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The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-
thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the 
present study is to dissect the predictive power of undergraduate performance indicators and their 
aggregates. We analyze 81 variables in 171 student records from a Bachelor’s and a Master’s program 
in Computer Science and employ state-of-the-art methods suitable for high-dimensional data-settings. 
We consider regression models in combination with variable selection and variable aggregation 
embedded in a double-layered cross-validation loop. Moreover, bootstrapping is employed to identify 
the importance of explanatory variables. Critically, the data is not confounded by an admission-induced 
selection bias, which allows us to obtain an unbiased estimate of the predictive value of undergraduate-
level indicators for subsequent performance at the graduate level. Our results show that undergraduate-
level performance can explain 54% of the variance in graduate-level performance. Significantly, we 
unexpectedly identified the third-year grade point average as the most significant explanatory variable, 
whose influence exceeds the one of grades earned in challenging first-year courses. Analyzing the 
structure of the undergraduate program shows that it primarily assesses a single set of student abilities. 
Finally, our results provide a methodological basis for deriving principled guidelines for admissions 
committees. 

 

1.  INTRODUCTION 

1.1  CONSEQUENCES OF THE BOLOGNA PROCESS 

The Bologna process is a large cross-national effort to redesign the European system of 
higher education. The main objective of this initiative is to establish more comparable, 
compatible, and coherent higher education systems across Europe. The process was 
launched with the Bologna declaration in 1999; 15 years later, 47 European countries have 
signed the declaration and are committed to redesigning their systems. Meanwhile, many 
universities in continental Europe have adopted two-cycle study programs – Bachelor’s 
and Master’s – that facilitate the mobility of students and staff across Europe. The 
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comparability of such programs has led to rankings and league tables, strong competition 
among universities in recruiting talented students, and, consequently, increasingly selective 
admissions (Kehm, 2010). In the foreseeable future, the admission of talented international 
students will also prove vital for universities in Europe because demographic changes will 
cause the number of domestic students to drop dramatically (Ritzen, 2010). In the field of 
Computer Science, where the demand is high for a well-qualified workforce, this decline in 
student enrolment will be particularly critical.  

In the 2012 Bologna Process implementation report (EACEA, 2012), Switzerland was one 
of the few countries classified as open, which means it has high outward degree mobility 
and even higher incoming degree mobility. Indeed, ETH Zurich attracts many international 
students especially to the Master’s program in Computer Science, which is taught in 
English. In 2013, approximately 50% of the students graduating from this program held an 
external Bachelor’s degree. These rather recent developments highlight the necessity of 
rigorously organizing admission policies so that students with a high probability of 
successfully completing a degree program can be effectively selected. The problem, 
however, is deciding how to pinpoint the best measure of study success and identify 
respective admissions instruments that are reliable and valid. 

1.2  PREDICTING FUTURE ACADEMIC SUCCESS 

One of the most common tasks of Educational Data Mining (EDM) is filtering out 
information that can be used to model a student’s performance when predicting future 
academic success (Baker and Yacef, 2009; Romero and Ventura, 2010). Those 
investigations cover entire study programs as well as individual courses and tasks, e.g., in 
intelligent online-learning systems. Different statistical methods and data mining (DM) 
techniques are used to address this problem, ranging from descriptive statistics and 
regression analysis to decision trees, neural networks, and Bayesian networks (Peña-Ayala, 
2014; Romero and Ventura, 2010). In this paper, the concept of DM is utilized in a broad 
sense and includes methodologies to detect patterns in data in general. In the following 
sections, we first discuss the challenge of defining and measuring study success, the target 
variable. Afterward, we present potential explanatory variables for predicting that target 
variable and then describe the DM techniques used for making those predictions.  

1.2.1  Target variable 

Study success is difficult to quantify; no scientifically or colloquially uniform definition 
exists (Hartnett and Willingham, 1980; Ramseier, 1977). Nevertheless, that term has 
repeatedly been framed within the literature (Camara, 2005; Hartnett and Willingham, 
1980; Oswald et al., 2001; Rindermann and Oubaid, 1999; Willingham, 1974). For 
example, Oswald et al. (2001) model study success as a twelve-dimensional construct that 
is subdivided into three areas: intellectual behavior, interpersonal behavior, and 
intrapersonal behavior. Although such elaborate constructs most likely represent study 
success better than cruder ones, they are harder to measure. Rindermann and Oubaid 
(1999) propose the following six simpler measures: completion of studies, grade point 
average (GPA), study duration, student satisfaction, professional qualifications, and 
professional success, whereat most studies rely on GPA as the most appropriate measure 
(Baron-Boldt et al., 1988; Poropat, 2009; Trapmann et al., 2007). However, any feasible 
measure can only be a proxy for true study success by a student.  
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1.2.2  Explanatory variables 

Since the early days of educational research, the transition from high school to college has 
received much attention (Astin, 1993; Atkinson and Geiser, 2009; Conley, 2005; Fetter, 
1997; Willingham et al., 1985). Three indicators are of particular importance when 
predicting future success during that transitional period: GPA obtained at the secondary 
school, intelligence quotient (IQ), and self-efficacy (Preckel and Frey, 2004). A meta-
analysis by Trapmann et al. (2007) measures correlations (mean corrected validities) 
between high school GPA and undergraduate grades in the range of 0.26 to 0.53. In 
addition, Atkinson and Geiser (2009) emphasize that high school grades are the best 
known predictors of student readiness for undergraduate studies, regardless of the quality 
and type of high school attended, while a standardized admissions test provides useful 
supplementary information. 

The indicative value of several types of explanatory variables has also been assessed 
during the transition from undergraduate to graduate studies. The predictiveness of 
indicators of undergraduate achievements for future graduate-level performance has been 
shown in many studies, revealing explained variances from 4% to 17% (Agbonlaho and 
Offor, 2008; Downey et al., 2002; Evans and Wen, 2007; Koys, 2010; Kuncel et al., 2001; 
Lane et al., 2003; Owens, 2007; Timer and Clauson, 2010; Truell et al., 2006). Another 
type of graduate admissions instrument is the standardized test, such as the Graduate 
Record Examination (GRE®) General Test, whose validity has been documented in several 
investigations (Bridgeman et al., 2009; Kuncel et al., 2001). Other researchers measure 
enabling factors such as language skills and examine the relationship between language 
proficiency and future study success (Cho and Bridgeman, 2012; Graham, 1987). Current 
research also analyzes the indicative value of personality traits and the design of respective 
admissions instruments (e.g., De Feyter et al., 2012; Wikström et al., 2009).  

While all of these types of explanatory variables can signal future graduate-study success, 
it is conceivable that indicators of previous academic achievements are just as useful as 
they are in the transition between high school and undergraduate studies. When using 
grades for prediction one must also consider the validity of examinations, grading schemes, 
and what those grades actually represent (Kane, 2013). 

1.2.3  Grades  

Applying a factor analysis on school grades, Langfeldt and Fingerhut (1974) find two 
components that determine achievement: ability and adaptation to the school system. This 
is confirmed by research on norm-referenced and criterion-referenced grades (Thorsen, 
2014; Thorsen and Cliffordson, 2012). That second dimension is also identified as student 
non-cognitive behavior (Bowers, 2011), academic ethic (Rau and Durand, 2000), or 
common grade dimension (Klapp Lekholm and Cliffordson, 2008). It is related to non-
cognitive constructs such as motivation, effort, self-efficacy, perseverance, and locus of 
control. Nevertheless, disagreement has also arisen about the quantification of those 
constructs (Rau, 2001; Schuman, 2001). Here, we refer to that second dimension as 
adaptation to the academic culture.  

Klapp Lekholm and Cliffordson (2008) highlight the significance of influences that 
construct-irrelevant factors might have on grades (see also Baird, 2011; Sommerla, 1976; 
Suellwold, 1983; Tent, 1969). Frey and Frey-Eiling (2009) determine the following impact 
factors: attractive appearance, knowledge about previous grades, capacity of students to 
express themselves, examiner’s feelings about the abilities of a student, gender, precision 
of handwriting and mistakes in writing, and knowledge about the grades of older siblings. 
Those authors even recommend that one systematically correct the grades of students who 
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generally show negatively rated characteristics. Birkel (1978) assesses whether it matters if 
a good examinee follows a bad one, or vice versa, and find that good after bad leads to 
even better grades while bad after good leads to even worse ones. 

Although adaptation to the academic culture may explain why grades are better predictors 
of success than standardized test scores, the influence of construct-irrelevant factors might 
seriously harm the validity of grades as an admissions instrument. Some construct-
irrelevant factors have less of an effect on the undergraduate level than on primary or 
secondary education. For undergraduates, less-personal relationships are found between 
students and examiners, written examinations are often standard, and student numbers 
rather than names are used for identification. However, other factors, such as the order in 
which examinations are corrected, remain a problem. 

1.2.4  DM techniques 

While EDM aims at promoting scientific and mathematical rigor in educational research 
(Baker and Yacef, 2009), concerns are still raised about the methodologies employed in 
validity studies, particularly when assessing the relationship between test scores and future 
success (Atkinson and Geiser, 2009). Theobald and Freeman (2014) also claim the need 
for more rigor and propose using regression methods in intervention studies.  

Valuable reviews of advanced methodologies within EDM have been conducted by 
Romero and Ventura (2010) and Peña-Ayala (2014). Two basic approaches can be taken to 
predict student performance modelling in EDM: regression, where a continuous target is 
predicted, and classification, where a categorical target is predicted. Relevant to the work 
described here, Baker et al. (2011) detect a student’s preparedness for future learning by 
applying linear regression models in combination with forward variable selection 
following a cross-validation scheme. The best model outperforms Bayesian Knowledge 
Tracing. Rafferty et al. (2013) predict individual student performance from paired 
interaction data by relying on lasso regression. Both papers conclude by emphasizing the 
importance of predicting student performance to permit early intervention, while we regard 
the admission selection process as one of the earliest intervention possible. Herzog (2006) 
also mentions the suitability of linear regression models for analyzing relatively small 
datasets.  

Different methods have been evaluated for their degree of effectiveness when selecting 
variables (Romero et al., 2014). They include the use of expert knowledge (Baker et al., 
2011) as well as relying upon Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), linear mixed models, and group lasso (Ra and Rhee, 2014). One powerful 
tool for assessing selection stability is bootstrapping (Efron and Tibshirani, 1994). 
However, it is not often applied for that purpose in EDM.  

1.3  FOCUS OF THIS STUDY 

1.3.1  Graduate-level performance in Computer Science within the European 
context  

We evaluate indicators of undergraduate achievements that might relate to graduate-level 
performance in Computer Science within the European context. Previous examinations 
have been more concerned with outcomes and drop-out rates in introductory undergraduate 
courses (Bergin and Reilly, 2006; Nugent et al., 2006; Ventura, 2005). We are not aware of 
any research on the transition from undergraduate to graduate work in engineering and 
natural sciences, where indicative values might be stronger than in other fields, since the 
strongest relationship between high school grades and undergraduate achievements has 
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been found for the former ones (Trapmann et al, 2007). Moreover, typical European 
programs in Computer Science differ in character from those in North America: rather 
fixed 3 years mono-disciplinary Bachelor’s programs in Europe as opposed to more 
flexible 4 years programs that include courses outside the major field in the USA (Scime, 
2008). In fact, several authors emphasize the importance of examining the validity of 
admissions instruments for a specific use (Cronbach, 1971; Kane, 2013; Messick, 1989; 
Newton, 2012).  

1.3.2  Unbiased dataset  

When prior studies entail indicators of undergraduate achievements, the results might be 
distorted by an admissions-induced selection bias (Dawes, 1975). This effect has been 
observed in data that have been collected from study programs with selective and 
compensatory admissions rules (Figure 1a). In contrast, our data are free of such a bias, as 
students automatically advance to the Master’s program (Figure 1b), and they have been 
collected within only one institution, thereby enabling us to conduct an in-depth 
investigation of the statistical relationship between undergraduate and graduate studies.  

 

 

Figure 1: (A) Conventional admissions setting. Graduate programs are typically based on a 
selective admissions procedure. (B) Admissions setting in this study at ETH. Students who 
completed the in-house Bachelor’s program in Computer Science are directly admitted to 
the Master’s program. 

1.3.3  Level of aggregation 

When indicators of undergraduate-level course performance are aggregated, the level of 
aggregation leads to frequent limits on research efforts. In this paper, the spectrum runs 
from full aggregation (undergraduate grade point average, or UGPA) to none. One can 
obtain the UGPA by calculating the arithmetic mean across all courses in the 
undergraduate program, which might average out and hide useful information. The lack of 
any aggregation strategy provides a set of indicators that might be dominated by construct-
irrelevant factors. We hypothesize that an optimal level exists at which undergraduate 
courses are partially aggregated. For us, this entails three approaches. First, courses should 
be clustered according to similarity in required abilities and skills. Second, courses should 
also be clustered in chronological order, because Computer Science programs are typically 
of a consecutive nature, abilities can develop over time, and students adapt to the academic 
culture at different paces. Third, in cases where failed examinations are repeated, one 
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might need to cluster the grades achieved in the first attempt and those obtained in the final 
attempt. 

1.3.4  Methodology  

We employ linear regression models in combination with different variable-selection 
techniques. To avoid potentially misleading results caused by methods that are too 
simplistic (Atkinson and Geiser, 2009), we employ a rigorous DM methodology that 
includes cross-validation to avoid overfitting, bootstrapping to assess the stability of 
variable selection, and statistical testing to estimate differences in performance. We 
compare modern approaches that depend upon adaptive lasso and cross-validated R2 
statistics for performance estimations with those that are more traditional and based on 
step-wise regression models with AIC and BIC as well as adjusted R2 statistics. We also 
adopt an approach to variable selection that relies upon partial correlations, which appears 
to be particularly appropriate due to anticipated collinearity in the data. With regard to 
establishing a suitable amount of aggregation, we employ expert knowledge, factor 
analysis, and the novel minimum transfer-cost principle, which controls the model-order 
selection process. Our approach elucidates whether results are reliable and sufficiently 
robust, which is highly valuable in small sample size settings. 

1.3.5  Aim  

The graduate-admissions process is frequently considered a critically important step in 
maintaining quality control within higher education. However, rules-of-thumb and domain-
specific experiences rather than evidence-based approaches have long dominated 
university policies (Cuny and Aspray, 2000). Here, we use DM techniques for a thorough 
investigation of statistical relationships between undergraduate- and graduate-level 
performances. By combining linear regression models with different methods for variable 
selection, we aim to i) explore the predictive power of undergraduate indicators and ii) 
investigate how the meaningful aggregation of grades further improves prediction 
performance and understanding. We address these questions by analyzing student records 
from the Bachelor’s and Master’s programs in Computer Science at ETH Zurich, 
Switzerland. Our results are also used to derive optimized admissions rules, therewith 
helping us provide guidance when choosing selection instruments for graduate admission 
into Computer Science programs and related fields in Europe. 

2.  DATASET 

We analyzed data consisting of 171 student records collected over eight years (2003-2010) 
from ETH Zurich, Switzerland. Each record comprised 81 variables from a Bachelor’s and 
a Master’s program in Computer Science (Tables 1 and 2). Notably, the most challenging 
and highly selective courses during the first two study years in the Bachelor’s program 
were compulsory for all students. Moreover, all students who completed the ETH Zurich 
Bachelor’s program automatically advanced to the Master’s program. Because no selection 
was conducted at this transition between programs, the data were not confounded by an 
admissions-induced bias. Therefore, we were able to acquire a complete dataset for all in-
house students who graduated from the Master’s program. 

These data posed two difficulties for the analysis. First, the number of observations was 
rather small in relation to the number of explanatory variables, which aggravated the risk 
of overfitting and subsequent overinterpretation. Second, strong collinearities were 
expected along with the risk of variance inflation in the resulting models.  
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Table 1: Overview of the Bachelor of Science program in Computer Science at ETH. 
Numbers in brackets indicate how many courses students must take in each group to fulfill 
the degree requirements. 

First year Second year Third year 

Basic courses (9) 
Calculus 
Data Structures and 
   Algorithms  
Digital Design  
Discrete Mathematics 
Introduction to 

Programming 
Linear Algebra  
Logic 
Probability and Statistics 
Physics 

Compulsory courses (11) 
Advanced Computational 

Science 
Computer Architecture 
Computer Networks 
Electrical Engineering 
Formal Methods and  
   Functional Programming 
Information Theory  
Introduction to  
   Computational Science  
Introduction to Databases 
Operating Systems 
Software Architecture 
Systems Programming 
Theory of Computing 

Core courses (4) 
Algorithms, Probability and 
  Computing 
Distributed Systems 
Information Security 
Information Systems 
Modeling and Simulation  
Visual Computing 
Software Engineering 

Elective courses (3-4) 
~ 100 courses in various  
   fields of Computer Science 

Compulsory major courses (2) 
~ 30 courses and seminars 

Compulsory elective courses (3)
~ 100 courses in humanities,   
   social and political sciences 

 

Table 2: Overview of the Master of Science program in Computer Science at ETH. 
Numbers in brackets indicate how many courses students must take to fulfill the degree 
requirements. 

Curriculum  Focus areas 
Focus courses (4-6) 
~ 10 courses in focus area 

Elective courses (4-5) 
~ 100 courses in various  
  fields of Comp. Sci. 

Foundations of Comp. Sci. (4) 
5 courses in total 

Multidisciplinary courses (2-3) 
>  1000 courses offered by 3     
 universities 

Compulsory elective courses (1)  
~  100 courses in humanities,  
 social and political sciences 

Master’s thesis 

Computational Science
Distributes Systems 
Information Security 
Information Systems 
Software Engineering 
Theoretical Computer 
   Science 
Visual Computing 

 

The 81 explanatory variables in Table 3 were used to predict the subsequent graduate GPA 
(GGPA), which we treated as a proxy for graduate-level performance, defining it as the 
unweighted arithmetic mean of all grades achieved in Master’s level courses related to 
Computer Science. However, the grade earned for the Master’s thesis itself was not 
included because grading schemes varied widely among academic supervisors. 
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Table 3: Explanatory variables. VN: variable name; italicized font, scalar values; bold 
type, vectors (lengths given in brackets).   

Variable VN  Scale Comments 
Sex ݏ  Nominal Male or female. 
Age at 
registra-
tion 

ܽ  Ratio A student’s age at the time of enrolment was preferred over
alternative measures (e.g., date of birth or age at the time of
data acquisition). 

Rate of 
progress  

 Ratio This variable encoded the number of credits obtained in the  ݎ
Bachelor’s program divided by its duration. 

Grade 
achieved  
in  single 
course 

 ܏
(56) 

 Interval These individual explanatory variables included grades
achieved in courses from the first and the second year as well
as those earned in the third-year core courses. Because the 
number of examination repetitions fluctuated across students, 
separate variables were used to capture the grades obtained in 
the first and final attempts. Unless an examination was
repeated, those two variables had identical values. Note that 
students could not take an examination more than twice. First 
and final examination attempts differed by 13% for grades 
achieved in the first year, by 9% for second-year grades, and 
by 3% for third-year grades. Grades were given on a 6-point 
scale that included quarter steps (e.g., 5.25), where ‘6’
represented the highest, ‘1’, the lowest, and ‘4’, the minimum 
passing grade. Because all courses in the first two years were 
compulsory, no values were available for that part of the data. 
During the third year, students had some freedom of choice;
thus, between 15% and 65% of the values in core courses were 
missing. Whenever necessary, a random-forest imputation
(Breiman, 2001), which can handle cases where up to 80% of 
the values were absent, was employed to fill in those missing 
values.  

GPA ܉ܘ܏ 
(18) 

 Interval Based on the above single-course achievements, several 
unweighted GPAs, with a precision of two decimal places,
were computed for different subsets of courses. These subsets
consisted of courses within the entire Bachelor’s program, all 
courses taken during a particular year, and all courses from a 
particular group (Table 1). Separate variables were computed
using first attempts, final attempts, and all attempts. Note that
GPAs were calculated before missing values were imputed. 

Duration ܜ 
(4) 

 Ratio Three separate explanatory variables were used to capture the
time needed to complete each study year; one was used for
capturing the time required to finish the entire Bachelor’s 
program. 
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3.  METHODOLOGY 

In this paper, the term model indicates the use of specific algorithms, either a combination 
of a variable-selection algorithm and a linear regression model or an adaptive lasso. Model 
instance denotes a fitted model where specific variables are selected and model parameters 
have been estimated. As our baseline, we use the null model, which is a linear regression 
model with just one parameter to fit the mean of the target variable. The mean squared 
error (MSE) achieved by the null model equals the variance of the target variable. Thus, 
the ratio of the difference between the MSE of the predictions obtained by any model and 
the ones gained by the null model and the MSE of the null model represents R2 statistics. 

After illustrating our data with descriptive statistics, we answered the first research 
questions on the predictive value of indicators of achievements that are readily available in 
undergraduate transcripts. Eight different models were run: four models typically used in 
more traditional educational research, three that we deemed particularly appropriate for the 
analysis of our data, and one that is rather modern and powerful. To ovoid over-fitting and, 
therewith, over-estimating prediction performance, we used cross-validation. For 
estimating the overall prediction performance, we used two layers of cross-validation, one 
for selecting the best performing model (inner loop) and the other for estimating prediction 
performance (outer loop). This construct is called the model-selection framework.  

These eight models were also trained individually on the entire dataset, keeping the inner 
loop but removing the outer one. This step provided estimations of the prediction 
performance of individual models and respective R2 statistics for individual models, and 
enabled us to determine the best performing models. The best performing models were 
then trained on the entire dataset without cross-validation, which led to one model instance 
each. These instances were analyzed with respect to the selected variables and their 
individual contribution to the prediction performance. Thereafter, the models were trained 
individually on 200 bootstrap samples to assess the stability of variable selection.  

To answer the second research question about the meaningful aggregation of 
undergraduate achievements for improving prediction performance, we pursued the 
following modeling strategy after the scheme of cross-validation. Briefly, we estimated the 
prediction performance of linear regression models using 10 different sets of explanatory 
variables that correspond to various levels of aggregation. We employed expert knowledge 
and factor analysis (FA) for aggregating the variables partially. Notably, feature 
construction using FA was performed within the cross-validation loop in order to prevent 
any information leaking from training to test data. By comparing the estimates, we could 
determine the best performing set of aggregated explanatory variables and, therewith, the 
best aggregation strategy. In the next step, we assessed the importance of individual 
explanatory variables within this set. To understand the results better, we conducted a post-
hoc investigation on the latent structure of the Bachelor’s program. To do so, we employed 
a novel technique – the minimum transfer-cost principle – to determine the numbers of 
generalizable factors in that program. 

3.1  DESCRIPTIVE ANALYSIS 

We used histograms and scatter plots to illustrate the data. Inter-correlation coefficients 
were calculated among all explanatory variables for estimating the severity of 
multicollinearity present in the data.  
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3.2  MODEL-BASED ANALYSIS USING INFORMATION AVAILABLE FROM 

UNDERGRADUATE TRANSCRIPTS 

3.2.1  Individual models 

COMPETING MODELS. We evaluated the prediction performance of eight competing models 
(detailed below), which combined variable-selection algorithms with linear regression of 
the following formula:  

௜ܣܲܩܩ ൌ ଴ߚ	 ൅ ૚ࢼ ∙ ࢏ࢍ ൅ ૛ࢼ ∙ ࢏ࢇ࢖ࢍ ൅ ૜ࢼ ∙ ࢏࢚ ൅ ସߚ ∙ ௜ݏ ൅ ହߚ ∙ ܽ௜ ൅ ଺ߚ ∙ ௜ݎ ൅  ௜ߝ

Here, ࡭ࡼࡳࡳ was a vector containing the GGPAs of all students, ݅ ൌ 1,… , ݊; the dot 
product was denoted by ‘∙’; ߚ଴, ,ସߚ  ૜ were parameterࢼ ૛, andࢼ ,૚ࢼ ;଺ were scalarsߚ ହ, andߚ
vectors; ߝ௜	was the error term; and the explanatory variables (࢏ࢍ, ,࢏ࢇ࢖ࢍ ,࢏࢚ ,௜ݏ ܽ௜,  ௜) wereݎ
those that were readily available from undergraduate transcripts, as described in Table 3. 

To decrease the risk of overfitting and reduce the multicollinearity of explanatory 
variables, we chose models that employed rigorous variable selection. All models, except 
the adaptive lasso, were trained using a two-step procedure that consisted of variable 
selection and parameter estimation. Four competing models were obtained by selecting 
variables using AIC (Akaike, 1974) and BIC (Schwarz, 1978) in forward and backward 
modes (Guyon and Elisseeff, 2003). This was followed by least-squares fitting of linear 
regression models. These particular models were chosen because they are typically used in 
traditional educational research. 

Three more models were obtained using partial correlation coefficients in a forward-
selection setting. First, we selected the explanatory variable that most closely correlated 
with the target variable. Then, iteratively, we chose the variable that maximized the partial 
correlation with the target variable, conditioned on the set of already selected variables. 
This algorithm was applied three times, setting the number of possible explanatory 
variables at ‘1’ (model PC1), ‘2’ (PC2), or ‘3’ (PC3). Again, linear regression models were 
fitted using ordinary least squares. These models were chosen because high 
multicollinearity was expected in the data and the underlying approach assists the selection 
of rather uncorrelated explanatory variables, while maximizing information content. We 
set the numbers of variables to be selected as 1, 2, and 3 because we wanted to obtain 
rather simple models.  

To obtain an additional state-of the art model we used adaptive lasso, which provides 
simultaneous variable selection and parameter estimation and possesses the so-called 
oracle property (Zou, 2006). Under certain assumptions, this property indicates that the 
model's prediction performance will be as accurate as the one of the true 
underlying model. Moreover, adaptive lasso was shown to perform competitively in high-
dimensional data settings, where the number of explanatory variables ݌ exponentially 
exceeds the number of observations	݊ (Bühlmann, and van de Geer, 2011). Those features 
render this model an interesting alternative to traditional approaches. 

PREDICTION PERFORMANCE AND MODEL SELECTION. To assess the prediction performance 
of our eight models, we employed a 10-fold cross-validation scheme (Breiman and 
Spector, 1992).  First, the data were shuffled randomly and then split into 10 subsamples. 
One-tenth of the data was reserved for testing while the models were trained on the 
remaining data. The models were used to predict the dependent variables of the reserve 
data. This procedure was repeated 10 times so that we obtained an unbiased prediction ݕො௜. 
The squared error ܵܧݍ௜ ൌ ሺݕො௜ െ  ௜ሻଶ was computed for each model and observationݕ
݅ ൌ 1…݊, where ݕ௜ denoted the observed value of the target variable and MSE was the 
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arithmetic mean of ܵܧݍs. Afterward, we calculated the cross-validated R2 statistics, 

ଶܴ	݀݁ݐ݈ܽ݀݅ܽݒ‐ݏݏ݋ݎܿ ൌ
∑ ௖௥௢௦௦‐௩௔௟௜ௗ௔௧௘ௗ	ௌ௤ா೔
೙
೔సభ

∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

, where ݕത denoted the mean of ݕ௜. For 

comparisons, we determined the adjusted R2 statistics that computes the fit of a model over 
the full dataset penalizing the statistics for the number of explanatory variables included.  

To identify the model that performed best, we applied two-sample paired t-tests, 
Bonferroni-corrected for multiple testing, on the above ܵܧݍs. As is customary, we then 
chose the least-complex model that reproduced sufficiently similar results compared to the 
model with the best performance in absolute numbers. 

CONTRIBUTION OF EXPLANATORY VARIABLES. To determine which explanatory variables 
contributed most to the prediction performance of the best models, we trained the latter on 
the entire set of data. The resultant model instances were then analyzed with regard to 
which variables were selected as well as according to the importance and significance of 
those variables in the model instance. This goal was accomplished by calculating 
standardized	β-coefficients and performing an ANOVA. 

Finally, we assessed the stability of variable selection and therewith the representativeness 
of the model instances obtained. This step is important for preventing the interpretation of 
statistical artefacts. Specifically, the model that performed best as well as those models that 
presented statistically indistinguishable results were each trained on 200 bootstrap samples. 
Efron and Tibshirani (1994) propose that this sample number is generally adequate for 
estimating standard errors in most applications. Each time, a sample having the same size 
as the original dataset was drawn randomly with replacement from the original dataset. The 
probability of selection was then calculated for each of our explanatory variables and 
models. Note that our approach of assessing the stability of variable selection is closely 
related to the one proposed by Meinshausen and Bühlmann (2010), termed stability 
selection. Importantly, the approach was shown to be adequate for high-dimensional data. 
It is based on aggregating the results obtained when variable selection is repeatedly applied 
on subsamples of the data. 

3.2.2  Model-selection framework  

To estimate the accuracy with which a prediction was generalized to student data that were 
not part of the analyzed dataset, we employed the following scheme. An additional 10-fold 
cross-validation loop was wrapped around the portion pertaining to model selection and 
performance estimations, as described previously. In each fold of this outer loop, model 
selection using cross-validation was performed on the training data. Notably, omitting the 
inner cross-validation loop most likely leads to the selection of an overfitting model, which 
causes prediction performance to collapse in the outer loop. 

The best-performing model was then trained on the entire set of data and the resulting 
model instance was used to form predictions for the test data of the outer loop. By 
following this procedure, we could derive a single prediction for each student’s graduate-
level success and calculate respective ܵܧݍs and cross-validated R2 statistics. Finally, we 
compared the performance of our model-selection framework with that of the null model 
and used a two-sample t-test on the ܵܧݍs of our model-selection framework and on the 
 .s of the null model to assess statistical significanceܧݍܵ
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3.3  LATENT STRUCTURE OF THE UNDERGRADUATE PROGRAM AND 

AGGREGATION OF EXPLANATORY VARIABLES 

Whereas in the first analysis we exclusively relied on information readily available from 
undergraduate transcripts, our next investigation pursued the goal of improving prediction 
performance by linear regression. These linear models were trained and tested on different 
sets of explanatory variables that were constructed more specifically through variable 
aggregation. We also concentrated on detecting the piece of the undergraduate program 
that was most informative with respect to future graduate performance. 

3.3.1  Specifically aggregated explanatory variables  

To understand the optimal level of course aggregation, we considered three means for 
averaging individual undergraduate courses: i) no aggregation, i.e., each course provides 
one explanatory variable; ii) partial aggregation, where grades are averaged across related 
courses; and iii) full aggregation, i.e., the UGPA. For partial aggregation, we explored two 
alternative clustering approaches: one based on year-wise clustering (YW) and the other 
obtained through factor analysis. In this way, we determined five alternative sets of 
explanatory variables based on single courses (SC), YW, FA clustering, a combination of 
FA and YW, or the UGPA. To deal with repeated examinations, we applied the different 
aggregation methods to either the first or the final attempt. Thus, 10 competing sets of 
explanatory variables were considered (Figure 2). 

 

 

Figure 2: Illustration of three exemplary clustering approaches for partially aggregating the 
Bachelor’s program. Along the x-axis, courses are clustered according to their 
requirements with respect to student abilities. Along the y-axis, courses are clustered 
according to the Bachelor’s program study year to which they belong. Along the z-axis, 
courses are split depending upon the examination attempt in which the course grade was 
achieved.  

It is conceivable that the prediction of graduate-level performance might benefit from the 
use of explanatory variables that represent a student’s undergraduate performance in a 
particular area of scholarship. One way to identify such an area is to form clusters that 
group together courses with consistent performance levels. To identify this latent structure, 
we employed an exploratory FA. In particular, we used maximum-likelihood factoring to 
estimate the parameters within the common-factor model (Costello and Osborne, 2005; 
Fabrigar et al., 1999; Thurstone, 1947). To determine the number of factors necessary, we 
performed an ߯ଶ goodness-of-fit test (α = 0.01). Thereafter, we applied varimax rotation to 
project a so-called simple structure (Fabrigar et al., 1999; Kaiser, 1958). Based on this 
solution, the factor scores were computed by calculating the average across all courses that 
had a loading of at least 0.5 on a specific factor (Backhaus et al., 2006; DiStefano, 2009). 
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The resulting GPAs were used as explanatory variables for predicting the performances of 
FA and FA plus YW. 

To determine which set of explanatory variables generalized best we employed the model-
selection procedure presented in Section 3.2.2. On each of the 10 sets of aggregated 
variables, we trained linear regression models and used them to form predictions according 
to a 10-fold cross-validation scheme. To avoid over-fitting the data, we performed FA 
within each cross-validation loop only on the training data. Factor scores were then 
computed for all students, i.e., for those in the training set and those in the test set. As 
before, paired t-tests on the ܵܧݍs of individual models were used to identify significant 
differences in prediction performance.   

3.3.2  Latent structure of the undergraduate program 

In contrast to our expectations, the aggregation of explanatory variables via FA did not 
significantly improve the accuracy of predictions. This finding suggested that the 
undergraduate program might not comprise a preeminent factor structure. To examine this 
possibility, we derived an alternative aggregation of undergraduate courses. The above FA 
was replaced by the much simpler singular value decomposition (SVD). To test the 
stability of the SVD for undergraduate grades, we adopted the minimum transfer-cost 
principle to control the model-order selection process (Frank et al., 2011). First, the data 
matrix was randomly split in half. The two halves were then aligned to minimize the sum 
of the entry-wise squared distances. After the SVD was computed on the first half of the 
matrix, the original matrix was re-constructed. This procedure was repeated for the 
decompositions of rank 1 through ݇, where ݇ denoted the number of explanatory variables. 
The model-order ݅ ൌ 1…݇ was chosen so that we could minimize the sum of the entry-
wise squared distances between the second half of the matrix and the reconstruction of the 
first half. This allowed us to determine the model-order that generalized best. We note here 
that the third year was excluded from this analysis because it was incomplete due to 
missing values; this restriction avoided assumptions implicit in data imputation. Internal 
consistency of undergraduate grades was assessed using Cronbach’s α (Cronbach, 1951). 

4. RESULTS AND DISCUSSION 

4.1  DESCRIPTIVE ANALYSIS 

To estimate the extent of multicollinearity in the data, we computed the inter-correlations 
between explanatory variables and determined coefficients ranging from	ݎ ൌ 0.04 to 
ݎ ൌ 0.95. This result demonstrated high multicollinearity in the data and justified our use 
of the analytical methods outlined previously. Afterward, we assessed the multicollinearity 
in models more precisely by calculating the variance inflation factor. To illustrate the data, 
we determined the distributions of the UGPA and GGPA (Figure 3a). For example, at the 
undergraduate level, students achieved an average GPA of 4.9, with a standard deviation of 
0.35. At the graduate level, GPAs were significantly higher, with students earning an 
average of 5.2, with a comparable standard deviation of 0.36.  

Although we see an obvious increase between the grades awarded in the Bachelor’s 
program and those awarded in the Master’s program, it is unclear whether one can attribute 
this to grade inflation or to the tradition of assigning higher grades in graduate courses. The 
UGPA and GGPA correlate significantly, with ݎ ൌ 0.65 (Figure 3b). This statistical 
dependence justifies why the former is often used to predict the latter. Applying different 
DM techniques, we next investigate further the importance of the UGPA as well as other 
indicators of undergraduate performance.  
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Figure 3: (A) Histograms of UGPA ( ൌ 4.9, ൌ 0.35) and GGPA ( ൌ 5.2, ൌ 0.36) 
with normal density function. (B) UGPA versus GGPA. UGPA of individual students is 
plotted against their GGPA.  

4.2  MODEL-BASED ANALYSIS USING INFORMATION AVAILABLE FROM 

UNDERGRADUATE TRANSCRIPTS 

4.2.1  Prediction performance of the model-selection framework 

Our first model-based investigation included explanatory variables comprising information 
that is typically available from undergraduate transcripts. Examples include single grades 
achieved in an individual course, GPAs of course groups, annual GPAs, or cumulative 
GPAs. The model-selection framework produced cross-validated R2 statistics of 0.54, 
outperforming the null model significantly (݌ ൏ 0.001; two-tailed t-test). Thus, the 
information available from transcripts explains as much as 54% of the variance in the 
GGPA. Figure 4a shows the MSEs of the two models (framework and null), where the 
difference in means is essentially a visual representation of the cross-validated R2 statistic 
of 0.54 mentioned above.  

 

 

Figure 4: (A) Prediction accuracy (mean and 95% confidence interval) of the model-
selection framework and the null model. (B) Observed vs. predicted GGPA. Observed 
GGPA of individual students is plotted against GGPA as predicted by the model-selection 
framework. The solid line represents the regression line while the dashed one indicates the 
1:1 line. 

Figure 4b depicts the observed GGPA of individual students against the GGPA as 
predicted by the model-selection framework, and, thus, the accuracy. That framework 
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slightly underestimates the range of the observed GGPAs, as becomes apparent if one 
compares the regression line (solid) with the 1:1 line (dashed). 

4.2.2  Prediction performance of individual models and analysis of model 
instances 

To estimate the prediction performance of the eight models, we calculated the cross-
validated R2 statistics for each model (Table 4). For comparisons with traditional 
approaches, we also trained each model on the entire data and analyzed the resulting model 
instances for the number of explanatory variables selected and goodness of fit. We used 
adjusted R2 statistics in combination with the variance inflation factor. A strong negative 
correlation existed between the adjusted statistics and the cross-validated R2 statistics 
(r ൌ െ0.95). Indeed, the adjusted statistics sometimes seemed rather off-the-mark, such as 
in the second row of the table. The variance inflation factor helped us dismissing bad 
models, but a respective cut-off value needed first to be, somewhat arbitrarily, defined; 
typical values are either ‘5’ or ‘10’. Moreover, the combination of adjusted R2 statistics 
and the variance inflation factor made a direct comparison of the models’ prediction 
performances difficult (see, for example, PC1 and PC3 in Table 4). It is our understanding 
that the observed discrepancy is a result of the data-independent penalty introduced by the 
adjusted R2 statistics. For this reason, we prefer the cross-validated R2 statistics. 

 
Table 4: Performance measures and sanity coefficients of the eight individual models. 
Except for adaptive lasso, all models combine a feature-selection approach with a linear 
regression model (lm). Values are obtained by analyzing the model instances trained on 
the entire dataset. Abbreviation: cv-R2: cross-validated R2; adj. R2: adjusted R2; # sel. var.: 
number of selected variables; VIF: variance inflation factor. 

Model cv-R2 adj. R2 # sel. var.  VIF 

Forward AIC & lm 0.39 0.62 10  14.0

Backward AIC & lm 0.13 0.66 38  1382.4

Forward BIC & lm 0.51 0.58 3  1.5

Backward BIC & lm 0.37 0.59 7  23.1

Adaptive lasso 0.52 - 3  -

PC1: partial correlation & lm 0.53 0 .54 1  1.0

PC2: partial correlation & lm 0.54 0.57 2  1.3

PC3: partial correlation & lm 0.51 0.58 3  1.5

 

The cross-validated R2 statistics in Table 4 suggest that model PC2, which selects two 
explanatory variables using partial-correlation coefficients, performs best. To assess the 
statistical significance of its superiority and estimate the uncertainties in prediction 
performance, we computed the squared errors of all models’ GGPA predictions (Figure 
5a). We then applied t-tests on the distributions of the squared errors. Although PC2 
performance was statistically indistinguishable from that of PC1 and adaptive lasso, it 
significantly outperformed all other models (݌ ൏ 0.05;	pairwise t-tests, Bonferroni-
corrected for multiple testing). This demonstrates that choosing partial correlations for 
variable selection is appropriate for these data.  
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Figure 5: (A) Prediction accuracy of individual models. Means and 95% confidence 
intervals of squared errors for different models and the null model are presented. (B) 
Importance of explanatory variables. Probability of selecting an explanatory variable for 
the three best models is shown with error bars. Explanatory variables are included if they 
have selection probabilities of at least 0.1. 

The model instances of these three best performing models, when trained on the entire set 
of data, were then investigated for the variables selected and their individual contributions. 
This was achieved by analyzing the standardized	β-coefficients and applying an ANOVA 
(Table 5). All three models selected the third-year GPA and assigned it by far the greatest 
weight. Model PC2 and adaptive lasso both chose also Theory of Computing, a second-
year course, while adaptive lasso identified a third variable, the third-year course 
Algorithms, Probability and Computing. Whereas the contribution of the first two variables 
was significant in all models, we did not observe any significant contribution from that 
third variable and so considered it negligible. Moreover, it suffered from 65% missing 
values. Thus, we treated the selection of this variable with caution since the extent to 
which it was biased due to values missing and not at random was not clear. Because all 
models showing statistically indistinguishable performance were quite similar, we were 
less concerned about type II errors, which would have prevented us from rejecting the null 
hypothesis of equality because of too-low test power. Since PC1 was the least complex 
model and exhibited performance results that were statistically indistinguishable from one 
of the best performing models, we considered it preferable to all others.  

Finally, we quantified the stability of variable selection for the three models. For this, we 
used 200 bootstrap samples and calculated the probability of selection for each explanatory 
variable and model (Figure 5b). Variable selection proved extremely stable when choosing 
the first explanatory variable (third-year GPA), quite stable for the second one (Theory of 
Computing), and somewhat stable for the third (Algorithms, Probability and Computing). 
This analysis provided good evidence that, despite the small sample size, we could identify 
a model that generalized well to new students in the program. 

In our analysis, the third-year GPA was by far the most important explanatory variable for 
predicting GGPA. We found it interesting that, out of all possible GPAs from the third 
study year – GPAs across course categories and the GPA across the entire study year – the 
full aggregation was chosen even though it also contained grades achieved in courses not 
related to Computer Science, e.g., those within the Humanities, or in Social or Political 
Sciences. The observed dominance of the third-year GPA might have been due to several 
factors.  
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Table 5: Variables selected, standardized β-coefficients, and details from ANOVA. 
Abbreviations:  β-coef: β-coefficients; DF: Degrees of freedom; SS: Sum of squares; 
Significance codes: * p<.05; ** p<.01; *** p<.001 

Model Source ઺-coef DF SS F-value Sig.
PC1 
 Third-year GPA 0.76  1   12.02  203.80 ***
 Residuals  169  9.96 
PC2 
 Third-year GPA 0.66  1  12.02  216.53 ***
 Theory of Computing (second year) 0.12  1  0.64  11.56 ***
 Residuals  168  9.32 
Adaptive lasso 
 Third-year GPA, all performances 0.6  1  12.02  218.13 ***
 Theory of Computing (second year) 0.09  1  0.64  11.64 ***
 Algorithms, Probability & Comp. (third year) 0.05  1  0.12  2.24 
 Residuals  167  9.20 

 

The average course in the Bachelor’s program has higher selectivity than the average one 
in the Master’s program. Some courses, in particular those at the beginning of the 
Bachelor’s program, put considerable amount of pressure on students and are compulsory. 
In fact, each year approximately 50% of all students fail the first-year examination. That 
test may be repeated once; failing twice leads to expulsion. Only in the third year is the 
selectivity of courses and pressure comparable to those in the Master’s program. In 
addition, students for the first time can choose courses. Typically, they select topics that 
will prepare them for a major in their Master’s program. Furthermore, students’ abilities 
and their adaptation to the academic culture may develop at different rates. Whereas the 
Master’s program is taught in English, the language only gradually switches from German 
to English in the Bachelor’s program. However, the impact of language does not seem to 
be very strong, because Theory of Computing, which is taught in German, has been 
repeatedly selected. For these reasons, students’ performances in the third year of the 
Bachelor’s program faithfully reflect their knowledge and potential for the Master’s 
program. 

The other two selected courses – both in the field of Theoretical Computer Science – have 
an above average degree of mathematical rigor and formalism. Therefore, they are 
potentially better for quantifying performance when compared with other topics. The 
course Theory of Computing is also taught in a highly standardized manner, always by the 
same lecturer, and is supported by a self-study book. Moreover, this course offers students 
two ways to pass the course: successfully completing either two midterm examinations or 
one final examination, which exerts less pressure on students than typical courses in the 
second study year. For these reasons, we consider Theory of Computing to be rather 
weakly influenced by construct-irrelevant factors and, thus, a good estimate of a student’s 
capability. This may explain the high selection probability observed here. However, as 
mentioned previously, considering the third-year GPA alone provides statistically equally 
good GGPA predictions and is a rather generalizable result. 
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4.3  LATENT STRUCTURE OF THE UNDERGRADUATE PROGRAM AND 

AGGREGATION OF EXPLANATORY VARIABLES  

4.3.1  Specifically aggregated explanatory variables 

The following investigation describes how we meet the challenge of improving prediction 
performance through specific variable aggregations (c.f., Section 3.3.1). In Figure 6a, ܵܧݍs 
are plotted for each set of explanatory variables. The lowest prediction errors were 
obtained from models trained on year-specific grade averages, or YW. These models 
significantly outperformed all others (݌ ൏ 0.01; pairwise t-test, Bonferroni-corrected) and, 
thus, yielded the highest accuracy, thereby supporting our initial hypothesis that partial 
aggregation presents the most suitable level of detail. 

 

 

Figure 6: (A) Prediction accuracy of models with different levels of course aggregation. 
Means and 95% confidence intervals of squared errors are shown for linear regression 
models trained on various sets of explanatory variables. SC, single course; FA, factor 
analysis; YW, year-wise clustering; UGPA, undergraduate grade point average. Models 
were trained on explanatory variables containing either first or final examination attempts. 
The null model is plotted for comparison. (B) Predictive value of individual Bachelor’s 
program study years. Means and 95% confidence intervals of squared errors are shown for 
linear regression models trained on GPAs from final attempts in year-wise clustered 
courses. Sets of explanatory variables contain GPAs from all three study years and 
individual years. 

To assess the contribution of individual study years, we trained linear regression models on 
year-specific GPAs; three received the single GPA from each year and one received all 
three. Because prediction performance did not differ between models based on information 
from first examination attempts versus those based on information from final attempts (݌-
values between 0.51 and 0.93; pairwise t-tests, Bonferroni-corrected), Figure 6b shows the 
accuracies on the basis of grade averages from final examination attempts. We recognized 
that the comparable prediction performance of models trained on first examination 
attempts and those trained on final examination attempts arose from the fact that the 
variables only differ from 13% in the first year to 3% in the third year (see Table 3), a 
situation that did not seem to have sufficient influence on the indicative value.  

Of the three models that focused on a single GPA, the one based on the third study year 
was most predictive for future graduate-level performance. The inclusion of first- and 
second-year GPAs did not lead to any improvement (R2

change = 0.01, Fchange = 2.7, p = 0.06). 
Comparing the model based on the third-year GPA with the one based on all three GPAs 
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(first and fourth model in Figure 6b) revealed an insignificant difference (p ൌ 0.99; 
pairwise t-test, Bonferroni-corrected). Thus, the indicative value of the third-year GPA 
could not be improved by adding first-year and second-year GPAs. Importantly, this 
provided further evidence for the dominance of the third-year GPA, upon which we 
previously elaborated.  

This finding contradicted our expectation because we were surprised to learn that YW 
aggregation outperformed the FA-based aggregation approach. The Bachelor’s and 
Master’s programs in Computer Science at ETH Zurich are most appropriately placed 
between Mathematics and Electrical Engineering. The content ranges from highly 
formalized and mathematically oriented theoretical topics such as Algorithmics, Theory of 
Computing, and Cryptography, to more engineering-oriented and less formal topics such as 
Programming, Databases, Networks, and Software Engineering. Therefore, we expected to 
identify a structure that reflects these two domains, a theoretical and a more applied one. 
This lack of an expected finding motivated us to conduct the following sophisticated 
investigation. 

4.3.2  Latent structure of the undergraduate program 

We reasoned that the inferior results from the approach using FA might be explained by a 
structuring of the undergraduate program that does not reflect a set of independent 
constructs but primarily assesses a single set of abilities. To test this hypothesis, we ran 
two post-hoc analyses of the undergraduate program structure. 

First, we computed the SVD of undergraduate grades from the first and second years, 
selecting model-order by following the minimum transfer-cost principle. The third year 
was not included because the large amount of missing values in the data jeopardized the 
validity of the results. The model with just one factor generalized best, as shown in Figure 
7a, where the model with the lowest transfer costs exhibits an order of ‘1’. Figure 7b shows 
the V-matrix of the full-rank SVD of the entire dataset. We observed that, whereas all 
courses loaded quite uniformly on the first factor (represented by the first column of the V-
matrix), the remaining entries seemed to be distributed randomly. Both outcomes support 
the notion that the first two years of the undergraduate program can best be described as a 
one-dimensional construct and, thus, assess a unique set of abilities. We assume that this 
observation holds for the entire undergraduate program as third-year students deepen their 
knowledge in areas introduced during the second year.  

Importantly, in factorization, neither the numbers of factors to be considered nor 
determining the numbers of factors that generalize best is a straightforward model-
selection problem. The minimum transfer-cost principle provides a solution to this problem 
that is easy to implement and to interpret. It greatly helped us understand the results 
obtained when using FA.  

We also computed Cronbach’s α to characterize the consistency with which the 
undergraduate program assessed the above set of abilities. A value of α = 0.98 was 
obtained for final examination attempts, indicating excellent consistency (George and 
Mallery, 2011). This result provides further evidence that calculating GPAs across any 
group of courses does not lead to a notable loss of information but instead increases the 
stability of inference. This is because noise introduced by construct-irrelevant factors is 
reduced through averaging. However, as demonstrated before, when attempting to predict 
graduate-level performance, it is beneficial to consider temporal proximity. 
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Figure 7: (A) Transfer costs for SVD. Data indicate final examination attempts during the 
first and second undergraduate years vs. the number of factors considered. (B) Heat map of 
V-matrix. Loadings of courses on factors are shown, i.e., V-matrix of SVD decomposition, 
with colors encoding values between –1 (black) and +1 (white).  

5. CONCLUSIONS 

In this paper, we analyzed how well indicators of undergraduate achievements can predict 
graduate-level performance. We used data comprising 171 student records acquired from 
the Bachelor’s and Master’s programs in Computer Science at ETH Zurich, Switzerland. 
Notably, this dataset was complete, making it possible to render an in-depth analysis, 
which is generally not feasible when reviewing data for selectively admitted students. We 
chose linear regression models in combination with different variable-selection methods i) 
to examine the predictive power of undergraduate-level performance indicators and ii) to 
explore whether purposeful aggregation of grades further improves prediction performance 
and understanding. For our analysis, we employed analytical techniques that otherwise 
have not been widely adopted for educational research.  

Our first major result is determining a correlation of 0.65 between the GPA at the 
undergraduate level and the one at the graduate level. This outcome emphasizes the 
relevance of indicators of undergraduate achievements for graduate admissions decision-
making. When using a model-based approach and considering not only the UGPA but also 
annual GPAs and single grades, the predictive power increases and indicators of 
undergraduate performance can explain as much as 54% of the variance in subsequent 
graduate-level performance. This value represents a notable gain over previous reports of 
only 4% to 17% explained variance. We attribute this improvement primarily to the 
completeness of our data, to the strong consecutive nature of the Computer Science 
curriculum, and to the fact that data were collected within one institution. Therefore, we 
deduce that this 54% explained variance is probably an optimistic estimate of the upper 
bound for the predictive value of undergraduate achievements. Within the context of 
admitting international students, this value is expected to be initially lower than what is 
reported. However, over time and as experience is gained, it might be possible to control 
for factors such as differences in language abilities, academic cultures, or curricula. In 
doing so, we will be able to improve the predictive value of undergraduate performance 
indicators. 

Our second result is that the third-year GPA is repeatedly identified as the most significant 
explanatory variable. Notably, only the full aggregation was selected from all third-year 
GPAs, including grades earned in courses unrelated to Computer Science. While this 
finding is in contrast to the popular view that only subject-related courses are relevant 
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indicators of future graduate-level success, it  is consistent with reports from research on 
the transition from high school to undergraduate studies in Germany (Baron-Boldt et al., 
1988; Trapmann et al., 2007). While further evaluation is needed about the generalizability 
of our result, we suggest that institutions consider using it for programs of comparable 
consecutive nature, with similar stringent undergraduate degree requirements, and when 
mainly teaching components are associated with a Master’s program. 

Our third result is that the partial aggregation approaches based on year-wise clustering of 
individual undergraduate achievements provide the best predictions. Again, the third-year 
GPA yields the most accurate predictions, and they cannot be improved by adding first- 
and second-year GPAs. This result distinctly contrasts with the popular view, also shared 
by professors, that the most important indicators of excellence are the grades earned in 
challenging first-year courses in Mathematics. Our results, however, suggest that high 
selectivity of a course is not necessarily related to its predictive value of future 
performance, at least for those students who cannot opt out of challenging first-year 
courses in Mathematics and still complete the program. Furthermore, using FA, one might 
expect to distinguish between an ability related to Mathematics and one related to 
Engineering. That these abilities are distinctive is another view often expressed. However, 
we observed that the latent structure of the undergraduate program can best be described as 
a one-dimensional construct that assesses a unique set of abilities with remarkably high 
consistency. This finding implies that all courses require about the same set of skills from 
students. Arguably, the effect of evaluating different capabilities might be minimal in 
comparison to the confounding factors introduced, for example, by examiners, or else the 
sample size might be too small to detect a more complex structure.  

Proper data mining techniques are essential if one aims at predicting graduate level 
performance in a small sample size setting. We estimated prediction performance 
employing two layers of cross-validation, which prevents information-leakage from the 
training and validation phases to the testing phase. Furthermore, we used adaptive lasso, 
which was proven to perform competitively in high-dimensional data settings. It matched 
the performance of the approach that relied upon partial correlations, which we preferred 
for its simplicity. Bootstrapping is highly valuable to identify significant explanatory 
variables, especially when they appear in different bootstrap samples and different models. 
In summary, our approach provides considerable reassurance that undergraduate 
achievements are highly indicative of graduate-level success (54% explained variance) and 
that the third-year GPA is the most important explanatory variable.  

When relatively recent methodological approaches were compared to more traditional ones 
for estimating explained variance while coupling variable selection and linear regression, 
the adjusted R2 statistics seemed to return inconsistent results possibly because of the data-
independent penalty introduced by those statistics. While the variance inflation factor 
would lead to dismissing the worst models, its use is still questionable in the set of 
acceptable models. Thus, to enhance the credibility of their interpretations, we strongly 
suggest that both researchers and practitioners rely instead on cross-validated R2 statistics 
and use bootstrapping to test the stability of their results. While not crucial to the 
development of this paper, we find that adaptive lasso is one of the best models, 
outperforming traditional approaches that utilize AIC or BIC for model selection with few 
samples per parameter. Its simultaneous variable selection and parameter estimations, as 
well as its oracle property, make adaptive lasso an attractive candidate. Finally, we can 
also report that optimizing the level of aggregating variables is particularly useful when 
high multicollinearity is present in the data. 

APPLICATIONS AND FUTURE DIRECTIONS. Our results demonstrate that admissions 
committees can rely on undergraduate-level performance indicators as selection 
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instruments for Master’s programs in Computer Science within a comparable context.  
However, our findings also show that, even in this rather ideal setting, where a complete 
dataset has been collected within a single institution, additional admissions tools are 
required. Furthermore, we recommend that committees do not rely on grades from single 
courses but instead look at partially aggregated undergraduate grades. From experience, we 
know that this is not an uncommon issue of discussion during committee meetings. 

As reported, the third-year GPA outperforms the frequently used UGPA by 27%, with the 
latter variable explaining no more than 42% of the variation in the GGPA. Whether the 
third-year GPA is the most important indicator at other institutions or within the context of 
international student recruitment remains to be seen. However, its strong predictive 
performance in combination with the simplicity of the model makes it an attractive 
candidate for future analyses. Where such generalizability is demonstrated, our findings 
support the derivation of admissions rules, depending on the committee’s main objective. 
For instance, if one wishes to select those graduate-program applicants who are expected to 
perform above a certain level then one must determine the required third-year GPA based 
on available data and establish a respective threshold. When an admissions policy is 
restricted to a fixed number of students, one must rank applicants according to their third-
year GPAs and admit the top candidates. Our future research will explore how these 
current results can be generalized within the context of international student recruitment 
and how standardized tests such as the GRE® might lend additional support.  
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