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mirka.saarela@jyu.fi

Tommi Kärkkäinen
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Curricula for Computer Science (CS) degrees are characterized by the strong occupational orientation of
the discipline. In the BSc degree structure, with clearly separate CS core studies, the learning skills for
these and other required courses may vary a lot, which is shown in students’ overall performance. To
analyze this situation, we apply nonstandard educational data mining techniques on a preprocessed log
file of the passed courses. The joint variation in the course grades is studied through correlation analysis
while intrinsic groups of students are created and analyzed using a robust clustering technique. Since not
all students attended all courses, there is a nonstructured sparsity pattern to cope with. Finally, multilayer
perceptron neural network with cross-validation based generalization assurance is trained and analyzed
using analytic mean sensitivity to explain the nonlinear regression model constructed. Local (within-
methods) and global (between-methods) triangulation of different analysis methods is argued to improve
the technical soundness of the presented approaches, giving more confidence to our final conclusion that
general learning capabilities predict the students’ success better than specific IT skills learned as part of
the core studies.
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1. INTRODUCTION

The development of a curriculum for Computer Science (CS) can be challenging in an academic
environment, given the discipline’s strong occupational orientation. Especially at multidisci-
plinary universities (i.e., with many subject areas), the CS curriculum differs from the curricula
of many other disciplines, as the core courses reflect to a large extent the vocational side of the
program. In the case of the Department of Mathematical Information Technology (DMIT) at
the University of Jyväskylä in Finland (reflecting both Finnish and European degree structures),
the core bachelor courses compose only about 50 out of the minimum 180 ECTS (i.e., credits
measured using the European Credit Transfer and Accumulation System) for the 3-year BSc de-
gree (see Table 2). The degree contains other major courses in addition to separate introductory
topics (e.g., general science, language and communication skills, statistics) and minor subject
studies (especially mathematics). Students should acquire knowledge of very specific technical
(e.g., programming) skills; however, computing interacts with many different domains, and in
order to prepare students as the workforce of the future, domain knowledge as well as soft skills
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and personal attributes are important (Sahami et al., 2013a). For more than 40 years, roughly
every 10 years, the Association for Computing Machinery (ACM) and the Institute of Electrical
and Electronics Engineers (IEEE) have promoted the creation of international curricular guide-
lines for bachelor programs in computing (Sahami et al., 2013b). Thus far, however, there has
been little discussion about the relation between specific CS courses and other courses, in terms
of the overall study performance.

Some researchers (see, e.g., Kinnunen et al. 2013 and references therein) indicate that pri-
marily difficulties in mastering programming lead to high dropout rates in CS, therefore, one
should pay special attention to them. Furthermore, a popular belief is that mathematical talent
is the key skill for CS students to be successful (Jerkins et al., 2013). Although these topics
are important, they do not cover the whole degree. The CS core of the DMIT curriculum for
undergraduate students at the University of Jyväskylä, one of the largest and most popular mul-
tidisciplinary universities in Finland, has been more or less the same in recent years. Since the
curriculum is typically updated every three years, the aim of this research is to focus on a set of
mandatory courses related to the data collection period August 2009 through July 2013.

In addition, DMIT undergraduate students require more time to finish their studies com-
pared to students of other disciplines at the University of Jyväskylä (Halonen, 2012). This
happens even if the student’s view on the quality of teaching and the study atmosphere at DMIT
Jyväskylä is very positive and, in fact, better than in the whole Faculty of Information Tech-
nology (of which the DMIT is a part) or in the other departments at the university (Halonen,
2012). Actually, only a very few students (on average 12.8%) of DMIT complete the national
target of at least 55 ECTS per academic year (Harden and Tervo, 2012). These study efficiency
shortcomings apply to the absolute and relative number of credits and are especially important
compared with students of other departments at the University of Jyväskylä, who amass many
more credits in an academic year (29% acquire at least 55 ECTS).

To assess the current curriculum, we apply the educational data mining (EDM) approach.
EDM consists of developing or utilizing data mining methods that are especially feasible for
discovering novel knowledge originating in educational settings (Baker and Yacef, 2009) and
supporting decision-making in educational institutions (Calders and Pechenizkiy, 2012). Most
of the current case studies in EDM (see Table 1) analyze the steadily growing amount of log data
from different computer-based learning environments, such as Learning Management Systems
(e.g., Valsamidis et al. 2012), Intelligent Tutoring Systems (e.g., Hawkins et al. 2013; Bouchet
et al. 2012; Carlson et al. 2013; Springer et al. 2013), or even Educational Games (e.g., Kerr
and Chung 2012; Harpstead et al. 2013). Mining those data supports the understanding of how
students learn and interact in such systems.

In our study, however, we are interested in understanding the effects of core CS courses
and providing novel information for refining repetitive curricula. More specifically, we want
to understand the effect of the current profile of the core courses on students’ study success.
These courses are taught in an ordinary fashion, meaning that in order to successfully complete
a course, the student has to attend lectures, complete related exercises, and pass a final exam or
assignment at the end of the course. The data analyzed in this paper are the historical log file
from the study database at DMIT about all courses students passed for the period August 20091

until the end of July 2013. Patterns in our data provide improved profiling of the core courses
and an indication of which study skills support timely and successful graduation.

1This is because since 8/2009 only ECTS-credits and separated Bachelor and Master degrees can be done.
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The remainder of this paper is structured as follows. In Section 2, the overall methodology
is explained. Section 3 is devoted to the correlation analysis, while in Section 4 we discuss our
clustering analysis with robust prototypes. In Section 5, prediction analysis is realized with the
multilayer perceptron (MLP) neural network. Conclusions from the domain as well as from the
methodological level are presented in Section 6.

2. THE OVERALL METHODOLOGY: ADVOCATING MULTIPHASE TRIANGU-
LATION

Baker et al. (2010) classify EDM methods into five categories: prediction, clustering, relation-
ship mining, discovery with models, and distillation of data for human judgment. In Table 1, we
summarize a representative set of EDM studies according to a) their data and the environment,
b) goal of the study, c) EDM category and methods, and d) the knowledge discovered. This
work was selected from forums, such as the Journal of Educational Data Mining, related annual
conferences, and Google Scholar during autumn 2013. According to the table, which is orga-
nized by the different tasks and publication dates, scholars usually apply methods belonging to
one of the classes of Baker et al.’s taxonomy to address a particular EDM problem. Moreover,
predictive studies may apply many classifiers to assess the stability and reliability of the results.
We, however, aim at multiphase triangulation: Different phases of the overall treatment within-
methods and between-methods are varied and assessed (using rankings) to increase the technical
soundness of the procedures and the overall reliability of the concluded results.

Generally, triangulation means that the same research objective is investigated by different
data, theories, analysis methods, or researchers and then combined to arrive at convergent find-
ings (Denzin, 1970). Probably the most popular way to apply triangulation is to use qualitative
and quantitative methods and merge their results (Jick, 1979). We employ between-method
triangulation (e.g., Denzin 1970; Bryman 2003), using techniques from distinct classes of the
EDM taxonomy, to study the success patterns of the students who take the core courses of the
computer science program in our department. First, we apply correlation analysis (Section 3),
a key technique in relationship mining. Second, we utilize a special clustering approach (see
Section 4) to find groups of students with similar course success. Third, we apply prediction
(see Section 5) with model sensitivity analysis. In all between-methods, we discuss different
within-methods that tighten the soundness of the respective between-method result. Moreover,
we support our decision making a) in clustering with the distillation of data for human judgement
(see our explorative and visual analysis in Section 4.2.1) and b) in prediction with discovery with
models (model sensitivity is used as a component to calculate the mean variable sensitivity of
the prediction model; see Section 5.1. To combine and interpret our results from the individual
EDM techniques, we introduce a ranking system to which all the between and within analysis
methods contribute.

In practice, the whole knowledge discovery process in our study is conducted by following
the five classical stages (select the target data from the application domain, preprocess, trans-
form, mine the transformed data, and interpret the results) introduced by Fayyad et al. (1996).
Data preprocessing and transformation were performed in Java, while the data mining / machine
learning techniques were either used as is (correlation analysis in Matlab’s Mathematics pack-
age) or completely self-implemented (clustering and prediction as a whole) on the Mathworks
Matlab R2013b platform.
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Table 1: Overview of related work.

Environment and Data Goal Category: Methods Obtained Knowledge
(San Pedro et al., 2013), United States (New York):
Interaction data of a
web-based tutoring
system for mathematics
from 3747 middle
school students in New
England plus college
enrollment information
for the students

Predict
whether a
student will
(5 years later)
attend college

Prediction: Logis-
tic Regression Clas-
sifier

Students who are successful
in middle school mathemat-
ics as measured by the tutor-
ing system are more likely to
enroll 5 years later in college,
while students who are bored,
confused, or careless in the
system have a lower probabil-
ity of enrolling.

(Vihavainen et al., 2013), Finland:
Helsinki University,
snapshot data from
Computer Science
student programming
course

Predict
whether a
student will
fail the in-
troductory
mathematics
course

Prediction: Non-
parametric Bayesian
network tool
(B-Course)

Students who cram at dead-
lines in their programming
course are at high risk of fail-
ing their introductory mathe-
matics course.

(Bayer et al., 2012), Czech Republic:
Masaryk University,
data of Applied In-
formatics bachelor
students, their studies,
and their activities
in the university’s
information system
(e.g., communication
with other students
via email/discussion
board)

Predict
whether a
bachelor stu-
dent will drop
out of the
university

Prediction: J48
decision tree learner,
IB1 lazy learner,
PART rule learner,
SMO support vector
machines, NB

Students who communicate
with students who have good
grades can successfully grad-
uate with a higher probabil-
ity than students with similar
performance but who do not
communicate with successful
students.

(Kotsiantis, 2012), Greece:
Hellenic Open Univer-
sity, data from distance
learning course on In-
formatics

Predict stu-
dents’ final
marks

Prediction M5’, BP,
LR, LWR, SMOreg,
M5rules

Two written assignments pre-
dict the students’ final grade
the best.

Continued on next page

6 Journal of Educational Data Mining, Volume 7, No 1, 2015



Table 1 – continued from previous page
Environment and Data Goal Category: Methods Obtained Knowledge

(Bhardwaj and Pal, 2011), India:
Purvanchal University,
Department of Com-
puter Applications, stu-
dent data

Predict stu-
dents’ perfor-
mance

Prediction:
Bayesian Classi-
fier

Living location has high in-
fluence on students’ final
grade.

(Mendez et al., 2008), United States (Arizona):
Arizona State Univer-
sity, Science and Engi-
neering student data

Prediction
of student’s
persistence

Prediction: Deci-
sion Tree, Regres-
sion, Random Forest

High school and freshmen
GPAs influence persistence
the most.

(Erdogan and Tymor, 2005), Turkey:
Maltepe University,
data from student
database

Find relations
between per-
formance on
the entrance
exam and later
success

Clustering:
K-means

The results of a student’s uni-
versity entrance exam deter-
mine the student’s major in
many cases.

(Campagni et al., 2012), Italy:
University of Florence,
Department of Com-
puter Science, data of
how and when exams
were taken

Determine
whether stu-
dents who take
exams in the
recommended
order are more
successful

Clustering:
K-means

Students who follow the ideal
path perform better in terms
of graduation time and final
grade.

(Chandra and Nandhini, 2010), Nigeria:
University in Nigeria,
Department of Com-
puter Science, course
result data

Identify stu-
dents’ failure
patterns

Relationship Min-
ing: Apriori Associ-
ation Rule Mining

Relationship between failed
courses which can be used in
order to restructure the cur-
riculum (e.g., 2 introductory
courses should be passed be-
fore the Mathematical Model-
ing course).

2.1. DATA AND NONSTRUCTURED SPARSITY PATTERN

The original data, the historical log files of the four years, 8/2009− 7/2013, of all courses com-
pleted by all DMIT students, are challenging: Students are in different stages of their programs,
their mandatory courses depend on their starting semester, they come with varying backgrounds,
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Figure 1: Relationship between the average credits per semester and grades.

have diverse interests, choose their optional courses accordingly, and, as a consequence, realize
very different study profiles. This is a typical situation in multidisciplinary universities where
students have the opportunity to choose from a large pool of courses. Altogether, our dataset
consists of 13640 study records with 21 attributes, related to the passed course and the student’s
affiliation, and of 1040 students who attended a total of 1271 different courses, completing a
total of 64905 credits. Only 64% of these credits the CS students obtained from courses in their
own faculty.

When measuring the performance of individual students, in addition to quality, i.e., the
grades, the quantity of studies, i.e., the number of all earned credits, is important. However,
since our dataset consists of many students at different stages of their education, we cannot com-
pare their individual sums of credits as is. Therefore, we assigned each passed course/record in
our dataset to a semester, so that the mean credits (i.e., the average number of credits per student
per semester) over the active semesters could be computed for all students. An active semester,
in turn, is computed as the sum of all semesters between the first semester and the last semester
that a student successfully completed a course. For example, a student who passed his or her
first course in April 2010 and his or her last course in June 2013 has 7 active semesters. This
may include semesters in which the student did not earn any credits. The mean grade is simply
the sum of all grades divided by the number of courses a particular student has passed.

In general, quality and quantity of the studies of DMIT students do not correlate. The cor-
relation coefficient between the average number of credits per student and the average grade is
close to zero (0.0848). The per-student plot of the relationship between the number of credits per
semester and the average grade is shown in Figure 1. Also the figure, which looks like a turned
bell curve, which means that the grading of the courses resembles the normal distribution, shows
visually that earned credits per student do not correlate with the average grade.
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Table 2: Core bachelor courses.

course name course code course type completion mode2 credits
Computer and Datanetworks as Tools PCtools introductory assignment 2-4
Datanetworks Datanet introductory exercises & final exam 3-5
Object Oriented Analysis and Design3 OOA&D professional exercises & final exam 3-6
Algorithms 1 Alg1 professional final exam 4
Introduction to Software Engineering IntroSE professional final exam 3
Operating Systems OpSys professional final exam 4
Basics of Databases and Data Management DB&DMgm professional final exam 4
Programming 1 Prog1 programming assigment & final exam 6
Programming 2 Prog2 programming assigment & final exam 8
Computer Structure and Architecture CompArc introductory exercises & final exam 3
Programming of Graphical User Interfaces GUIprog programming exercises & final exam 5
Research Methods in Computing CompRes methodological essay 2
All core courses 47-54

Our goal is to better understand the students’ success patterns, given the core courses, in re-
lation to the rest of their studies. Therefore, we want to analyze the students who have completed
a certain percentage of the courses of interest. The core courses, a specific set of 12 courses that,
for that period of time we study, have been a mandatory part of the curriculum for all DMIT
bachelor students, are listed and characterized in Table 2.

If we transform our data in such a way that the 12 core courses become the variables and
the attribute value of each observation, corresponding to one student, is the grade of the core
course or missing if the student did not attend or pass the course, the assembled matrix is very
sparse. Only for 13 students are the rows full; the students have passed all the core courses. In
Table 3, the high percentage of missing values and the sparsity of the matrix are summarized.
The table shows how many students have completed exactly, and respectively at least, q of the
12 courses. Moreover, in each case the percentage of missing values of the cumulative data
matrix is provided. The missing data values in the matrix are missing at random (Rubin, 1976;
Rubin and Little, 2002). This means that the missing values are related to particular variables
(some courses that are usually taken later in the program are completed by fewer students; see
Figure 2) but not missing because of the values (grades) that could be observed if a particular
course is passed.

To analyze such data, one cannot accept too many missing values. In this respect, the break-
down point related to statistical estimates (see, e.g., Hettmansperger and McKean 1998) on how
much contamination (errors, missing values) in data can be tolerated is informative. An upper
bound is easy to establish: If more than 50% of data is missing, then “missing” is the most
typical value (mode) of the data. Furthermore, tests conducted with synthetic data show that,

2The difference between assignment and exercises in our system is important: While assignment denotes a
mandatory work that the student has to fulfill in order to pass the course and affects the final grade the student will
receive, exercises are smaller (usually weekly) optional tasks that correspond to the current lecture material.

3In spring 2012, the Object Oriented Analysis and Design (OOA&D) course was split into two separate courses,
Object Oriented Analysis and Object Oriented Design. Therefore, in further analysis the following strategy was
applied: If a student completed the original Object Oriented Analysis and Design course, the grade from this course
was taken for the analysis. However, in case the student did not attend the original course, we used the mean grade
of the Object Oriented Analysis and the Object Oriented Design course as the grade forOOA&D if the student had
completed both newly created courses, or just the grade of the one course if the student had completed only one of
these two courses.
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Table 3: Number of students who have completed exactly q (nq) or at least q (
∑Q

q=12 nq, Q =
12, . . . , 0) of the core courses during the analyzed period.

q nq
∑
nq missing values

12 13 13 0.0%
11 16 29 4.56%
10 22 51 9.81%
9 26 77 14.93%
8 49 100 19.17%
7 28 128 24.10%
6 35 163 29.65%
5 44 207 35.75%
4 46 253 41.37%
3 40 293 45.96%
2 82 375 54.13%
1 126 501 63.57%
0 539 1040 82.45%

Figure 2: Number of students who passed coursewise.

for example, in clustering with robust methods, reliable results, i.e., almost zero error, can be
obtained even if around 30% of the data is missing (Äyrämö 2006; see in particular Figure 22
at page 131). Therefore, our data selection strategy is to use that part of the whole, sparse data
matrix, which contains the students who have completed at least half of the core courses. This
dataset has about 30% missing values (see Table 3) for the multivariate techniques. In the cor-
relation analysis (see Section 3), where the courses are analyzed individually, we similarly use
the subsets of the students who have passed the particular course and at least five other courses
additionally. In addition, different subsets of the sparse study matrix are utilized to realize some
parts of cluster analysis and predictive analysis procedures.

A further challenge, particularly for predicting the study success (see Section 5), is that, for
our primary target group, the number of credits related to the core courses is typically less than
half of the total number of the earned credits. In Table 4, the percentages of credits originating
from the core courses in relation to the total number of credits for the 163 students of interest
(see Table 3) are shown. As can be seen in the table, for more than 70% of the students, the core
courses account for fewer than half of their studies.
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Table 4: Binning of students (nr = number) according to means of the number of core courses in
relation to whole studies.

% core courses nr cumulative (%)
0-10% 16 16 (10%)
10-20% 24 40 (25%)
20-30% 24 64 (39%)
30-40% 29 93 (57%)
40-50% 25 118 (72%)
50-60% 17 135 (83%)
60-70% 15 150 (92%)
70-80% 7 157 (96%)
80-90% 4 161 (99%)

90-100% 2 163 (100%)

Summing up, for our analysis we have the entire base of completed courses (1040x21) that is
processed and transformed to further subsets and the sparse 163x12 data matrix of the students
who have completed at least half of the core courses and the grades they received in these
courses.

3. CORRELATION ANALYSIS WITH BONFERRONI CORRECTION

As our first EDM technique, we apply relationship mining using correlation analysis. In general,
we know from Figure 1 that in terms of grades well-scoring students are not necessarily more
likely to study actively. But how about the correlation for our target group, those students who
have already completed at least half of the core courses? In the correlation analysis, we do not
need special methods for the sparse data. However, the number of students who have passed
an individual course differs considerably (see Figure 2) so that the correlation coefficients are
computed for different student subsets. The mean number of credits and the mean grade are
computed in the same way as explained in Section 2.1.

In Table 5, the correlation of each core course to (i) the mean grade of a student (denoted
as corr.grades) and (ii) the mean number of credits per semester (denoted as corr.credits) is
summarized. In each case, r identifies the calculated correlation, and p corresponds to the p-
value for testing the hypothesis of no correlation, respectively. The number of stars indicates
the strength of the evidence for no correlation. As usual, ? symbolizes the borderline to be
significant (p <= 0.05), ?? symbolizes statistically significant (p <= 0.01), and ??? symbolizes
highly statistically significant (p <= 0.005). rank denotes the ordering of courses by means of
the computed correlations.

From Table 5, we can conclude that, except the Research Methods in Computing, all courses
have a moderate positive linear relationship to the students’ general study success. The course-
wise correlations to mean credits per semester are all positive as it should be (passing a course
increases credits). In addition, all corr.grades illustrate that students who score high in those
courses tend to score high in their other courses as well. In particular, this applies to four courses:
Algorithms 1, Computer Structure and Architecture, Datanetworks, and Programming 2. The
correlation between the grades for these four courses and the average grade of the student is in
all cases highly statistically significant as the p-values for testing the hypothesis of no correlation
are all smaller than 0.005. Similarly as with the classical p-test, we obtained with the conserva-
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Table 5: Correlation of each core course to the students’ general performance.

corr.grades corr.credits
Course Code r p Bonferroni rank r p Bonferroni rank
PCtools 0.4164 ? ? ? ? ? ? 11 0.1058 − − 12
Datanet 0.6244 ? ? ? ? ? ? 3 0.3887 ? ? ? ? ? ? 1
OOA&D 0.5346 ? ? ? ? ? ? 6 0.1327 − − 11
Alg1 0.6593 ? ? ? ? ? ? 1 0.3082 ? ? ? ? ? ? 4
IntroSE 0.4197 ? ? ? ? ? ? 10 0.1717 − − 9
OpSys 0.5113 ? ? ? ? ? ? 8 0.1905 ? − 8
DB&DMgm 0.5572 ? ? ? ? ? ? 5 0.3312 ? ? ? ?? 5
Prog1 0.4314 ? ? ? ? ? ? 9 0.2438 ?? − 7
Prog2 0.5731 ? ? ? ? ? ? 4 0.3549 ? ? ? ? ? ? 2
CompArc 0.6511 ? ? ? ? ? ? 2 0.3216 ? ? ? ? ? ? 3
GUIprog 0.5343 ? ? ? ? ? ? 7 0.3054 ? − 6
CompRes 0.2543 − − 12 0.1609 − − 10

tive Bonferroni correction (Rice, 1989) that the correlation of all core courses to the student’s
overall grade (except the Research Methods in Computing) are highly statistical relevant.

Another conclusion that can be made from Table 5 is that the same four courses that have the
highest correlations to the general success of the student also have the highest correlation to the
average number of credits. This means that if a student gets a high grade in these courses he or
she will probably earn, on average, a high number of credits in the semester as well. Again, all of
these findings are, according to the classical p-test as well as the Bonferroni correction, highly
statistically significant. Although the ranking is different (e.g., while Algorithm 1 correlates
the most with the mean grade for the student, Datanetworks correlates the most with the mean
number of credits per semester), we can conclude that those four courses correlate with the
students’ general performance the best.

To sum up, it can be inferred that a student who achieves a high grade in Algorithms 1, Com-
puter Structure and Architecture, Datanetworks, or Programming 2 is likely to be successful in
the remaining part of his or her studies not only with the grade level but also in terms of speed
of completing courses. Albeit overall semesterwise credits and average grade do not correlate at
all (see Figure 1), a linear dependency between the grades a student received in the core courses
and the general performance exists.

4. CLUSTER ANALYSIS USING ROBUST PROTOTYPES

Our second EDM method is clustering. Generally, clustering can be divided into partitional and
hierarchical clustering (Jain, 2010; Steinbach et al., 2004). However, hierarchical clustering is
appropriate only in very small datasets since most of the hierarchical algorithms have quadratic
or higher computational complexity (Emre Celebi et al., 2012). Partitional clustering, however,
is very efficient and scalable. It partitions the data, such that similar observations are assigned
to the same subset of data (referred as a cluster), each observation is attributed to exactly one
subset, and each subset contains at least one observation. Since we want to obtain a directly
interpretable result, prototype-based partitional clustering is an appropriate approach here. If we
can find a partition of data, where each cluster is represented by exactly one prototype, we can
use this prototype to analyze the corresponding cluster. Prototype-based partitional clustering
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Algorithm 1: Iterative relocation clustering algorithm
Input: Dataset and the number of clusters K.
Output: K partitions of the given dataset.
Select K points as the initial prototypes;
repeat

1. Assign individual observation to the closest prototype;
2. Recompute the prototypes with the assigned observations;

until The partition does not change;

can be realized using the iterative relocation algorithm skeleton presented in Algorithm 1 with
different score functions (Han et al., 2001) according to which the two steps inside the loop of
Algorithm 1 are optimized.

However, in order to realize a prototype-based partitive clustering algorithm, two main is-
sues should be addressed. First, a well-known problem of all iterative relocation algorithms
is their initialization. They minimize the given score function locally by iteratively relocating
data points between clusters until an optimal partition is attained. Therefore, basic iterative
algorithms, such as K-means, always converge to a local, and not necessarily to the global, op-
timum. Although much work has focused this problem, no efficient and universal method for
identifying the initial partitions and the number of clusters exists. This problem is discussed
more thoroughly in Section 4.2. The second problem is the sparse student data with around 30%
missing values (see Section 2.1). In Section 4.1, a solution is presented for adjusting the score
function of the basic algorithm skeleton in order to deal with the random sparsity pattern. A
similar approach was also applied in Saarela and Kärkkäinen (2014) to other educational data.

4.1. SCORE FUNCTION FOR K-SPATIALMEDIANS

Our (available) data consist of course grades of fixed values {1, 2, 3, 4, 5}. Therefore, there is
evidently a significant quantization error from uniform distribution in the probability distribution
for a grade gi:

gi(x) =

{
1, if gi − 1

2
≤ x < gi +

1
2
,

0, elsewhere.
(1)

Thus, second-order statistics that rely on the normally distributed error are not suitable here,
and we need to use the so-called nonparametric (i.e., robust) statistical techniques (Huber, 1981;
Rousseeuw and Leroy, 1987; Hettmansperger and McKean, 1998). The simplest of robust lo-
cation estimates are the median and the spatial median. The median, i.e., the middle value of
the ordered univariate sample, is inherently one-dimensional, and thus with missing data uses
only the available values of an individual variable. The spatial median, however, is truly a mul-
tidimensional location estimate and can take advantage of the available data pattern as a whole.
This is illustrated and more thoroughly explained in Kärkkäinen and Heikkola (2004); espe-
cially, formulae (2.8) and (2.9) and Figures 1 and 2. As stated, e.g., in Croux et al. (2010),
the spatial median is not affine but only orthogonally equivariant. However, because we have
the fixed grade scale, this property of a statistical estimate is not necessary here. Moreover, for
elliptical distributions, this behavior creates more scatter than location estimation (Croux et al.,
2010). As a whole, the spatial median has many attractive statistical properties. In particular, its
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breakdown point is 0.5; it can handle up to 50% of contaminated data, which makes the spatial
median very appealing for high-dimensional data with severe degradations and outliers. A miss-
ing value can be thought of as an infinite outlier because it can have any value (from the value
range).

Äyrämö (2006) introduced a robust approach utilizing the spatial median to cluster very
sparse and apparently noisy data: The K-spatialmedians clustering algorithm is based on the
same algorithm skeleton as presented in Algorithm 1 but uses the projected spatial median as a
score function:

J =
K∑
j=1

nj∑
i=1

‖ diag {pi}(xi − cj)‖2, (2)

Here, diag transforms a vector into a diagonal matrix. The latter sum in (2) is computed over
the subset of data attached to cluster j and the projection vectors pi, i = 1, . . . , N, capture the
existing variable values:

(pi)j =

{
1, if (xi)j exists,
0, otherwise.

In Algorithm 1, the projected distance as defined in (2) is used in the first step, and recomputation
of the prototypes, as the spatial median with the available data, is realized using the sequential
overrelaxation (SOR) algorithm (Äyrämö, 2006) with the overrelaxation parameter ω = 1.5. In
what follows, we refer to Algorithm 1 with the score function (2) as K-spatialmedians clustering.

4.2. INITIALIZATION

It is a well-known problem that all iterative clustering algorithms are highly sensitive to the
initial placement of the cluster prototypes, and thus, such algorithms do not guarantee unique
clustering (Meilă and Heckerman, 1998; Emre Celebi et al., 2012; Bai et al., 2012; Jain, 2010).
One might even argue that the results are not reliable if the initial prototypes are randomly
chosen since the algorithms do not converge to a global optimum. Numerous methods have been
introduced to address this problem. Random initialization is still often chosen as the general
strategy (Xu and Wunsch, 2005). However, several researchers (e.g., Aldahdooh and Ashour
2013; Bai et al. 2011) report that having some other than random strategy for the initialization
often improves final clustering results significantly.

An important issue when clustering data and finding an appropriate initialization method is
the definition of (dis-)similarity of objects. Bai et al. (2011) and Bai et al. (2012) proposed ini-
tialization methods for categorical data. The attribute values of our dataset (grades from 1-5, or
missing) are also categorical. However, the ordering of our attribute values has meaning (ordinal
data). For example, a student who received grade 5 in all his or her courses is more dissimilar
to a student who got mostly grade 2 than to a student who received on average grade 4. There-
fore, an initialization method for data where only enough information is given to distinguish one
object from another (nominal data) might not be suitable for our case.

Chen et al. (2009) proposed a novel approach to find good initial prototypes. Chen et al.
argue that in the high-dimensional space data are inherently sparse. Therefore, the distance
between each pair of observations becomes almost the same for a wide variety of data distribu-
tions. However, this approach seems more suitable for very high-dimensional data than for our
12-dimensional case. Emre Celebi et al. (2012) compared different initialization methods. They
conclude that for small datasets (fewer than 10000 observations) Bradley and Fayyad’s method
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Algorithm 2: Constructive initialization approach for robust clustering
Input: Datasets D0 to D6.
Output: The set of prototypes for every value of K
for K = size(D0) to 2 do

KBestPrototypes = globalBestSolution(D0,K);
for p = 1 to 6 do

KBestPrototypes = K-spatialmedians(Dp,K,KBestPrototypes);
end

end

leads to best results. In Bradley and Fayyad’s method (1998), the original dataset is first split
into smaller subsets that themselves are clustered. Then the temporary prototypes obtained from
clustering the subsets are combined and clustered as many times as there are different subsets.
Thus, each time one different set of temporary prototypes is tried as initialization and the best,
i.e., that set of temporary prototypes which resulted in the smallest clustering error, is finally
used as initialization for clustering the original dataset.

To sum up, the ideal approach for computing initial prototypes depends on the data, and
is therefore context dependent. However, some general criteria apply: First, initial prototypes
should be as far from each other as possible (Khan and Ahmad, 2013; Jain, 2010). Second, out-
liers or noisy observations are not good candidates as initial prototypes. Moreover, for relatively
small datasets it seems to be a good idea to further divide the set into subsets and utilize the
best prototypes of the smaller sets for further computations. Furthermore, as pointed out by Bai
et al. (2012), it is advantageous if at least one initial prototype is close to a real solution. Bearing
these issues in mind, we developed a new deterministic and context-sensitive approach to find
good initial prototypes.

4.2.1. Initialization for sparse student data

Our intention is to interpret and characterize each cluster by its prototype. Therefore, we should
prefer full prototypes, those that have no missing values. For this approach, we first note that
the rows of Table 3 represent cascadic (see Kärkkäinen and Toivanen 2001) sets of data. Let us
denote the datasets as Dp with p = 0 . . . 12, where p = q − 12. Thus, D0 represents the very
small but full dataset with the 13 students who have completed all 12 core courses and D1 the
29 students who have completed at least 11 of them (containing D0). Therefore, in general Dp

consists of students who have passed exactly 12 − p of the core courses, and we always have
Dp−1 ⊂ Dp. This creates the basis for the proposed initialization approach, which is depicted as
a whole in Algorithm 2.

Our initial, the complete datasetD0 is so small that we can easily determine the globally best
solution by minimizing the error of the spatial median by testing all possible initializations for
the values of K4 In Algorithm 2, globalBestSolution refers a function that tests all possible K
combinations of the observations in the small complete dataset and returns the prototypes of the
combination that resulted in the smallest clustering error. In that way, we obtain for every K for
our small dataset the K global best prototypes. We then use the K best prototypes (denoted as
KBestPrototypes in the algorithm) on Dp as the initial prototypes for the next larger dataset

4Even if K is unknown, we can assume that K is at least 2 and smaller than the total number of observations.
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Table 6: Comparison of context-sensitive and random initialization for robust clustering.

context-sensitive random
K error missing values error missing values
13 373.54 15.38% 425.46 51.54%
12 374.04 8.33% 429.26 46.67%
11 372.31 0.00% 432.89 38.18%
10 376.57 0.00% 434.51 44.00%
9 391.42 0.00% 436.98 38.89%
8 396.06 0.00% 434.77 33.75%
7 409.70 0.00% 444.50 31.43%
6 425.93 0.00% 443.27 18.33%
5 437.32 0.00% 452.74 16.00%
4 454.27 0.00% 461.71 10.00%
3 471.79 0.00% 480.99 6.66%
2 506.84 0.00% 515.06 5.00%

Dp+1. Thus, throughout the constructive approach full prototypes and small clustering error are
favored. The dataset D6, the students who have completed at least half of the core courses, is
our actual target data for clustering.

In Table 6, it is shown how the score function changes and the number of missing values
with the proposed initialization strategy for different values of K for D6. For comparison, the
table also shows the average results of 10 test runs of the K-spatialmedians algorithm with
random initialization. We obtain better results with our approach for the clustering error and,
especially, with respect to the missing values. For example, already for K = 3, 6.66% of the
prototypes’ values are missing with random initialization and, thus, uninterpretable. Moreover,
we also studied the stability of the results by checking whether the students in Dp−1, p ≥
1, still belong to the same cluster when new students are added and the reclustering of Dp is
performed in Algorithm 2. Confusion matrices between the two consecutive clustering levels
were computed. It turned out that the confusion matrices are almost perfect, so that the formation
of clusters is very stable and the clusters themselves are reliably structured. We conclude that
the proposed context-sensitive initialization provides a clustering result with low error and high
interpretability.

The best value for K is next determined using visual inspection. To avoid overfitting, our
goal is to have a small number of clusters. However, the observations should not be too far away
from the prototype to which they belong. From Figure 3, the plot of the second column in Table 6
(change in the score function when D6 is clustered using the proposed strategy), we conclude
that K = 3, K = 5, and K = 8 are potential values for the number of clusters. Namely,
after precisely these points, the speed of the decrease (improvement) of the clustering error, the
discrete derivative, slows down slightly (see, e.g., Zhong et al. 2008 for a similar approach). Of
the potential values, we choose the first one that provides the smallest number of clusters for
further analysis and, in such a way, generalizes data the most. The prototypes for K = 3 are
visualized in Figure 4.
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Figure 3: Decrease in errors for target data when more clusters are introduced successively.

4.3. ANALYZING THE CLUSTERING RESULTS

In the first two columns of Table 7, the ranking of the core courses based on their prototype
separation is provided. Since the general profile of the three clusters is “medium” (cluster 1),
“high” (cluster 2), and “low” (cluster 3), we compute, for each variable, two distances: d1 =
|C2−C1| and d2 = |C3−C1|. The two measures are computed (i) as the mean of {(d1)i, (d2)i}
(denoted as measure 1) and (ii) the minimum of {(d1)i, (d2)i} (denoted as measure 2). As can
be seen from the table, measures 1 and 2 provide practically the same ranking. However, we
think that of these two indicators, the second measure provides clearer variable separation. For
example, with measure 1 we could have a high distance value for a course even if only one
prototype value Ci is very dissimilar from the other two. Moreover, in order to assess even
further the explanative power of variables related to the clustering result with K = 3, we also
applied the nonparametric Kruskal-Wallis test (Hollander et al., 2013) to compare the subsets of
data in the three clusters. Since the actual clusterwise datasets contain missing values, we used
one iteration of the hot deck imputation (Äyrämö, 2006; Batista and Monard, 2003) to complete
them: We imputed the missing values using the cluster prototype values of the K-spatialmedians
algorithm (see Section 4.1) with eight clusters (see Figure 3). As concluded in Section 4.2.1,
eight was another good value for the number of clusters K. Because of this imputation and
because of the form of the quantization error as explained in connection with formula (1), a
nonparametric test should be used. According to the Kruskal-Wallis test, the difference between
the different clusters is highly statistically significant for all courses. Again, the same four
courses provide the highest differentiation between the clusters (see third column of Table 7)
with only the Operating Systems very different from the distance-based separators. In the fourth
column of Table 7, the sum of ranks from the second distance measure and the Kruskal-Wallis
test are given, and the overall ranking of the courses based on the sum is provided. This rank-
of-rankings approach is an example of within-method triangulation, where the final order of
importance combines assessments of the prototypes and the clusterwise data subsets.
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Figure 4: Prototypes of the three student clusters.

Table 7: Distances between the clusters.

measure 1 measure 2 Kruskal-Wallis
course code distance rank distance rank χ2 p rank sum (rank)
PCtools 0.1472 8 0.3220 8 33.10 ? ? ? 9 17 (9)
Datanet 0.8183 1 1.1754 1 84.69 ? ? ? 1 2 (1)
OOA&D 0.2249 7 0.4247 7 47.97 ? ? ? 7 14 (6)
Alg1 0.6090 3 0.7501 4 82.39 ? ? ? 2 6 (2)
IntroSE 0.0588 10 0.0781 10 34 .94 ? ? ? 8 18 (10)
OpSys 0.0413 11 0.0402 12 67.06 ? ? ? 4 16 (7)
DB&DMgm 0.3666 6 0.5490 6 53.96 ? ? ? 6 12 (5)
Prog1 0.0796 9 0.2417 9 32.21 ? ? ? 10 19 (11)
Prog2 0.7064 2 0.9309 2 54.35 ? ? ? 5 7 (4)
CompArc 0.5872 4 0.8439 3 78.49 ? ? ? 3 6 (3)
GUIprog 0.4602 5 0.7118 5 31.04 ? ? ? 11 16 (8)
CompRes 0.0021 12 0.0633 11 17.23 ? ? ? 12 23 (12)

The first observation that can be made by comparing the overall cluster ranking with the cor-
relation analysis (see Table 5) is that the correlations are reflected in the different clusters. The
four courses with the highest correlations clearly separate the three clusters. This can be seen
as well from the visualization of the cluster prototypes (Figure 4). The students in the lowest-
performing cluster 3 also have the lowest performance in the Datanetworks and Algorithms 1
course. The prototype of the best cluster 2 is represented by a remarkable higher grade for those
courses. The same applies for the other two courses with a high correlation to the average grade
and the average number of credits of the students, Computer Structure and Architecture and
Programming 2. A second interesting observation is that one of the smallest deviations in the
grade is obtained for the Research Methods in Computing. This was also the only course that
did not show a significant correlation to the students’ overall grade (see Section 3). However,
also the content of this course differs from the other core courses by being not directly related
to IT knowledge. Moreover, in contrast to all other courses, this course is evaluated solely by an
essay that the student has to write (see Table 2). Somewhat exceptional behavior for this course
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Figure 5: Semesterwise credits versus the mean grade in core courses for the students in each
cluster.

was expected.
In terms of quality, the students in D6 are clearly separated into the three clusters. To check

whether the clusters also differentiate the students according to their quantity of studies, we
looked also (see Section 2.1 and 3) at the students’ average number of credits. In Figure 5,
the semester-wise relation of grades in the core courses and the overall credits of the individual
students in the different clusters is visualized. From this figure, we deduce that the students who
belong to cluster 2 not only are the best when it comes to the average grades in the core courses
but also are the most efficient as they earn on average the most number of credits per semester.
Likewise, the students in the gradewise low-performing cluster 3 also earn the fewest credits per
semester (on average eight credits less than the students in cluster 2). The correlation coefficient
of the mean grade in the core courses and the average number of credits semesterwise per student
is 0.4415 with a p-value that is highly statistically significant. We know that this relation does
not exist in the whole student level and when the average of all studies is used (see Figure 1).
Thus, we conclude that for the core CS courses, the students who perform well in terms of grades
also perform well in terms of the number of courses.

5. PREDICTIVE ANALYSIS USING MULTILAYER PERCEPTRON

The goal, when addressing the third EDM category in this study, is to predict the mean grades
and credits of the students given only the grades of the core courses they have passed. Similarly
as in Section 4, we are interested in interpretable results, which here correspond to detecting
the inputs (courses) that contribute to the prediction model the most. Concerning the model,
multilayer perceptron (MLP) neural networks are universal nonlinear regression approximators
(see, e.g., Pinkus 1999 and articles therein), which can be used in supervised learning. The
feedforward MLP transformation starts directly from the input variables, different from other

19 Journal of Educational Data Mining, Volume 7, No 1, 2015



popular techniques such as radial basis function networks or support vector machines, which
construct their basis in the space of observations. This is an appropriate starting point because
our purpose is to assess the importance of the model inputs, which correspond to the core courses
being analyzed. In this way, we close our between-method triangulation by contrasting the
previous results and conclusions based on unsupervised analysis with the corresponding results
from a supervised, predictive technique.

There are many inherent difficulties when a flexible model is used in prediction and trained
using a given set of input-output samples. First, because of the universality, such a model could
actually represent the discrete dataset precisely (e.g., Tamura and Tateishi 1997; Huang 2003),
which would mean that all the noise in the samples would be reproduced. Thus, one needs to
restrict the flexibility of such models. This can be done in two ways: by restricting the size of
the network’s configuration (number and size of layers; structural simplicity) or restricting the
nonlinearity of the encoded function (size of weights, see Bartlett 1998; functional simplicity).
Here we will assess the network’s simplicity along both dimensions, in order to favor and restore
the simplest model (cf. Occam’s razor). Second, we look for a prediction model that provides
the best generalization of the sample data, and, for this purpose, apply the well-known stratified
cross-validation (see Kohavi 1995) to compute an estimate of the generalization error. Stratifi-
cation means that, given a certain labeling to encode classes in a discrete dataset, the number of
samples in the created folds (subsets) coincides with the sizes of the different classes as closely
as possible. Clearly, the number of classes and number of folds do not need to be the same.
Third, as in clustering, use of a local optimizer to solve the nonlinear optimization problem to
determine the network weights provides only local search (exploitation), and for exploration,
we use multiple restarts with random initialization (see Kärkkäinen 2002). The whole training
approach as just summarized has been more thoroughly introduced and tested in Kärkkäinen
(2014) and successfully applied in time-series analysis in Kärkkäinen et al. (2014).

Next we will derive and detail the whole predictive approach. First, the MLP neural network
and its determination are formalized, and then the overall training algorithm and the input-
sensitivity analysis are developed and described.

5.1. PREDICTION WITH INPUT SENSITIVITY ANALYSIS

5.1.1. MLP training approach

The action of the multilayer perceptron in a layered, compact form can be given by (e.g., Hagan
and Menhaj 1994)

o0 = x, ol = F l(Wlõ(l−1)) for l = 1, . . . , L. (3)

Here the layer number (starting from zero for the input) has been placed as an upper index. By ˜
we indicate the addition of bias terms to the transformation, which is realized by enlarging a vec-
tor v with constant: ṽT =

[
1 vT

]
. In practice, this places the bias weights as the first columns

of the layer matrices that then have the factorization Wl =
[
Wl

0 Wl
1

]
. F l(·) denotes the ap-

plication of activation functions on the lth level. Formally, this corresponds to matrix-vector
multiplication in which the matrix components are functions, and component multiplication is
replaced with application of the corresponding component function (Kärkkäinen, 2002). The di-
mensions of the weight-matrices are given by dim(Wl) = nl× (nl−1 +1), l = 1, . . . , L, where
n0 is the length of an input-vector x, nL the length of the output-vector oL, and nl, 0 < l < L,
determine the sizes (number of neurons) of the hidden layers.
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Using the given training data {xi,yi}Ni=1 , with xi ∈ Rn0 denoting the input-vectors and
yi ∈ RnL the output vectors, respectively, the unknown weight matrices {Wl}Ll=1 in (3) are
determined as a solution of an optimization problem

min
{Wl}Ll=1

J ({Wl}). (4)

We restrict ourselves to MLP with one hidden layer, and the actual cost function reads as follows:

J (W1,W2) =
1

2N

N∑
i=1

∥∥N (W1,W2)(xi)− yi

∥∥2 + β

2n1

∑
(i,j)

(
|W1

i,j|2 + |(W2
1)i,j|

2
)

(5)

for β ≥ 0 and N (W1,W2)(xi) = W2F̃1(W1x̃i). The special form of regularization omitting
the bias column W2

0 is due to Corollary 1 by Kärkkäinen (2002): Every locally optimal solution
to (4) with the cost functional (5) provides an unbiased regression estimate having zero mean
error over the training data.

The universal approximation property guarantees the potential accuracy of an MLP network
for given data and the unbiasedness as just described provides statistical support for its use, but
as explained above, we also address the network’s simplicity and generalization. Thus, in our
actual training method we grid-search the size of the hidden layer n1 and the size of the regu-
larization coefficient β: The smaller n1, the simpler the structure of the network; and the larger
β, the smaller the weight values and the closer the MLP to a (simpler) linear, single-layered
network. Moreover, cross-validation is used as the technique to ensure that generalization abil-
ity of the network is taken as the main accuracy criterion. Finally, the usual gradient-based
optimization methods for minimizing (5) act locally, so that we repeat the optimization with
random initialization twice when we search for the values of metaparameters n1 and β. When
they have been fixed, the final network is optimized using five local restarts to further improve
the exploration of the search landscape.

The whole training approach for the MLP network is given in Algorithm 3. We use the
following set of possible regularization parameter values, which were determined according to
prior computational tests:

~β =
[
10−2 7.5 · 10−3 5 · 10−3 2.5 · 10−3 10−3 7.5 · 10−4 5 · 10−4 2.5 · 10−4 10−4

]
.

The prediction error with a training or test set is computed as the mean Euclidian error

1

N

N∑
i=1

∥∥N (W1,W2)(xi)− yi

∥∥ . (6)

We use the most common sigmoidal activation functions s(x) = 1
1+exp(−x) for F1. All input

variables are preprocessed into the range [0, 1] of s(x) to balance their scaling with each other
and with the range of the overall MLP transformation (see Kärkkäinen 2002 for a more thorough
argument).

5.1.2. Derivation of input sensitivity of MLP

To assess the relevancy of the input (see John et al. 1994; Kohavi and John 1997) of an MLP
model, one basic technique is to estimate the sensitivity of the network’s output compared to
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Algorithm 3: Reliable determination of MLP neural network.

Input: Training data {xi,yi}Ni=1 .
Output: MLP neural network N (W1,W2).

Define a vector ~β of regularization coefficients, maximum size of the hidden layer
n1max, and nfolds, the number of folds for cross-validation, created using stratified
random sampling;
for n1 ← 1 to n1max do

for regs← 1 to |~β| (| · | denotes the size of a vector) do
for k ← 1 to nfolds do

for i← 1 to 2 do
Initialize (W1,W2) from the uniform distribution U([−1, 1]);
Minimize (5) with current n1 and ~β(regs), and the CV Training set;
Store Network for smallest Training Set Prediction Error;

end
Compute Test Set Prediction Error for the stored Network;

end
Store n∗1 = n1 and β∗ = β for the smallest mean Test Set Prediction Error;

end
end
for i← 1 to 5 do

Initialize (W1,W2) from U([−1, 1]);
Minimize (5) using n∗1, β

∗ and the whole training data;
end

its input. Seven possible definitions of sensitivity were compared in Gevrey et al. (2003) in an
ecological context and four of them, further, in relation to chemical engineering in Shojaeefard
et al. (2013). Both comparisons concluded that in order to assess the relevancy and rank the
features, the partial derivatives (PaD) method proposed by Dimopoulos et al. (1995) provides
appropriate information and computational coherency in the form of stability. Thus, we also use
the analytic partial derivative as the core of the sensitivity measure, but in a more general and
more robust fashion than Dimopoulos et al. (1995).

An analytical formula for the MLP input sensitivity can be directly calculated from the layer-
wise formula (3). The precise result is stated in the next proposition.

Proposition 1

∇xN ({Wl})(x) = ∂oL

∂x
=

1∏
l=L

diag {(F l)
′}Wl

1. (7)

Here Wl
1 denotes, as before, the lth weight matrix without the first bias column. In particular,

for an MLP with one hidden layer and linear output (o2 = W2 F̃1(W1 x̃)), (7) states that

∂o2

∂x
= W2

1 diag {(F1)
′}W1

1. (8)
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Algorithm 4: Input sensitivity ranking.

Input: Data (X,Y) = {xi,yi}Ni=1 of inputs and desired outputs.
Output: Ranked list of MLP input variables.

1: Fix ~β and n1max, and apply Algorithm 3 to obtain N (W1,W2);
2: Compute MAS of N (W1,W2) according to formula (9);
3: Order input variables in descending order with respect to MAS to establish ranking;

With the discrete data {xi}Ni=1, input sensitivity must be assessed and computed over the
dataset. Thus, we apply (7) to compute the mean absolute sensitivity, MAS (see Ruck et al.
1990):

1

N

N∑
i=1

∣∣∣∣∂oL

∂xi

∣∣∣∣ (9)

of the trained network for all input variables. After this formula is applied, the approach for
input ranking is based on the following concept: The higher the MAS, the more salient the
feature is for the network. This is due to the well-known Taylor theorem in calculus related to
local approximation of smooth functions (see Apostol 1969). Namely, if a function is locally
constant, its gradient vector (i.e., the vector of partial derivatives) is zero, and such a function
could be (locally) represented and absorbed to the MLP bias. Thus, the larger the mean sum
of the absolute values of the local partial derivatives for an input variable, the more important
that input variable is for representing the variability of an unknown function approximated by
the MLP. Thus, the descending order of MAS values defines the ranking of input variables over
one run of Algorithm 3. The method described by Dimopoulos et al. (1995) starts with the
similar analytic formula (formula (3)) as in (7), but (7) is a generalization because our MLP
model contains the bias nodes in order to always guarantee unbiased regression estimate for
the training data in Algorithm 3. Moreover, as with clustering, we compute the overall input-
output sensitivity formulae using the robust mean absolute error instead of the sum-of-squares
proposed in Dimopoulos et al. (1995), which nonuniformly concentrates on large deviations
from zero (see Kärkkäinen and Heikkola 2004).

The whole algorithm for deriving the MLP input sensitivity is given in Algorithm 4. To this
end, many points in this algorithm may produce variability in the final result, the ranking. With
different runs, different foldings appear in cross-validation and different local initializations are
tested when seeking the values of the metaparameters n1 and β. Thus, it typically happens that
a different final network is encountered from repetitions of Algorithm 3 whose ranking (1–
12, where 1 represents the most significant) is then determined using Algorithm 4. To assess
the stability and soundness of this result, we repeat Algorithm 4 five times, store the rankings
obtained with different runs, and, then, compute the classical Fleiss kappa κ (Fleiss, 1971),
which precisely quantifies the reliability of agreement between a fixed number of MLP network
raters. The actual variable rating is then based on the ascending order of the sum of rankings
from these five repetitions (between 5–60, where 5 means that such a variable was declared as
the most significant for all the repetitions).
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5.2. PREDICTIVE RESULTS AND THEIR ANALYSIS

As input data for MLP, we use the same set as in the cluster analysis, i.e. the grades of the
students who have completed at least half of the core courses; see Table 3. Moreover, the miss-
ing values (29.65% altogether) are again completed by using the hot-deck imputation with 8
prototypes (see Section 4.3 for more thorough description). As output data, for each student
considered, we use (i) the mean grade and (ii) the mean number of credits per semester, individ-
ually.

Results of the predictive analysis process, as described above, are provided in Table 8. There,
for each course, the “RSum” provides the sum of rankings (1–12) of five individual runs of
Algorithm 4. Moreover, in order to assess the stability of the final ranking, we have tested 3-fold,
7-fold, and 10-fold stratified cross-validation. As labels for the 3-fold stratification, we used the
three cluster indices that were obtained in the previous section for K = 3 (the analyzed result).
For the 7-fold CV, the labels corresponded to the number of completed courses in Table 3, i.e.,
to the separate groups of students for q = 6, . . . , 12, whose sizes are given by nq. In the third
stratified cross-validation strategy with 10 folds, we used the labels that were obtained when
clustering the students into 8 clusters (same as in imputation).

Thus, the strategy to create the different number of stratified folds was completely different,
but the final rankings of the 7-fold and 10-fold CV were exactly the same, and there was only one
very small difference compared to the 3-fold CV: For the mean grade, rankings of the PCtools
and Datanet courses were swapped. We conclude that there is high reliability concerning the
final rankings, because the Fleiss κ shows moderate agreement for grades with 7 and 10 folds
and the rest of the cases witness substantial agreement between the ratings of the individual runs
of Algorithm 4. From “MeanError” (see Table 8), which represents the mean of the prediction
error (6) over the five runs, we conclude that mean grades can be predicted (in the generalization
sense as explained above) about twice as accurately as the mean number of credits semesterwise.
Again, this illustrates the higher and more random individual variability of the number of credits
obtained per semester compared to the level of grades (see also Figures 6 and 7).

Based on the results presented in Table 8, we draw the following main conclusions: Com-
pared to the correlation and clustering analysis results, also based on the predictive MLP input
sensitivity analysis, the courses Datanetworks and Computer Structure and Architecture seem
to be most influential to the overall performance in the studies. For the performance in grades,
also the course Object Oriented Analysis and Design pops up, and, for the overall credits, the
largest course Programming 2 shows (as in the previous analyses) high significance.

For some course, like Computer and Datanetworks as Tools and Programming of Graphical
User Interfaces, there is a large difference in the ranks between the mean grades and the mean
credits, which was not addressed as strongly by the other two EDM techniques. One reason for
this might be the varying number of students passing a course, which is reflected in the predictive
analysis as the higher need of imputation. As can be seen from Figure 2, many fewer students
have passed these two courses compared to the other courses5.

The predictions and the prediction errors for grades and credits, studentwise, are illustrated
in Figures 6 and 7. In the figures, the x-axis corresponds to a student index, where the students
are taken in the ascending order for missing courses; the larger the index, the more core course
grades are missing, and were imputed in the MLP training data. With this respect, the accuracy

5Actually, also fewer students passed Research Methods in Computing, but this course has already been found
to be less influential and the most different to the courses (see especially the discussion in Section 4.3).
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Table 8: Input rankings for the three foldings.

3-fold CV 7-fold CV 10-fold CV
grades credits grades credits grades credits

MeanError 6.44e-3 1.22e-2 6.37e-3 1.22e-2 6.36e-3 1.22e-2
Fleiss κ 0.76 0.72 0.49 0.62 0.52 0.78
Course RSum rank RSum rank RSum rank RSum rank RSum rank RSum rank
PCtools 19 4 49 10 16 3 47 10 15 3 50 10
Datanet 17 3 10 2 19 4 10 2 18 4 10 2
OOA&D 10 2 39 7 12 2 40 7 13 2 39 7
Alg1 30 6 20 4 31 6 20 4 31 6 20 4
IntroSE 36 7 42 9 36 7 42 9 36 7 41 9
OpSys 39 8 57 11 41 8 57 11 41 8 57 11
DB&DMgm 45 9 15 3 42 9 15 3 42 9 15 3
Prog1 60 12 30 6 59 12 32 6 59 12 30 6
Prog2 50 10 5 1 50 10 5 1 50 10 5 1
CompArc 5 1 25 5 6 1 25 5 6 1 25 5
GUIprog 24 5 58 12 22 5 58 12 23 5 58 12
CompRes 55 11 40 8 56 11 41 8 56 11 40 8

of the mean number of credits per semester shows large increase at the end. As can be seen from
Figure 6, the grades of the core courses predict, with reasonable accuracy, the overall mean
grade level of a student. This result is promising, especially when the number of credits related
to the analyzed core courses is typically less than half of the total number of credits; see Table 4.

In contrast, the generalization accuracy of the average number of credits per semester is very
bad (see Figure 7), and the last students, i.e., those with the most missing values, are the most
erroneous. Thus, we do not recommend the final network for actual prediction, but the network
is considered suitable for the sensitivity analysis. The difference between accurate prediction
and stable detection of input relevance is also clearly captured in Table 8 as explained above:
The rankings in the repeated attempts in Table 8 are very stable, as shown by the Fleiss κ’s, even
if the prediction accuracy can be very poor as shown in Figures 6 and 7.

Hornik et al. (1989) summarize the essence of MLP training: “We have thus established that
such ‘mapping’ networks are universal approximators. This implies that any lack of success in
applications must arise from inadequate learning, insufficient numbers of hidden units or the
lack of a deterministic relationship between input and target.” The proposed training approach
here tries to manage all these issues in order to end up with the most reliably generalizing MLP
network. Thus, we try to capture the deterministic behavior within the data and use this to
compute the input relevance. Stability of the results as witnessed in Table 8, with substantial
within-method triangulation, supports the conclusion that this was obtained here.

6. CONCLUSIONS

This paper presents methods for detecting the main courses that determine the general success in
CS-oriented studies. We employed techniques from the three main categories of educational data
mining, partly working in relation to the remaining two categories as assistance in individual
analyses. Moreover, we showed how to cope with the nonstructured sparsity pattern in data,
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Figure 6: Prediction of mean grades: real (green) and predicted (blue) values.

using the available data strategy and prototype-based imputation. In Table 9, all analysis results
are summarized. We can conclude the study from the educational domain level point of view
and from the methodological point of view.

From the domain level point of view and based on Table 9, we conclude that the quality of
studies is determined by the first introductory courses, Datanetworks and Computer Structure
and Architecture, offered in the first year of the program. Both courses test more the general
capability of a student to study than the actual knowledge of professional CS skills. Though
they have technical topics, they are taught on a conceptual level, and especially compared with
the third introductory course (see Table 2), they are completed by a final examination at the end
of the course. Therefore, these courses test how well the student is able to learn, understand,
and explain concepts instead of testing specific (IT) skills. When it comes to credits/timely
graduation, a student’s success is also determined by sedulousness and perseverance: The Pro-
gramming 2 which is also creditwise the largest course (see Table 2), is strongly related to the
number of credits that a student can earn in general with hard work. Thus, for the overall perfor-
mance, general study capabilities are more important than the occupational skills and students
can succeed in CS studies with diligent and goal-oriented study behavior without being the
most skilled programmers with mathematical talent. This is important knowledge that should be
communicated to the students in the beginning of their studies.

Naturally, our conclusions from the organizational level as such are not generalizable to

26 Journal of Educational Data Mining, Volume 7, No 1, 2015



Figure 7: Prediction of mean credits: real (green) and predicted (blue) values.

other institutions since educational data and the subsequent knowledge of particular courses are
different. From the methodological perspective, however, both overall approach and the individ-
ual methods with their varying but argumented details are general and can be applied to analyze
the sparse data of student performance. If a snapshot of a study registry of an arbitrary educa-
tional institution were taken, there were missing values similarly to our case for the uncompleted
courses. And, then, all methods and approaches could be applied. Furthermore, according to our
current computational experience, we can conclude that for around a dozen variables (even us-
ing Matlab): i) correlation analysis scales up to one million observations, ii) clustering analysis
scales up to hundreds of thousands of observations, and iii) predictive MLP analysis scales up
to thousands of observations. This means that our methods can also be used for larger datasets.

In general, on the methodological level, the combination of within-method and between-
method triangulation provided very solid results concerning the overall effects and impact of
the analyzed courses. To deal with our student data, it was necessary to augment the exist-
ing methods and approaches to work with the sparse data. What about the soundness of the
algorithms and the overall analysis presented here? There is lot of novelty in the procedures
applied. The prototype-based clustering approach with available data spatial median as a statis-
tical estimate is not a standard data mining technique. It was developed in the earlier work of
the research group (Äyrämö, 2006; Kärkkäinen and Äyrämö, 2005), and its application is based
on our own implementation throughout. Similarly, the way the clustering algorithm is construc-
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Table 9: Summary of the results.

grades credits
course M1 M2 M3 sum (rank) M1 M2 M3 sum (rank)
Computer and Datanetworks as Tools 11 9 3 23 (8) 12 9 10 31 (12)
Datanetworks 3 1 4 8 (2) 1 1 2 4 (1)
Object Oriented Analysis and Design 6 6 2 14 (4) 11 6 7 24 (7)
Algorithms 1 1 2 6 9 (3) 4 2 4 10 (3)
Introduction to Software Engineering 10 10 7 27 (10) 9 10 9 28 (10)
Operating Systems 8 7 8 23 (9) 8 7 11 26 (9)
Basics of Databases and Data Management 5 5 9 19 (6) 5 5 3 13 (5)
Programming 1 9 11 12 32 (11) 7 11 6 24 (6)
Programming 2 4 4 10 18 (5) 2 4 1 7 (2)
Computer Structure and Architecture 2 3 1 6 (1) 3 3 5 11 (4)
Programming of Graphical User Interfaces 7 8 5 20 (7) 6 8 12 26 (8)
Research Methods in Computing 12 12 11 35 (12) 10 12 8 30 (11)

tively initialized and how the variable ranking of prototypes is derived are not standard choices
in cluster analysis. Moreover, the whole computational process for the predictive analysis —
use of MLP with a) hot-deck imputation, b) complexity-aware training for best generalization,
c) analytic formula-based robust input sensitivity derivation, d) sensitivity ranking, e) Fleiss κ as
stability measure for rankings is completely novel. It is also based on our own implementation
throughout. Training phase b) has been recently proposed and tested in Kärkkäinen (2014) and
Kärkkäinen et al. (2014).

The underlying principle to study soundness in all the treatments here was based on local
and global triangulation: In the correlation analysis, significancy was computed with and with-
out Bonferroni correction. In cluster analysis, variable ranking was computed in two ways and
assessed using the nonparametric Kruskal-Wallis test. Similarly, in the predictive analysis three
different foldings (number of folds and how they are created) were used and Fleiss κ was then
applied to the results of five iterations of the overall algorithm to study its stability. Thus, locally
(for each method separately), we have made serious and versatile attempts to vary the meta-
parametrization of the approaches and reported all the results. Globally, on the whole analysis
level, we have again based our overall conclusions on the results and conclusions of the three
methods of different orientations in EDM. We reason that such two-level treatment, where lo-
cally and globally the same results and their interpretation are supported by different approaches,
improves the technical soundness of the study. Furthermore, the method for obtaining the final
ranking, in clustering and in the MLP analysis, is novel and establishes a practical framework
that can be used in similar applications.
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