteristics. Specifically, task 

difficulty, task specificity, and task complexity were important factors that affected the performance of 

individual learners. Moreover, learners who had different developmental trajectories for the SKIVE 

variables (i.e. the student model variables) could be identified as distinct when using either variant / 

aggregation of the WD statistic. When the percentage-overlap values were used, distinct learner pairs 

could be identified relatively consistently independent of which kind of game they played. 

Clearly, though, the WD statistic was not equally sensitive across different game conditions. Because 

it is generally driven by the overall number of ‘1’s in the cumulative adjacency matrix, the WD statistic 

becomes more sensitive to trajectory differences when students are able to use SKIVE elements that are 

not essential for the solution strategy. Similarly, differences between learners who play the same game 

will always be larger for learners who have more distinct trajectories, especially when these learners play 

games with tasks that are easier and less specific and require multiple SKIVE elements.  

Apart from providing some empirical quantification of suspected trends, the design of the simulation 

study also had some professional development implications for the game development team. It certainly 

illustrated to them how a distinct modeling of task and learner characteristics resulted in patterns of the 

WD statistic that were meaningfully interpretable, even if they already knew that the WD statistic was a 

relatively “blunt” measurement instrument for capturing learners’ emergent expertise. This had 
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implications for how they would think about the game design moving forward in that they could think 

more critically about fine-tuning tasks to target specific SKIVE elements, for example.  

The results also reiterated that a simple marginal summary statistic cannot disentangle the separate 

influences of task and learner characteristics on game performance for which more sensitive tools are 

needed. Even though the design team had observed this with real data and was already working on 

additional tools by the time this study was completed, the simulation study provided a more 

comprehensive look at the systematic interaction between task and learner characteristics and the 

direction and magnitudes of resulting effects.  

4.2 Generalizability of Results  

Our operationalization of game design and learning trajectory conditions as well as our decisions about 

which kinds of conditions to investigate were necessarily incomplete and somewhat of an over-

simplification viz-a-viz real-life game play. For example, the macro-level segmentation of this game into 

three blocks and the specification of these elements was not without debate among the different project 

teams involved in this study. On the one hand, this three-stage progression mapped onto the structure of 

the version of Land Science that was in use at the time the simulation was designed, with a series of tasks 

that included familiarization with the game environment first, a series of tasks completed within 

homogeneous stakeholder groups next, and a series of tasks completed within heterogeneous stakeholder 

groups at the end.  

On the other hand, different emergent versions of Land Science that were created while the study was 

conducted resulted in slightly different activity structures and specifications of the targeted SKIVE 

elements. Thus, a different choice for representing game progression may be more appropriate once the 

design specifications for this and other epistemic games under development are fully formalized and can 

be reflected in future simulation studies. Future work will need to map the game design specifications 

from a more stable version of Land Science onto a simulation design framework. If attractive, the 

simulation approach that we have chosen here has certainly enough flexibility to accommodate a wide 

variety of game design structures. 

Similarly, the learning trajectories could be varied across the different SKIVE variables. Furthermore, 

while the specification of variable-specific trajectories implied an impact on co-occurrences of these 

variables, we did not model these associations directly. During the design of the simulation study, the 

game development team noted that a direct modeling of co-occurrences would be a more natural fit for 

their theory of task engagement via the epistemic frame theory, which could be done in future work.  

Yet, even though we were able to conceive of some data-generation mechanisms for co-occurrence 

structures (e.g., via a tetrachoric correlational model for sets of game segments / tasks with constraints 
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imposed on the variance-covariance matrix), there was no single approach that would have been an 

immediately clear and superior candidate. Nevertheless, we would argue that any data-generation 

mechanism for a simulation study for epistemic games should incorporate separate influences of learner 

and task features on observable performance; our results clearly showed that this generated results that 

were interpretable and generated insight for all team members.  

Data that are being generated with the mechanism implemented in this study – or any other suitable 

mechanism for that matter – could also be used as input into alternative statistical methods such as 

multidimensional scaling techniques or methods that use projection methods based on singular value 

decomposition, for example. Indeed, one promising current variant of ENA uses a principal components 

analysis for ordinal data to project learner trajectories into a two-dimensional space [d’Angelo, Shaffer, 

and Hatfield 2011].  

Finally, we want to note that we learned an additional important lesson in this project, namely that the 

complexity of the data structures resulting from our simulation study made the choices for how to 

aggregate and represent results non-trivial. While it was easy to conceive of a variety of game design and 

learner development conditions, the number of interactions between these factors increased quickly 

making effective summaries challenging to construct. In general, we would expect that the data-

management and presentation issues that we encountered will not become simpler even when the 

simulation design is altered. 

4.3 Utility of the ECD Framework for Simulation Study Design 

The use of the ECD framework to navigate the design process for this simulation study was critical to 

recognizing both the strengths of design choices and their inherent limitations. For example, 

understanding that SKIVE elements are student model variables in the student model, that the way tasks 

measure them as specified in design matrices and task parameters is part of the specification of the task 

model, and that the binary coding of keywords for SKIVE elements and the associated computation of the 

WD statistics constitute evidence identification and accumulation processes in the evidence model was 

insightful. Specifically, the use of the ECD framework and associated terminology helped to 

operationalize, and disentangle, the constituent drivers of the relatively complex interactions of learners 

with each other and with the game environment. It also helped to see where the simulation design and the 

game design were (mis)aligned.  

In the end, simulation studies for epistemic games are collaborative endeavors and final designs reflect 

a series of compromises that typically do not satisfy every member of every team. Teams need to make 

design decisions that are both statistically useful – in that they induce variation in the statistics under 

investigation – and practically useful – in that they do this over design conditions that have reasonable 
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degrees of face validity; this is a very difficult balance to achieve. This tension is likely faced by many 

researchers who conduct simulation work within the context of an evolving digital learning environment. 

As we have illustrated in this paper, the ECD framework can offer a much-needed conceptual 

framework for facilitating communication and joint decision-making between game developers and 

statisticians because it provides a common language and associated methodological toolbox. Our paper 

was not designed to provide definitive statistical answers per se but, rather, to provide a leverage point for 

understanding the complexity of this line of work. We sincerely hope that it was useful to read as a 

starting point for constructive discussions and reflections in interdisciplinary teams concerned with 

games-based assessment. We look very forward to a continued dialogue with colleagues in the field that 

builds upon our initial experiences in this paper and related experiences in similar projects. 
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Table A-I. Task Parameters Specification for Activation of SKIVE Elements for any given Task in a Game 

 

Difficulty 

Condition 

S K I V E 

Description 
𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 

Same Parameter Pattern for all SKIVE Variables  

1 Low Low Low Low Low Low Low Low Low Low 

All tasks are “globally well-designed” (i.e. they facilitate the 

successful application of mastered SKIVE elements and do 

not allow for the random application of non-mastered SKIVE 

elements) 

2 High High High High High High High High High High 

All tasks are “globally poorly designed” (i.e. they allow for 

the unsuccessful application of mastered SKIVE elements and 

the random application of non-mastered SKIVE elements) 

3 Low High Low High Low High Low High Low High 

All tasks are “globally moderately well designed” (i.e. they 

facilitate the successful application of mastered SKIVE 

elements but also allow for the random application of non-

mastered SKIVE elements) 

4 High Low High Low High Low High Low High Low 

All tasks are “globally moderately well designed” (i.e. they 

allow for the unsuccessful application of mastered SKIVE 

elements but do not allow for the random application of non-

mastered SKIVE elements)  

          (continued) 
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Difficulty 

Condition 

S K I V E 

Description 
𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 𝑠𝑡𝑘

(1)
 𝑔𝑡𝑘

(1)
 

Differential Parameter Pattern across Different SKIVE Variables  

5 Low High Low High High Low High Low High Low 

Tasks are “differentially well designed” (i.e. for “basic” 

SKIVE elements they facilitate the successful application of 

mastered elements but not the random application of non-

mastered elements; for more “complex” SKIVE elements 

they allow for the unsuccessful  application of mastered 

elements but not the random application of non-mastered 

elements) 

6 Low Low Low Low High Low High Low High Low 

These tasks are “differentially well designed” (i.e. for 

“basic” SKIVE elements they facilitate the successful 

application of mastered elements and do not allow for the 

random application of non-mastered elements; for more 

“complex” SKIVE elements they allow for the unsuccessful  

application of mastered elements but not the random 

application of non-mastered elements) 

7 Low High Low High Low Low Low Low Low Low 

These tasks are “differentially well designed” (i.e. for 

“basic” SKIVE elements they facilitate the successful 

application of mastered elements but also allow for the 

random application of non-mastered elements; for more 

“complex” SKIVE elements they also facilitate the 

application of mastered elements but do not allow for the 

random application of non-mastered elements) 

 

Note. Task parameters for each SKIVE element (i.e. student model variable) across segments / tasks are drawn from four-parameter Beta 
distributions with the following interval boundaries and means. High: (.20, .30), mean = .25; Medium: (.10, .20), mean = .15; Low: (.00, .10), 
mean = .05. The crossing of difficulty conditions 1-7 with specificity conditions A-C results in 21 task parameter conditions (A1, A2,…, C6, C7). 
. 
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Table A-II. Task Parameters Specification for Suppression of SKIVE Elements for any given Task in a Game 

 
Note. Task parameters for each SKIVE element (i.e. student model variable) across segments / tasks are drawn from four-parameter Beta 
distributions with the following interval boundaries and means. High: (.20, .30), mean = .25; Medium: (.10, .20), mean = .15; Low: (.00, .10), 
mean = .05. The crossing of difficulty conditions 1-7 with specificity conditions A-C results in 21 task parameter conditions (A1, A2,…, C6, C7). 

 

  

Specificity 

Condition 

S K I V E Description 

𝑠𝑡𝑘
(0)

 𝑔𝑡𝑘
(0)

 𝑠𝑡𝑘
(0)

 𝑔𝑡𝑘
(0)

 𝑠𝑡𝑘
(0)

 𝑔𝑡𝑘
(0)

 𝑠𝑡𝑘
(0)

 𝑔𝑡𝑘
(0)

 𝑠𝑡𝑘
(0)

 𝑔𝑡𝑘
(0)

  

A Low 1 Low 1 Low 1 Low 1 Low 1 

All tasks are overall “highly specific” (i.e. they 
do not provide many opportunities to 
demonstrate mastery of non-targeted SKIVE 
elements / they strongly facilitate the suppression 
of non-targeted SKIVE elements) 

B Medium 1 Medium 1 Medium 1 Medium 1 Medium 1 

All tasks are overall “moderately specific” (i.e.  
they provide some opportunities to demonstrate 
mastery of non-targeted SKIVE elements / they 
moderately facilitate the suppression of non-
targeted SKIVE elements) 

C High 1 High 1 High 1 High 1 High 1 

All tasks are overall “not very specific” (i.e.  
they provide many opportunities to demonstrate  
mastery of non-targeted SKIVE elements / they 
weakly facilitate the suppression of non-targeted 
SKIVE elements) 
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Table A-III. Number and Percent of Trajectories that Each Trajectory is Similar To 

 

 
 

Note. C = curvilinear, F = flat trajectory, L = linear trajectory. For curvilinear trajectories the numbers reflect exponent values for the polynomial 

function that creates the trajectory while for flat and linear trajectories they reflect the mastery probabilities at the first and last game segment. 

  

C
_
0
.1

2
5
_
0
.1

2
5

C
_
0
.2

5
_
0
.2

5

C
_
0
.5

_
0
.5

C
_
2
_
2

C
_
4
_
4

C
_
8
_
8

F
_
0
.2

_
0
.2

F
_
0
.4

_
0
.4

F
_
0
.6

_
0
.6

F
_
0
.8

_
0
.8

F
_
0
_
0

F
_
1
_
1

L
_
0
.1

_
0
.6

L
_
0
.1

_
0
.8

L
_
0
.1

_
1

L
_
0
.3

_
0
.6

L
_
0
.3

_
0
.8

L
_
0
.3

_
1

L
_
0
.5

_
0
.6

L
_
0
.5

_
0
.8

L
_
0
.5

_
1

Very Different 10 7 9 11 6 9 8 7 8 8 6 12 4 9 13 14 9 10 13 13 8

Moderately Different 4 9 9 5 10 6 9 10 6 8 5 7 7 6 3 5 5 5 5 4 4

Very Similar 6 4 2 4 4 5 3 3 6 4 9 1 9 5 4 1 6 5 2 3 8

Very Different 50% 35% 45% 55% 30% 45% 40% 35% 40% 40% 30% 60% 20% 45% 65% 70% 45% 50% 65% 65% 40%

Moderately Different 20% 45% 45% 25% 50% 30% 45% 50% 30% 40% 25% 35% 35% 30% 15% 25% 25% 25% 25% 20% 20%

Very Similar 30% 20% 10% 20% 20% 25% 15% 15% 30% 20% 45% 5% 45% 25% 20% 5% 30% 25% 10% 15% 40%
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Table A-IV. Classification of Trajectory Pairs according to Similarity 

 

 

 

Note. C = curvilinear, F = flat trajectory, L = linear trajectory. For curvilinear trajectories the numbers reflect exponent values for the 
polynomial function that creates the trajectory while for flat and linear trajectories they reflect the mastery probabilities at the first and last 
game segment. 

C_0.1
25_0.1

25

C_0.2
5_0.2

5

C_0.5
_0.5

C_2_2

C_4_4

C_8_8

F_0.2
_0.2

F_0.4
_0.4

F_0.6
_0.6

F_0.8
_0.8

F_0_0

F_1_1

L_
0.1

_0.6

L_
0.1

_0.8

L_
0.1

_1

L_
0.3

_0.6

L_
0.3

_0.8

L_
0.3

_1

L_
0.5

_0.6

L_
0.5

_0.8

L_
0.5

_1

C_0.125_0.125

C_0.25_0.25 1

C_0.5_0.5 2 2

C_2_2 3 3 3

C_4_4 3 3 3 2 N

C_8_8 3 3 3 2 1 Very Di fferent (3) 98

F_0.2_0.2 3 3 3 2 1 1 Moderately Di fferent (2) 73

F_0.4_0.4 3 3 2 2 3 3 3 Very Simi lar (1) 39

F_0.6_0.6 3 2 2 2 3 3 3 1

F_0.8_0.8 1 1 2 3 3 3 3 3 3

F_0_0 3 3 3 2 2 1 3 3 3 3

F_1_1 1 2 2 3 3 3 3 3 3 1 3

L_0.1_0.6 3 3 3 1 2 2 2 1 2 3 3 3

L_0.1_0.8 3 3 3 2 2 3 2 2 2 2 3 3 1

L_0.1_1 2 2 1 2 3 3 2 2 2 2 3 3 2 1

L_0.3_0.6 3 3 2 2 3 3 2 1 2 3 3 3 1 1 2

L_0.3_0.8 3 3 1 2 3 3 3 2 1 2 3 3 2 1 1 1

L_0.3_1 2 2 1 2 3 3 2 2 2 2 3 3 2 1 1 2 1

L_0.5_0.6 3 2 2 2 3 3 3 1 1 3 3 3 2 2 2 1 1 2

L_0.5_0.8 3 2 1 2 3 3 3 2 1 2 3 3 3 2 2 2 1 2 1

L_0.5_1 2 1 1 3 3 3 3 3 2 1 3 2 3 3 2 3 2 2 2 1

Pair Type


