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In this paper, we describe multimodal learning analytics (MMLA) techniques to analyze data collected 
around an interactive learning environment. In a previous study (Schneider & Blikstein, 2015), we designed 
and evaluated a Tangible User Interface (TUI) where dyads (i.e., pairs) of students were asked to learn 
about the human auditory system by reconstructing it. In the current study, we present the analysis of the 
data collected in the form of logs, both from students’ interaction with the tangible interface as well as from 
their gestures, and we describe how we extracted meaningful predictors for student learning from these two 
datasets. First we show how information retrieval techniques can be used on the tangible interface logs to 
predict learning gains. Second, we explored how KinectTM data can inform “in-situ” interactions around a 
tabletop by using clustering algorithms to find prototypical body positions. Finally, we fed those features to 
a machine-learning classifier (Support Vector Machine) and divided students in two groups after performing 
a median split on their learning scores. We found that we were able to predict students’ learning gains (i.e., 
being above or belong the median split) with very high accuracy. We discuss the implications of these 
results for analyzing rich data from multimodal learning environments. 
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1. INTRODUCTION 
Students’ gestures have received a great deal of attention from learning scientists over the last 
decades. Body movements and postures can provide valuable clues about students’ prior 
knowledge, misconceptions, and problem-solving strategies when learning new concepts. 
Numerous studies have unraveled links between students’ understanding of various topics 
(e.g., Church, 1999; Abrahamson, Trninic, Gutiérrez, Huth & Lee, 2011) and specific gestures 
(e.g., deictic, iconic, and metaphoric gestures; Roth, 2001). More generally, there has been a 
plethora of studies about people’s intuitive representations of everyday situations and bodily 
language (e.g., embodied cognition; Anderson, 2003). This line of research has provided new 
ways to understand how students integrate new concepts into their everyday understanding of 
science phenomena using gestures and, more generally, body actions. 

Yet, this field of research suffers from serious methodological limitations. Most studies are 
qualitative by nature or require researchers to manually annotate hours of video recordings. 
Now that the theoretical underpinnings of the field are established, it is the right time to speed 
up discovery and data analysis by using motion sensors and data mining techniques. The 
emerging field of multimodal learning analytics (Blikstein & Worsley, accepted) might 
provide just the right data collection and analysis tools to tackle this problem. 

The goal of this paper is to address this methodological gap by suggesting new ways to 
conduct research on students’ body language, as well as providing new lenses to look at 
students’ micro-behaviors during their learning process (e.g., Siegler & Crowley, 1991). In our 
study, we collected data on users’ actions from two sources: a Microsoft Kinect™ sensor, 
which tracks students’ body movements, and the logs generated by a table-top tangible 
interface. Our goal is to apply data mining techniques on those two datasets to: 1) find patterns 
that characterize productive groups; 2) use various data mining algorithms and explore their 
potential to extract predictors for learning; and 3) investigate the social component of our 
dataset in terms of body synchronization and proxemics. Thus our approach is mostly data-
driven, in the sense that we don’t have exact predictions of the type of patterns we will find. 
However, our analyses are grounded by several psychological and educational theories (such 
as proxemics: Hall, 1966; student status in small collaborative groups: Shaer, Strait, Valdes, 
Feng, Lintz & Wang, 2011; bimanual coordination: Worsley & Blikstein, 2013; and more 
generally embodied cognition: Anderson, 2003), which makes our work partially theory-
driven.  
In this paper we asked students to accomplish a learning task, which involved reconstructing 
the inner workings of the human ear using a specially designed tabletop exploratory 
environment. We tracked their gestures during the task using a Kinect sensor and applied state 
of the art data mining techniques on this dataset and the logs generated by the tangible 
interface. Finally we gave students pre, mid and post-tests, which provided us with learning 
gain scores for each participant. 
The design of the system, the experimental setup, the participants, and the behavioral results 
(e.g., scores on the learning tests) are reported in details in a previous conference publication 
(Schneider & Blikstein, 2015). Some preliminary analyses of the Kinect data were also 
presented at EDM2014 as a short paper (Schneider & Blikstein, 2014). We extend here these 
previous publications with a more comprehensive literature review, an analysis of the logs 
collected by the Tangible User Interface (TUI), additional analyses of the Kinect logs, and an 
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extended discussion of the implications of our findings for mining educational datasets 
collected from an interactive tabletop. 

The next sections are structured as follows. First, we review foundational work in analyzing 
students’ gestures and summarize the findings of previous research. We then describe our 
datasets and the study that generated them. Finally, we report our analyses and results. We 
conclude by describing the implications of our work for automatically detecting students’ 
body language and mention the limitations of our approach. 

2. LITERATURE REVIEW 
From a reductionist perspective, previous work on studying gestures in education can be 
divided in two groups: qualitative studies, where manual coding schemes are applied to video 
frames by human coders; and quantitative studies, where algorithms and more generally 
computational techniques are used to study students’ body language. Since low-cost motion 
sensors have been made available to the general public only recently, the second category 
contains less literature. We will briefly survey both approaches (with a greater focus on 
computational techniques) to provide a theoretical grounding to this paper. 

In terms of qualitative papers, we will keep a high level focus and will mostly describe 
foundational prior work. One example of an influential contribution in this domain is the one 
of Roth (2001) where he describes a taxonomy of gestures in education and provides related 
examples: 1) in collaborative learning settings, students can use beats, which are gestures 
“void of propositional or topical content yet lend a temporal or emphatic structure to 
communication” (e.g., a tapping motion to emphasize certain utterances); 2) they can use 
deictic gestures, which encompass all pointing behaviors (often associated with deictic terms, 
such as here, there, this, that, and so on); 3) iconic gestures are displayed to mimic concrete 
entities and events (e.g., tracing a trajectory in the air is an example of iconic gesture); and 4) 
finally, metaphoric gestures are similar to iconic ones but refer to abstract entities (for 
instance, closing the gap between two hands to express the idea of “approaching the limit” in 
mathematics is an example of a metaphoric gesture). It should be noted that those gestures are 
very fine-grained and sometimes require domain expertise to be detected. This is one of the 
great strength of qualitative analysis: semantic meaning can easily be inferred and researchers 
can take full advantage of contextual information. One weakness is that qualitative research is 
so time consuming that it limits itself to describe few, isolated learning episodes. This is a gap 
that computational techniques aim to fill: with sensors and algorithms, we can detect and 
classify all the gestures and body language being used by students during their learning 
process. 
In terms of quantitative studies, one noteworthy attempt at automatically classifying gestures 
is the Multi-modal Gesture Recognition Challenge 2013 (Escalera, Gonzàlez, Baró, Reyes, 
Lopes, Guyon, & Escalante, 2013). In summary, a group of researchers provided a large video 
database of ~14,000 gestures (1,720,800 frames) and asked participants to predict to which 20 
categories of Italian gestures each dataset belonged to. The data was recorded using a Kinect 
sensor, providing the audio, skeletal model, user mask, RGB, and depth images. Even though 
this is a challenging temporal multi-classification task, the best competitors achieved a 12.76% 
error rate on the test set. This is a promising and impressive result, considering the complexity 
of the problem. In a different study, Grafsgaard, Wiggins, and Boyer (2014) used a 
multimodal data stream (such as automatic facial expression recognition, Kinect depth images 
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and system logs) to predict students’ cognitive states. They found that facial expression and 
gestures (e.g., hand-to-face gestures) were predictive of engagement and frustration, while 
facial expressions and body posture (e.g., distance from the computer screen) were predictive 
of learning. Finally, in engineering education, Worsley and Blikstein (2013) tackled the 
challenging task of finding multimodal markers of expertise. They used a construction task 
where students had to build structures to hold a certain weight. Using a Kinect sensor, they 
found that bimanual coordination was predictive of expertise: advanced students were more 
likely to use both hands in a more or less synchronized fashion, while novices tended to use 
mostly one hand. Combined together, all those results suggest that data collected with motions 
sensors can generate many useful predictors for students’ emotional and cognitive states, as 
well as their learning outcomes.  
Our study is also concerned with capturing the quality of students’ interactions, since our 
participants worked in pairs. There is obviously a wealth of frameworks describing the types 
of gestures and utterances students exhibit while learning in a collaborative fashion. Those 
frameworks are rich, precise, and sometimes require contextual information and domain 
knowledge. For instance, there is a large body of work on behavioral convergence looking at 
multimodal indicators of behavioral synchronization between group members (e.g., Pentland 
& Heibeck, 2008). One concrete application is given by Gweon, Jain, Mcdonough, Raj and 
Rosé (2013) about speech-style accommodation theory applied to student’s transactivity (e.g., 
the tendency to build on each other’s ideas). In that particular example, the authors found a 
positive correlation between automatic measures of speech-style accommodation (captured by 
a Dynamic Bayesian Network model) and manually coded transactive moves. Those results 
suggest a promising potential in terms of automatically capturing the quality of students’ 
interactions. This is, however, just one example where behavioral convergence has been 
investigated using sensors and machine learning algorithms. For space considerations, we 
cannot do justice to this entire body of work. Researchers interested in capturing these types of 
student interactions could dive deeper into this literature by starting with Pentland & Heibeck 
(2008) or Gweon, Jain, Mcdonough, Raj and Rosé (2013). 

Finally, some believe that the goal of computational techniques is to make the task of 
detecting those gestures automatic. However, we believe that some of the categories described 
above are not suitable for the task of detecting particular types of gestures (e.g., metaphoric 
gestures). Some others, such as deictic and iconic gestures, may be good candidates for 
automatic detection. In general, we believe that merely replacing human coders with 
computational tools does not take full advantage of the potential offered by sensors and 
algorithms. Our approach is to consider computational techniques as an augmentation of 
traditional research methods: algorithms can replace some qualitative analyses, but most of 
them are just too complex to be replicated automatically. Thus an additional goal is to use 
computers to provide an alternative perspective on educational datasets, which can then be 
used as lenses for constructing new hypotheses and analyses that couldn’t be generated with 
traditional methods.  

The goal of this paper is much more modest than the research plan described above. As a first 
pass, we aim at finding simple measures predictive of collaborative learning in our datasets. In 
that sense, our approach is similar to the approach used by Grafsgaard, Wiggins, and Boyer: 
before we can tackle more challenging problems such as gesture classification, we need to 
conduct lower level analyses to get a sense of the relevant signals buried in our logs. Once we 
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more fully understand our datasets, we plan to conduct future work to tackle more complex 
problems such as differentiating between deictic and iconic gestures.  

This literature review is succinct: our goal was to provide a high level sense of the research on 
automatic gesture detection and not exhaustively review every prior work that studied gestures 
or used a Kinect sensor. Additionally, instead of reviewing the theoretical papers that inspired 
our measures here, we decided to introduce those concepts at the beginning of each 
corresponding section for coherency.  

3. EXPERIMENT AND DATASETS 

3.1. EXPERIMENTAL DESIGN 

In previous research, we have studied the benefits of TUIs for discovery-based learning 
(Schneider, Wallace, Blikstein & Pea, 2013). A TUI is an interactive tabletop environment 
where physical objects are tagged with fiducial markers that are detected by a camera above 
the table. A projector then displays additional information on the tangibles, providing an 
“augmented reality layer” that provides students with additional information on the concepts 
they have to learn (e.g., labels, connectors, animations, description of the tangibles). In a series 
of controlled studies, we found that TUIs can be used advantageously in a discovery-learning 
situation when students approach an unfamiliar topic compared to standard “tell-and-practice” 
method. More specifically, we found that using a TUI before, rather than after, reading a 
textbook chapter or attending a lecture was beneficial. This first TUI, called “BrainExplorer” 
(Schneider, Wallace, Blikstein & Pea, 2013), is an interactive tabletop where users can explore 
the way the human brain processes visual information. Students take apart a physical replica 
of a brain while an augmented reality system displays visual pathways between brain regions. 
Users can then use an infrared pen to create lesions in the brain and observe the simulated 
impact of their actions on the visual field of the subject. In a controlled experiment, we 
showed that 1) students who used BrainExplorer outperformed students who read a textbook 
chapter on a learning test, and that 2) students who first used BrainExplorer and then read a 
textbook chapter outperformed students who completed the same activities but in the reverse 
order (text followed by BrainExplorer). Our conclusions were that TUIs supports students’ 
elaboration of their own micro-theories and create an engaging point of entry for exploring a 
new domain. A corollary of this result was that “tell-and-practice” procedures are often not the 
best way to introduce students to new ideas, at least in the domains that we have explored. 

In the study that generated the dataset considered in this paper, our goal was to explore this 
effect in more depth and disentangle confounding variables present in the study described 
above. One alternative interpretation of our previous results is that a “novelty” effect caused 
higher learning gains in our treatment groups (i.e., learning from an interactive tabletop 
environment, followed by a standard instruction): students may have been more engaged from 
the start due to the novelty of the interface, and this effect may have had a contagious effect on 
the rest of the activity. Similarly, a standard instruction is often considered too “school-like” 
and may have caused participants to disengage from the entire activity; this would have caused 
students to not fully take advantage of the interactive system afterwards. Thus, we designed 
the following experiment (Schneider & Blikstein, 2015) where students from a community 
college were recruited as part of a psychology class and asked to discover how the human 
hearing system works (N=38, average age = 22.5, SD= 6.2; 25 females, 12 males). Pairs of 
students worked on a tangible interface called EarExplorer (Fig. 1). EarExplorer is an 
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interactive tabletop environment with 3D-printed tangibles tagged with fiducial markers. A 
projector displays an augmented reality layer by reflecting its image on a mirror held above 
the tabletop. A camera is attached to the mirror and detects the location of the fiducials on the 
tangibles (Fig. 1). The starting screen displays three elements: the outer ear, which is the 
starting point of the activity (top left corner, Fig. 1); the auditory cortex, which is the end point 
of the activity (bottom right corner, Fig. 1); and an information box (bottom left corner, Fig. 
1). Eight tangibles are arranged around the projected area. Students are asked to connect the 
tangibles between the starting point and the ending point to let sound waves reach the auditory 
cortex. Each tangible can be positioned in the information box at any time of the activity to 
display additional information about each organ. Users can use those hints to infer the correct 
sequence of tangibles and learn more facts about the function of each organ. 

 

 
Figure 1: The EarExplorer Interface, after connecting the tangibles in the correct sequence. 
Students used the infobox (1) to learn about the different organs and connect them together; 
they then generated sounds at different frequencies with a speaker (2); sound waves travelled 
from the emitter through the ear canal to the ear bones (3); finally, the sound reached the 
basilar membrane inside the cochlea, activated a specific neuron and replayed the sound if the 
configuration is correct (4). 

In one condition (N=18, labeled “discover”), students rebuilt the hearing system by trial and 
error, using resources provided by the system (Fig. 2, right side). In another condition (N=20, 
labeled “listen”),students followed a step-by-step recorded guidance of a professional 
instructional designer. The instructional designer was not aware of our research hypotheses 
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and was asked to make the learning material as engaging as possible (Fig. 2, left side; the red 
arrow points at the video). Students in this condition interacted with the TUI while they were 
watching the video; the video played continuously and had multiple breaks to let students 
experiment with the system. In this video, the instructional designer explained the function of 
each organ by positioning them in the information box and prompted the students to follow his 
instructions to rebuild the hearing system.  

 

Figure 2: Students interacting with EarExplorer. The left picture shows students in the first 
condition (“listen”) and the right picture shows the second condition (“discover”). Students in 
the “listen” condition followed a video tutorial, shown by a red arrow. 

Students in both conditions first took the pre-test and then received a tutorial on how to use the 
TUI before starting the task; they spent the same amount of time interacting with the TUI (15 
minutes). If they finished the task early, the experimenter asked them to keep exploring the 
system and try additional scenarios. After building the system, they took a mid test and then 
read a textbook chapter explaining sound transduction in a more formal way. Finally, students 
took a post-test measuring their learning gains. The learning test had six questions where 
students were asked to: 1) label the organs of the earing system; 2) describe various sound 
waves and asked which parts of the basilar membrane would vibrate at those frequencies; 3) 
compare the effect of various kinds of lesion (e.g. do broken ossicles have the same effect as 
piercing the eardrum?); 4) describe which part of the basilar membrane should be numbed to 
lose sensitivity to certain frequencies; 5) map the frequency range of various animals (bats, 
dogs, mice) inside their cochlea; 6) describe how sound is propagated from one organ to the 
other. Each learning test (pre, mid, post) had small variations in the questions. Students had 10 
minutes to individually fill each test. Learning gains were computed by subtracting pre-test 
scores from the post-test. 
We found that students in the first group achieved higher learning gains (Fig. 3). A MANOVA 
showed that participants in the “discover” group learned significantly more after the first 
activity: F(1,35) = 22.11, p < 0.001 and after the second activity F(1,35) = 16.15, p < 0.001 
compared to the participants in the “listen” condition. Considering that the maximum score on 
the post-test was 15, students in the “discover” condition did not just keep their advantage 
from the middle-test—they were actually able to answer harder questions than students in the 
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“listen” condition. Those results suggest that TUIs are not a “silver bullet” for discovery 
learning activities. The potential “novelty effect” that they generate cannot explain the 
learning gains observed in previous studies. Rather, it seems that TUIs generate a sense of 
agency that is beneficial to learning. Given those results, our goal is to take a new look at this 
dataset by applying data mining and multimodal learning analytics techniques to students’ 
body language. In the next sections, we analyze the logs generated by the tangible interface 
and by a Kinect™ sensor that recorded students’ actions during the study. 

 

Figure 3: Results of the learning tests. The pre-test was administered at the beginning of the 
experiment; the middle test was completed after students interacted with EarExplorer; finally, 
they completed the post-test after reading a textbook chapter on the human hearing system. 

3.2. DATASETS 

We have collected three datasets from this experiment. The first one was manually created and 
contains basic information about the participants, such as their experimental condition, 
demographic data, GPA (Grade Point Average), learning gains, and field notes about their 
behavior. The second dataset was automatically generated by the tangible interface and 
describes students’ actions when interacting with EarExplorer. There were 6 types of action: 
adding a tangible, removing a tangible, connecting two tangibles, generating a sound wave, 
playing a sound if a wave reached the brain and accessing the infobox. Table 1 shows an 
example of this type of log: 
 

Table 1: Examples of actions recorded by the TUI (preceded by a UNIX timestamp) from 
different groups. Note: tangible #0 is the speaker, tangible #1 the ear canal, and so on. 

Examples of lines recorded from TUI logs Explanation 

1371057396: started Users can now interact with the interface 

1371057519: fiducial added id=0 A user has added tangible #0 to the table 

1371057630: fiducial removed id=0 A user has removed tangible #0 
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1371057632: Sound generated: 2.5363107 A user has generated a soundwave  

1371057645: infobox: 2 A user has positioned tangible #2 on the info-box 

1371079060: New connection: 5.0 to 9.0 A user has connected tangible #5 to tangible #9 

1371079079: New wave: 4 A soundwave has reached tangible #4 

1371079087: Wave success freq=4 A high-frequency soundwave has reached the brain 

The last dataset was automatically collected using a KinectTM sensor, which generated text 
files for each group of students. The Kinect generates 30 data points per second per user, and 
each data point contains the x,y,z information about 10 joints of a sitting user (head, torso, 
left/right shoulders, right/left elbows, right/left wrists, right/left hands). A line of a Kinect log 
looks like the example given in Table 2: 
 

Table 2: Examples of the data collected by a Kinect Sensor for a sitting user. 

Example of a line recorded by a Kinect sensor Explanation 

-0.302565, 0.0729301, 1.71089, -0.311148, 0.23276, 
1.67768, -0.468162, -0.0548381, 1.76986, -0.299887, -
0.0894132, 1.57217, -0.489155, -0.142518, 1.71705, -
0.552245, -0.16022, 1.76821, -0.202123, -0.0309904, 
1.64629, -0.223243, -0.199955, 1.55879, -0.323745, -
0.0455265, 1.55587, -0.357246, 0.00594958, 1.55776, Wed 
Jun 12 17:10:16 2013 

Comma-separated values of the x,y,z coordinates 
of a user’s head, torso, left/right shoulders, 
right/left elbows, right/left wrists, right/left 
hands. The last field is a timestamp. 

 
The first dataset was analyzed in a previous publication (Schneider & Blikstein, 2015). The 
second one (i.e., the logs from the TUI) is inspected in section 4.1. The last dataset (i.e., Logs 
generated by the Kinect sensor) is analyzed in section 4.2.  

3.3. HYPOTHESES 

The goal of this paper is to craft measures from the log files to further illuminate the results of 
our previous study (Schneider & Blikstein, 2015). More specifically, we are interested in 
isolating students’ behaviors that resulted in higher learning gains and explain the difference 
found between our two experimental conditions. Our main hypothesis is that the amount as 
well as the quality of students’ exploration when interacting with the TUI is correlated with 
their learning. We also follow an opportunistic approach and conduct additional analyses 
inspired from prior work that could be easily computed using the techniques we developed, 
more specifically on students’ collaboration and coordination while interacting with the TUI.  
We believe that the two datasets described above can offer complementary perspectives: the 
TUI logs are task-dependent and do not discriminate between participants, while the Kinect 
data is task-agnostic and offers fine-grained data about individuals’ body posture and gestures.   

We explore the following hypotheses in the sections below: 
1) TUI logs: the amount of exploration (i.e., number of actions recorded by the TUI) is 

correlated with students’ learning (section 4.1.1) 
2) TUI logs: some particular types of exploration or sequences of actions (e.g., testing the 

system, accessing the info-box) are correlated with learning gains (section 4.1.2) 
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3) TUI logs: dyads (pairs of students) with high learning gains look more similar to each 
other in the way they explore the TUI, and look dissimilar to dyads with low learning 
gains (section 4.1.3) 

4) Kinect logs: the amount of movements generated by each user is correlated with 
students’ learning (section 4.2.1) 

5) Kinect logs: some particular types of movements or sequences of gestures (e.g., hand 
movements, being in an active posture) are correlated with learning gains (section 
4.2.2) 

Hypotheses 1-5 are obvious first steps toward exploring the TUI and Kinect logs: we simply 
wanted to test whether the quantity and quality of students’ exploration had a linear 
relationship with their learning. Hypotheses 6-8 acknowledge that the dyad’s quality of 
collaboration had an impact on their learning and are formulated as follows: 

6) Kinect logs: students’ leadership can be detected from students’ gestures and are 
associated with learning gains (section 4.3.1) 

7) Kinect logs: the level of synchronization between the dyad’s members is correlated 
with learning (section 4.3.2) 

8) Kinect logs: the distance between two group members is a proxy for their level of 
comfort with their partner and the content taught (section 4.3.3) 

Those last three measures are opportunistic, in the sense that we could easily extract them 
from our datasets and connect them to existing theories in social psychology: we merely 
computed students’ bimanual coordination, body synchronization, and distance between 
participants as a simple proxy for the quality of their interactions and then tested their 
relationship to learning. Finally, in section 5 we put together all of the measures mentioned 
above and feed them into a machine-learning algorithm to see how well we can predict 
students’ learning gains. 

4. ANALYSES FROM INTERACTION LOGS 

4.1. DATA FROM THE TANGIBLE INTERFACE 

The logs generated by the tangible interface represent every action performed by the users. For 
instance, it records when two tangibles are connected or disconnected, when students consult 
the information box, and when they generate a (un)successful sound wave (for a description of 
the logs, see Table 1). Since those log files contain series of actions encoded as strings, we 
decided to use some information retrieval techniques (as suggested by previous work; 
Manning, Raghavan, & Schuetze, 2008), but applied to human actions (“n-actions”; Worsley 
& Blikstein, 2013). Our overarching goal is to describe methods for finding predictors of 
students’ learning that are generalizable to other types of log files. In the section below, 
actions from the TUI logs are aggregated together (e.g., accessing the information box for the 
ear canal, the cochlea, or any other organ is labeled as the same action in our analyses).  

4.1.1. Amount of Exploration (TUI logs) 
Our first hypothesis is that the amount of exploration (i.e., number of actions recorded by the 
tangible interface) is correlated with learning. We tested this proposition by simply counting 
the number of actions performed by the dyad (in other words, the number of lines present in 
the TUI logs). We did not find a significant relationship between those two measures: r(16) = 
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0.208, p = 0.407, even though there seemed to be a positive relationship between number of 
actions and learning gains. There was also no significant difference between our two 
experimental groups: F(1,17) = 1.43, p = 0.25, Cohen’s d = 0.60 (number of actions for the 
“discover” group: mean=4135.00, SD=1842.27; “listen” mean=3114.80, SD=1573.83). This 
suggests that merely manipulating objects in the TUI does not guarantee learning; rather, it is 
likely that certain types of actions are associated with higher learning gains. In the next 
section, we look at different types of explorative behaviors recorded by the TUI. 

4.1.2. Types of Exploration (TUI logs) 
Our second hypothesis is that some particular types of exploration or sequences of actions are 
correlated with learning. In order to test this hypothesis, we extracted the unigram, bigram, 
and trigram probabilities for each pair of students. Based on these n-grams, we looked at 
correlation coefficients between most frequent actions and learning gains. After selecting the 
three highest correlations, we tested them for significance. We found significant correlations 
between accessing the information box (see Fig. 1, bottom left corner) and learning gains 
using unigrams (number of times students accessed an info box), r(17) = 0.47, p < 0.05; 
bigrams (accessing the info box twice in a row) r(17) = 0.50, p < 0.05; and trigrams (accessing 
the info box three times) r(17): 0.459, p < 0.05. This suggests that students who used the 
information box to solve the problem at hand were more likely to learn more. Additionally, 
students in the “discover” condition were more likely to access the info-box: F(1,16) = 3.40, p 
= 0.08, Cohen’s d = 0.98 (discover mean=14.22, SD=15.76; listen mean=3.25, SD=1.20). 
Even though this difference is not significant, it suggests that students in the two experimental 
conditions behaved differently: the participants in the “discover” group may have learned 
more because they spent more time learning about the organs of the human system through the 
information box. A tentative explanation is that, because there was not a teacher to tell them 
how the system worked, they became more curious and freely decided how to rebuild the 
human hearing system. 
These results might have applicability in new forms of assessment. Schwartz & Arena (2013) 
are currently developing a new kind of assessment called choice-based assessment, where 
students’ choices are central to evaluating their learning trajectories. In a previous study, they 
found that the best predictor to students’ success was not necessarily their outcomes of solving 
particular problems, but the extent to which they chose to access additional resources during a 
learning activity. For those researchers, this kind of choice is a strong feature of adaptive 
expertise (Hatano & Inagaki, 1986), a type of attitude where learners are able to solve 
previously encountered problems in an efficient way and generate new procedures for novel 
tasks. It is contrasted with “procedural expertise,” where students learn to perfectly master 
cognitive or behavioral procedures but cannot transfer them to other contexts. The results 
above are to some extent supported by Schwartz’s theory and can be considered interesting 
predictors for students’ learning. In our case, and in general when building learning 
environment, it suggests that giving the choice to exploit additional resources is a powerful 
predictor for students’ learning. 

4.1.3. Comparing Students’ Styles of Exploration 
Our third hypothesis is that dyads with high learning gains look similar to each other in the 
way they explore the TUI and look dissimilar to dyads with low learning gains. We tested this 
hypothesis by computing document similarity metrics on our logs and comparing the set of 
actions in a session between pairs of students. More specifically, we followed the procedure 
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described by Manning, Raghavan, and Schuetze (2008) and transformed our logs into a term-
frequencies matrix. In this matrix, each column is the count of a specific action (e.g., accessing 
the information box or connecting two tangibles) and each row corresponds to a group of 
students. We then applied a tf-idf (term frequency–inverse document frequency) 
transformation to the matrix to dampen the effect of common, non-informative actions and to 
increase the importance of rare terms. The resulting matrix contains vectors of probabilities 
between groups of students (rows) and each potential action (columns); two row vectors can 
then be compared to assess the similarity of two dyads. A common technique developed for 
this purpose is to compute the cosine similarity between two vectors: the result simply 
describes the amplitude of the angle between those vectors in a high dimensional space. Figure 
4 shows all pairwise comparisons.  
 

  

Figure 4: Cosine similarity matrix between pairs of students (computed on the logs of actions 
generated by the tangible interface). Light blue shows low similarity and dark blue high 
similarity (values range from 0 to 1, respectively). 

Given the matrix of cosine similarities, the two most distinctive pairs of students from the 
others are group 8 and group 15 (the blue lines in Fig. 4). Interestingly, those dyads achieved 
the highest learning gains in our experiment (10 and 10.5, respectively). We can further 
observe that group 15 is very different from everyone else, because their cosine similarity 
scores are very low (shown in light blue in Fig. 4). Group 8, on the other hand, represents a 
larger spectrum of similarity: some groups are pretty similar to them (e.g., the darker shades of 
3, 10, 15, 16) while others are more distinct (e.g., the darker colors). The following question 
naturally arises: can we use this metric as a predictor for learning? Previous studies have tried 
this idea on students’ essays and utterances, for instance by clustering passages together to 
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isolate “themes” (Sherin, 2012), and have found this approach to be relatively successful in 
identifying misconceptions among students. In our dataset, we indeed found a significant 
correlation between students’ learning gains and their similarity to group 8: r(17), 0.53, p < 
0.05 (Fig. 5). Group 8 lend itself much better as a comparison than group 15 for two reasons: 
1) there is a larger spectrum of similarity scores to group 8 (more diverse shades of blue); and 
2) group 15 had five times more events than all the other groups in their log file. Group 8, on 
the other hand, had a comparable number of actions with the other dyads. We did not find a 
significant correlation between students’ learning gains and their cosine similarity with group 
15: r(17) = 0.42, p = 0.072, or with the only other group that achieved a learning gain higher 
than 10 (group 20, gain = 10.25):  r(17) = -0.111, p = 0.650.  

 

 

Figure 5: Scatterplot of the cosine similarity score between each pair of students with group 8 
and their learning gain. Blue dots represent students in the “listen” condition and green crosses 
represent students in the “discover” condition. 

The correlation shown in Figure 5 is not perfect: many students are actually quite different 
from group 8 (below 0.2 similarity on the x axis) and represent a wide spectrum of learning 
scores. Additionally, the students in the “discover” condition were significantly more similar 
to group 8: F(1,18) = 9.67, p = 0.01, Cohen's d = 0.77 (build mean=0.45, SD=0.27; listen 
mean=0.17, SD=0.05). This reinforces the fact that our experimental manipulation had a 
strong effect on students’ behaviors and that those differences seem to be responsible for 
differences in learning gains. 
In summary, out-of-the-box information retrieval techniques (n-grams probabilities and cosine 
similarity metrics) can provide us with relatively good predictors for learning gains and for 
distinguishing between our two experimental conditions. From the logs collected by the 
tangible interface, we found that both “n-actions” associated with accessing the information 
box and students’ similarity with the highest scoring group on the learning test were associated 
with positive learning gains. This suggests that logs collected when students interact with a 
tangible interface have some predictive values for discriminating between proficient and non-
proficient students (Worsley & Blikstein, 2013) and that our experimental manipulation had a 
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positive effect on productive learning behaviors. It should be noted that the methods we used 
are general enough to be applied to any other type of log files. In the next section, we switch 
our attention to the Kinect data and describe the various measures we extracted from this 
dataset. 

4.2. KINECT DATA 

In this section, we describe various measures that we extracted from the Kinect1 logs. More 
specifically, we looked at: 1) the amount of movements generated by the students and the 
Kinect’s use as a proxy for engagement; 2) prototypical body postures and students’ likelihood 
to transition between them; 3) student’s bimanual coordination and its relationship to group 
dynamics; 4) dyads synchronization and proxemics in small group collaboration. We predict 
that several of those measures should be related to learning, at least through an indirect effect 
via students’ engagement, quality of collaboration, and cognitive states.  

4.2.1 Amount of Movements (Kinect logs) 
Our fourth hypothesis is that the amount of exploration captured by the Kinect sensor is 
correlated with learning. We tested this hypothesis by computing the amount of movement 
generated by each participant. We believe that more engaged students move their bodies to a 
greater extent than less engaged ones, and that the amount of physical movement is a proxy 
for general engagement; this engagement in turn is related to learning gains. There are two 
ways to compute this metric: the first is by calculating the Euclidean distance between each 
tracked joint in the student’s body and averaging the result over time. This approach is not 
ideal, because it does not take into account the natural variations in limbs’ lengths. An 
arguably better way to compute movements is to look at variations in angles between joints in 
body positions. We tried both approaches and sliced the data over time to get a measure for 
each minute. We also computed an overall score, as well as a score for each joint. We did not 
find any significant correlation between the measures described in this paragraph and learning 
gains. For instance the amount of movement computed with joint angles produced the 
following correlation: r(34) = 0.079, p = 0.648. On the one hand, this result is somewhat 
surprising: we would expect at least some of those measures to be associated with higher 
engagement and thus more learning. On the other hand, a movement of the hand can mean a 
range of different things (e.g., a sign of boredom, interest, a deictic gesture, and so on), so 
ultimately the results make sense. Many simple gestures are ambiguous by nature, and in our 
particular case we did not have enough information to correctly contextualize them. It should 
be noted, however, that our non-significant results do not mean that students’ amount of 
movement is not an interesting measure; it merely shows that our simple approach was not 
able to isolate a signal from the noise in our data. 

In the next sections, we look at more refined measures of students’ movements: more 
specifically, we will look at hand coordination and will show how to detect prototypical body 
positions using unsupervised learning algorithms. 

4.2.2 Types of Exploration (Kinect logs) 

                                                

 
1 The Kinect sensor is a motion sensing input device developed by Microsoft. It captures the 
skeleton (composed of 20 joints) of up to four users at a frequency of 30Hz. 
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Our fifth hypothesis is that some types of exploration or sequences of gestures are correlated 
with learning. In this section we describe how we used clustering algorithms to automate the 
creation and application of a coding scheme on body postures. Recall that most previous work 
in this area was conducted manually by analyzing videos frame by frame in a highly time-
consuming process. If we can show that an algorithm can accomplish a similar task, it will 
provide researchers with a more efficient way to quickly analyze students’ body language. 

Our approach was to take our entire dataset (1 million entries; i.e., one entry is a line recorded 
by the Kinect sensor) and transform it into (joint) angles instead of positions in a three-
dimensional Cartesian coordinate system. We then fed this matrix into a simple and fast 
clustering algorithm (K-means) that provided us with prototypical body positions. As a first 
step, we generated 2 to 9 clusters and visually inspected the results; we decided to keep three 
clusters, because the postures found were all perceptibly different, relatively easy to interpret, 
and there was no overlap between them. The results are shown in Figure 6.  

 

Figure 6: The results of the k-means algorithm on students’ body posture (1 million data 
points). In this particular case, we used angles between joints instead of the standard skeleton 
joints provided by the Kinect sensor. The first state (left) is active, with both hands on the 
table; the second one (middle) is passive, with both arms crossed; the third one (right) is semi-
active, with only one hand on the table. 

We found the three clusters to have interesting properties. The first one (left) represents an 
“active” position: both arms are on the table, supposedly manipulating something or at least 
ready to act; the head is tilted toward the table in an attentive position. The second cluster 
(right) shows a “semi-active” posture: one arm is flexed, while the other one is straight on the 
table, probably manipulating a tangible. The last one (middle) represents a “passive” posture, 
where arms are both crossed and the body looks relaxed. We then used those three clusters to 
classify each data point into one of them based on proximity to cluster centroids and counted 
how many times each student was in each posture.  

The way we interpret those three clusters seems to correlate with statistical measures: the 
“active” posture is positively associated with students’ learning gains r(34) = 0.329, p < 0.05 
while the “passive” one is negatively correlated with students learning gains r(34) = -0.420, p 
< 0.05. Additionally, we found that the number of times students transitioned from one 
posture to another was also significantly correlated with their learning gains: r(34) = 0.335, p 
< 0.05. Students in the “discover” condition also spent more time in the first cluster: F(1,37) = 
4.52, p = 0.04 and made more transitions between clusters: F(1,37) = 4.42, p = 0.04. This 
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suggests not only that some postures are indicative of learning, but certain sequences of 
postures are meaningful predictors of learning too (which were promoted by our experimental 
manipulation). Previous work (Tschan, 2002) has shown that “ideal” cycles of cognition (i.e., 
planning, executing, and evaluating an action) are usually associated with higher performances 
and higher learning gains. It is possible that the results of our clustering algorithm produced a 
similar construct: an increased number of cycles where students think for a while (posture 1 
and 2) and then execute an action (posture 3) could be interpreted as something akin to an 
ideal cycle of cognition described by Tschan. We also provide a graphical representation of 
those results (Fig. 7): three Markov Chains show the average, best, and worst students in terms 
of their learning gains. In those Markov Chains, node sizes represent the amount of time spent 
in a particular state; arrows represent the transition probability between those states (ignoring 
self-loops).  

 

Figure 7: Markov Chains of the three states described above (active, semi-active, passive). The 
first shows the average student, the second and third one show the best and worst students in 
terms of their learning gains. 

We can observe that the worst student stays mostly in a passive state; additionally, when (s)he 
enters a passive or semi-passive state, this student is extremely likely to keep looping between 
these non-productive states (from the transition probabilities, we can see that there is a 73% 
chance of being “trapped” in a non-active state). The average student is less likely to stay in a 
passive state; when entering the semi or passive state, the probability of staying there drops to 
~60%. Finally, the best student displays the most balanced transitions probabilities: when 
(s)he is a in a particular state, there is an equal chance of shifting to an active, semi-passive 
and passive state. As a comparison, the transition probability of staying in a non-active state is 
lower than 50% (i.e., 47% and 48%). This suggests that we can potentially discriminate 
between high and low proficient students by looking at their transition probabilities as they go 
through the activity.  

We should mention that we tried several approaches before finding the optimal way to cluster 
our dataset. We first tried to use joint positions in a three-dimensional space, as measured by 
the Kinect (i.e., the x, y, z coordinates of each joint of the Kinect skeleton: head, neck, 
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shoulders, elbows, arms). We found two main issues with this method: first, clusters were 
influenced by students’ orientation toward the tangible interface (right or left side). Second, 
the size of their limbs (and body in general) interfered with the clustering algorithms. Longer 
limbs were more likely to be clustered together, and the same would happen for shorter people 
(shorter limbs clustered together). Finally, we also used another clustering technique 
(hierarchical clustering) and obtained comparable results. 

4.3. ANALYSES AT THE DYAD LEVEL 

We describe here additional results conducted at the dyad level, i.e., when taking both bodies 
into consideration. The goal is to provide new insights on collaborative learning processes by 
looking at body coordination when interacting with a peer. 

4.3.1 Leadership Behaviors 
Our sixth hypothesis is that students’ leadership can be detected from students’ gestures and 
are associated with the dyad’s learning gains. In a related study, Worsley & Blikstein (2013) 
have shown that bimanual coordination was predictive of participants’ expertise in solving an 
engineering problem. Based on these results, we decided to compute a similar metric for our 
dataset. More specifically, the idea is to compute and compare the amount of movement 
generated by each hand. Figure 8 shows all the graphs generated by this approach: some 
students barely use their left arm while others use both arms during the entire activity. It is 
interesting to see the variety of the graphs produced; all the students have a very distinct 
signature in terms of their hand movements. 
To make sense of this metric, we need to introduce additional results that we found in the 
initial study (Schneider & Blikstein, 2015). Previous research has shown that each student 
working in groups can often be categorized as either being the “driver” or the “passenger” of 
the interaction (Shaer, Strait, Valdes, Feng, Lintz & Wang, 2011). One coder used several 
indicators to categorize each dyad’s members: 1) who started the discussion when the 
experimenter leaves, 2) who spoke most, 3) who managed turn-taking (e.g., by asking “what 
do you think?”; “how do you understand this part of the diagram?”), and 4) who decides the 
next focus of attention (e.g., “so to summarize, our answers are...”; “I think we need to spend 
more time on this…”).  
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Figure 8: Hand coordination of 18 dyads (group members are shown next to each other). 
Dotted line represents the amount of movement generated by the right hand, and solid line 
represents the left hand. X-axes show time (minutes) and y-axes represent the amount of 
movement generated by each hand. We can see that participant #39 is bimanual and uses both 
hands. Participant #3 uses predominantly his right hand (dotted line). 

This measure can be considered as an aggregate estimation over the whole activity of the 
dyad’s dynamic profile. We acknowledge that subjects are likely to shift roles while working 
together. We also recognize that this categorization is more likely to be a continuum, and that 
in a few cases the difference between drivers and passengers may be subtle. Nevertheless, we 
decided to take the approach of classifying students in a binary way for the entire activity to 
simplify our dataset and present clearer results. 
In our case, after making this distinction for students, we further separated them by computing 
a median-split on their GPA (note: there was no significant difference in terms of students’ 
GPA between the two experimental conditions: F(1,35) = 1.74, p = 0.20, Cohen’s d = 0.34,  
“discover” mean=3.52, SD=0.59; “listen” mean=3.28, SD=0.49). This resulted in four 
categories: a student could either be a driver or a passenger with a high or low GPA. Figure 9 
shows the boxplots of each category according to their learning gains. Surprisingly, having a 
high GPA driver in the group does not lead to higher learning gains: F(1,16) = 0.04, p = 0.84, 
Cohen's d = 0.17 (low GPA driver: mean=7.63, SD=1.84; high GPA driver: mean=7.87, 
SD=2.57). On the other hand, having a passenger with a high GPA does lead to increased 
learning gains: F(1,18) = 3.51, p = 0.08, Cohen’s d = 1.4 (low GPA passenger: mean=6.22, 
SD=2.26; high GPA passenger: mean=8.36, SD=2.43). From our observations running the 
experiment, this result is not totally unexpected: proficient students who do not “take control” 
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of the activity tended to leave more space for trial and error for their partner and suggested 
hints when needed. This situation resulted in increased participation and engagement from the 
low GPA student. In the opposite situation, the same student would stay passive and let the 
driver solve the problem on her/his own.  

 

The distinction between proficient/non-proficient drivers/passengers allowed us to find 
interesting patterns in our data. More specifically, we found that drivers tend to use both hands 
while the passenger uses at most one hand. Figure 10 show the aggregated evaluation over 
time of the hand movements of those two types of students. Using an ANOVA, we found a 
significant difference between the amount of movements of each hand for the passengers at 
the end of the building activity: F(1,35) = 7.66, p = 0.01 (left hand mean=280.00, SD=86.30; 
right hand mean=205.55, SD=69.62). This difference was not significant for the drivers: 
F(1,35) = 1.24, p = 0.27 (left hand mean=315.38, SD=152.32; right hand mean=257.21, 
SD=152.27). The p-value for the passenger became marginally significant after 14 minutes: 
F(1,35) = 3.18, p = 0.08 and significant after 20 minutes into the activity: F(1,35) = 4.50, p = 
0.04 (Fig. 10).  
This result shows that we can potentially differentiate between drivers and passengers by 
looking at their hand movements. As a possible implication of this result, we can imagine 
future systems where machine-learning algorithms will make predictions about the “status” of 
each member of a dyad. Using many more features, we can imagine a learning environment 
where personalized scaffolding is provided depending on the groups’ dynamic: proficient 
leaders can be encouraged to take a more passive role, while less proficient students would be 
provided with more scaffoldings and more opportunities to participate (for a similar 
application in displaying the amount of speech produced by each member of a group, see 
Bachour, Kaplan, & Dillenbourg, 2008).  

 

Figure 9: Boxplots of the four kinds of dyads described 
above: driver/passenger with high/low GPA. Y-axis shows 
the averaged learning gains of the dyads. 
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Figure 9: Bimanual coordination from Drivers and Passengers in dyads of students. X-axes 
show time (in minutes) and y-axes show the amount of movement generated by each hand. 

4.3.2 Body Synchronization 
Our seventh hypothesis is that levels of synchronization between the dyad’s members are 
correlated with learning. In a previous study, Schneider & Pea (2013) found that students’ 
visual synchronization (as measured by eye-trackers) was correlated with their learning gains. 
That is, more moments of joint attention was beneficial to establishing a common ground, 
which in turn positively influenced how much students learned during an activity. Other lines 
of research (in ethology as well as in human psychology; Chartrand & Bargh, 1999) suggest 
that body synchronization is associated with more productive collaborations. We were inspired 
by those results and decided to compute a metric for gesture synchronization using the Kinect 
data.   
Our approach was to first take pairs of data points (one from each student) and compute the 
distance between them. Distance was calculated by taking the absolute value of the difference 
between the joint angles of each participant. Those differences were then averaged for each 
time point. We created graphs with time series of those data points as well as an overall 
measure of body synchronization. An ANOVA did not reveal any significant effect of this 
measure on our experimental manipulation: F(1,17) = 0.92, p = 0.35, Cohen's d = 0.14 
(“discover” mean=0.46, SD=0.09; “listen” mean=0.42, SD=0.05). We also did not find a 
significant correlation between body synchronization and learning gains: r(16) = 0.189, p = 
0.453. We thus conducted a second attempt that was inspired from the literature in eye-
tracking studies (Richardson & Dale, 2005): it usually takes +/- 2 seconds for participants in a 
collaborative situation to adjust their gaze to their partner’s behavior. It is possible that body 
language obeys the same rules. Thus, we repeated the procedure above, but this time, for each 
data point we looked at the minimum distance in their partner body posture +/- 2 seconds. The 
results were not influenced by this manipulation: F(1,17) = 0.81, p = 0.38, Cohen’s d = 0.13 
(“discover” mean=0.43, SD=0.09; “listen” mean=0.40, SD=0.05). Similarly the correlation 
with students’ learning gains did not reach significance: r(16) = 0.184, p = 0.466 (Fig. 11). It 
suggests that even though gaze synchronization is a strong predictor for students’ quality of 
collaboration and learning, body synchronization does not hold the same properties, at least in 
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the context of our experiment. Successful students were not more likely to coordinate their 
action based on their partner’s behavior.  

 

Figure 11: Relationship between body synchronization (average distance between students’ 
bodies over time) and learning gains. Blue dots represent students in the “listen” condition and 
green crosses represent students in the “discover” condition. 

 

4.3.3 Body Distance 
Our eighth and last hypothesis is that the distance between two group members is a proxy for 
their level of comfort with their partner and the content taught. This metric was inspired by the 
theory of Proxemics developed by Edward T. Hall (1966). In this seminal work, he divided the 
distances around a person into different zones: the intimate area (less than 15 cm to 46 cm), 
the personal space (46 to 122 cm), the social distance (122 to 370 cm), and the public distance 
(370 to 760cm or more). Interestingly, in our study, students were seated at a distance that 
varied between the intimate and personal distance. Moving from a personal to an intimate 
distance is considered a violation of someone’s territory if there is not implicit agreement that 
someone can do so. Thus, a small distance between two students can potentially characterize a 
productive collaboration and thus higher learning gains. Similarly, a larger distance can be an 
indicator of a poor collaboration. 
We computed the distance between students 30 times per second by taking the rightmost joint 
from the student on the left side and the leftmost joint from the student on the right side of the 
table; we then calculated the Euclidean distance between those two points and averaged a 
global score for the entire activity (27000 data points). We did not find a correlation between 
learning and the distance between students’ bodies: r(16) = 0.377, p = 0.123.  
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Figure 12: correlation between the distance between students’ bodies and their pre-existing 
knowledge on the topic. Blue dots represent students in the “listen” condition and green 
crosses represent students in the “discover” condition. 

However we found that this metric was correlated with students’ pre-existing  knowledge on 
the topic taught (i.e., score on the pre-test): r(16) = -0.548, p = 0.019 (Fig. 12). There was also 
no significant difference between our two experimental groups: F(1,17) = 0.45, p = 0.51, 
Cohen’s d = 0.12 (“discover” mean=0.68, SD=0.09; “listen” mean=0.65, SD=0.12). While 
there could be multiple interpretations of this result, it suggests that students who are 
unfamiliar and maybe uncomfortable with the subject matter tend to establish a larger distance 
with their peers and possibly be more defensive during a collaborative task. 

5. SUPERVISED MACHINE LEARNING 
To conclude our exploration of this dataset, we decided to gather all the features mentioned 
above and store them into a single data frame. We then used a supervised machine-learning 
algorithm to see if our measures had any predictive value regarding students’ learning gains. 
We used a median split on the learning gains to separate our students into two groups: those 
who fully took advantage of the activity and learned more than the other half of the students, 
and those who were below this cutoff. We decided to use a common and standard machine-
learning algorithm to predict which student belonged to which category: Support Vector 
Machine (SVM). One advantage of SVM is that several kernels can be tested, which increases 
the chance of finding structure in a given dataset. We used a Leave-One-Out Cross-Validation 
procedure (LOOCV) during training. Due to the relatively small size of our dataset, we were 
not able to control for some structure in our data (conditions and pairs); we plan to use a larger 
sample in future work to control for this bias. The reader should keep in mind this limitation 
when looking at the results below. We selected features by starting with an empty set and 
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progressively chose the best features until we reached a ceiling or until the features were 
exhausted (i.e., forward-search feature selection). Our results are summarized in Table 3.  

In terms of the features, we created the following categories: first, we used the raw and 
aggregated counts from the logs provided by the tangible interfaces: for instance, the number 
of times the information box is accessed, how many sound waves are created, how many 
tangibles are being used (7*2 features: tangible added, removed, connected; sound wave 
created, successfully reached the next organ; sound played; info-box accessed). Second, we 
have the cosine similarity matrix described above showing how similar groups of students are 
to each other (19 features). Third, we used movement data from the Kinect about joint angles: 
left/right shoulder, left/right elbow, left/right wrist, head and total amount of movement (8 
features). Fourth, we used the unsupervised learning procedure described in section 4.2.3, 
created 9 clusters to provide us with additional features and counted the number of times each 
student spent in each position. Finally, we used the measure about body synchronization 
mentioned above (with and without a lag of +/- 2 sec) and the measure about body distance 
(n=3). This gives us 53 features in total, knowing that features at the dyad-level (such as body 
synchronization) are identical for each member of a dyad.  
 

Table 3: Results of our SVM classifiers predicting students’ learning on a median split. RBF 
stands for Radial Basis Function, and MLP for Multilayer Perceptron. 

Kernel Number 
of features Top 5 features Accuracy 

Linear 7 cosine_21, infobox, successful_wave, 
posture_8, new_connection,  

91.67% 

quadratic 4 distance_bodies, tangible_added, 
new_wave, mov_left_wrist 

91.67% 

polyno- 
mial 8 cosine_9, distance_bodies, infobox, 

body_sync, body_sync_lag 
91.67% 

RBF 3 cosine_23, tangible_added, 
new_sound_wave 

88.89% 

MLP 6 cosine_9, posture_7, infobox, cosine_10, 
new_sound_wave,  

100% 

We achieved a 100% accuracy using a Multilayer perceptron kernel; in other words, the model 
could predict with 100% accuracy whether a particular student was above or below the median 
split computed on learning gains. This result is surprisingly high, but we should remind the 
reader that we are doing a very rough binary prediction (i.e., median split on learning gains) 
and that our dataset is relatively small (N=38). Even though we tried to prevent over-fitting by 
using a LOOCV procedure, it is inevitable that the model is probably mimicking our data too 
closely. Nevertheless, those results are promising if they can be replicated in other settings 
with more students.  

In terms of the top features selected by each kernel, we can see that the cosine similarity 
metric extracted from the logs of the tangible interface is often chosen (e.g., “cosine_21” 
shows how similar each dyad is with group #21). The number of times students accessed the 
information box (“infobox”) is also a strong feature for our classifier, which intuitively makes 
sense given the results highlighted in Section 3.1. Finally, it is interesting to see that several 
measures extracted from the Kinect sensor are being selected: the distance between students’ 
bodies (“distance_bodies”), the synchronization between students’ bodies (“sync”) and the 
number of times students adopted a particular posture (“posture_7”, for the cluster number 
seven identified by k-means). It shows that even if particular features are not significantly 
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correlated with students’ learning gains, they still retain some predictive value for our 
classifiers. 

6. DISCUSSION 
In this paper, we presented several metrics for predicting students’ learning around an 
interactive tabletop system. We provide a summary of our hypotheses and results in Table 4. 

 
Table 4: summary of our hypotheses and results (X means that the hypothesis is rejected, V means that 

the hypothesis is not rejected) 

 Hypotheses Results 

1 TUI logs: the amount of exploration (i.e., number of actions 
recorded by the TUI) is correlated with students’ learning  

X 

2 TUI logs: some particular types of exploration or sequences of 
actions (e.g., testing the system, accessing the info-box) are 
correlated with learning gains  

Students in the “discover” 
condition were more likely to 

display those behaviors. 

3 TUI logs: dyads with high learning gains look more similar to 
each other in the way they explore the TUI, and look 
dissimilar to dyads with low learning gains 

Students in each experimental 
condition were more likely to 

look like each other. 

4 Kinect logs: the amount of exploration (i.e., the amount of 
movements generated by each user) is correlated with 
students’ learning  

X 

5 Kinect logs: some particular types of exploration or sequences 
of gestures (e.g., hand movements, being in an active posture) 
are correlated with learning gains 

Students in the “discover” 
condition were more likely to 

display those behaviors. 

6 Kinect logs: students’ leadership can be detected from 
students’ gestures and are associated with learning gains  

V 

7 Kinect logs: the level of synchronization between the dyad’s 
members is correlated with learning  

X 

8 Kinect logs: the distance between two group members is a 
proxy for their level of comfort with their partner and the 
content taught  

V 

 
First, we showed that information retrieval techniques could be used on the system’s logs to 
predict learning gains as measured by pre and post-tests. More specifically, we found that 
particular types of exploration (e.g., consulting the information box) were associated with 
higher learning gains, while the amount of exploration was not. This suggests that successful 
groups of students were more likely to explore some very specific facets of the TUI (for 
instance, by reading more about the organs of the auditory system) as opposed to exploring all 
possible combinations of the tangibles. While this result is not surprising, it shows that we can 
extract useful indicators of students’ learning from the logs of the TUI. We also used the best 
group of students as a reference point and computed cosine similarity metrics to obtain the 
similarity of each group with this baseline. Of course, we do not suggest that there is only one 
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single best way of learning, but in the context of our activity there seemed to be particular 
behaviors that were likely to be associated with higher learning gains (e.g., exploiting 
additional resources provided by the information box). In our case, we found that this measure 
was significantly correlated with learning. Also, the actions and behaviors of the best group 
emerged from the data itself and were not results of a mandated script, so examining the data 
from the best groups is arguably a good reference point of efficient or productive sets of 
actions and trajectories. Generically, with a larger group of students and more types of 
cognitive and non-cognitive measures, we could create a variety of productive trajectories that 
would work for different profiles of students (see Blikstein & al, 2014).  
Second, we explored how Kinect data can inform the way we understand “in-situ” interactions 
around a tabletop: we found that the raw amount of movement was not a relevant predictor for 
our purposes; however, we found that bimanual coordination was predictive of students’ 
leadership in a group. Even more interestingly, clustering body position with k-means 
provided us with interesting categories: we found that “active” positions were correlated with 
learning gains, “passive” positions were negatively correlated with learning gains, and that the 
number of transitions between those states was predictive of learning. Third, we explored 
students’ body language on a social level: contrary to common social psychology theories, we 
found that body synchronization was not correlated with any of our measures. Fourth, we 
found that the distance between students’ bodies during the activity was associated with their 
pre-existing knowledge on the topic taught: students with low scores on the pre-test tended to 
be further away from their partner compared to students who obtained a high score. We 
interpret this result as a sign of defensiveness regarding an unfamiliar and possibly difficult 
topic for them to learn about.  
Finally, we gathered all measures into one matrix and run an unsupervised machine learning 
algorithm to roughly predict students’ learning (i.e., using a median-split on their scores). We 
found that SVM with a multilayer perceptron kernel achieved a 100% classification accuracy 
using 6 only features. It is interesting to see that even though some features were not 
significantly correlated with our outcome of interest, they still retained some predictive value 
when used in combination with each other features. 
There are obvious limitations in this work. Our sample is rather small (N=38) for making 
predictions that generalize to other settings and other groups of students, and for training a 
supervised machine-learning algorithm. We also found that our correlations were affected by 
our two experimental groups: in most cases, students in the “discover” condition behaved 
differently from students in the “listen” condition, which affected our results; this was visible 
both in our scatterplots and in the ANOVAs we performed on our various measures between 
our two groups. Future work should replicate those results with a larger, uniform sample. 
Finally it is important to mention that we did not adjust our statistical analyses for multiple 
comparisons (Rothman, 1990);  the main reason for this is that our sample size is rather small. 
We decided to follow Rothman’s advice that “scientists should not be so reluctant to 
explore leads that may turn out to be wrong that they penalize themselves by missing possibly 
important findings.” The goal of exploratory work is not to look for causal inferences; rather, 
our aim was to generate hypotheses about the potential existence of one or several effects. 
Replications are crucial for providing more solid evidence that the findings reported in this 
paper represent actual effects (as opposed to being just noise).  

One possibility for future work based on these findings would be to implement learning 
algorithm to capture data as students are working on a task and make just-in-time predictions 
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minute by minute. If we imagine that our predictions are already acceptable after half of the 
activity, we could implement a feedback loop to the learning environment (e.g., the tangible 
interface) and provide personalized scaffolding to different groups of students. This feedback 
loop could potentially also be used in a classroom to inform teachers about the status of their 
students. 

7. CONCLUSION 
Our goal with this paper is twofold: first, we introduced methods to compute meaningful 
measures from logs generated by a tangible interface and Kinect data; second, we correlated 
those measures with students’ learning gains to find relevant predictors of learning. We 
obtained significant results using information retrieval techniques (i.e., cosine similarity 
metrics) on the logs and clustering methods (i.e., k-means) on the gesture data that explained 
differences between our two experimental groups. We also showed that our metrics were 
particularly useful when used as features for a supervised machine-learning algorithm.  

The main implication of this work is that we found interesting predictors of learning in an 
ecologically-valid task: i.e., students were using an interactive tabletop that had no constraints 
for gestures—all actions were allowed. The task itself was very open-ended: there were 
multiple paths to success. This is a departure from research that uses data mining in very 
constricted and well-structured tasks in which students either follow a scripted procedure or 
have a very narrow solution space to navigate. In this work, gestures were used to 
automatically detect how much students learn during a particular activity, but we envision that 
such gains could be also correlated with other multimodal data (e.g., eye gaze movements 
collected with mobile eye-trackers, arousal measures gathered using galvanic skin response 
sensors, speech data with microphones). 

The approach described in this paper opens new doors for assessing students’ learning in a 
variety of settings. Project-based education, for instance, is used in all kinds of engineering 
and in K-12 classes. Being able to perform formative assessment and judging the process of 
creating a particular artifact (as opposed to merely evaluating the final product) is a powerful 
way to both understand and influence students’ learning trajectories. Finally, most of the work 
about learning analytics has been conducted online and has focused its attention on click-
stream data. We believe that shifting this focus from online to “in-situ” activities has the 
potential to provide researchers with a richer understanding of students’ struggles and 
difficulties: by gaining access to their individual learning pathways, we can start to think about 
providing them with some kind of personalized assistance as they create learning artifacts in a 
co-located setting. This is a departure from previous research that has looked at students’ 
processes in a qualitative way, which is an extremely difficult and time-consuming 
methodology. Our contribution is to make these analyses easier to conduct, easier to replicate, 
and to provide new ways to visualize students’ progresses as they are learning new scientific 
ideas. 
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