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In educational technology and learning sciences, there are multiple uses for a predictive model of whether
a student will perform a task correctly or not. For example, an intelligent tutoring system may use such
a model to estimate whether or not a student has mastered a skill. We analyze the significance of data
recency in making such predictions, i.e., asking whether relatively more recent observations of a student’s
performance matter more than relatively older observations. We investigate several representations of
recency, such as the count of prior practice in the AFM model, and the proportion of recent successes with
exponential and box kernels. We find that an exponential decay of a proportion of successes provides the
summary of recent practice with the highest predictive accuracy over alternative models. As a secondary
contribution, we develop a new logistic regression model, Recent-Performance Factors Analysis, that
leverages this representation of recent performance, and has higher predictive accuracy than existing
logistic regression models.
Keywords & Phrases: Student modeling, Linear logistic test model, instance weighting, adaptive learn-
ing

1. INTRODUCTION

A central field of research in educational technology and assessment is concerned with modeling
the probability that a student will respond correctly to some question. This modeling is used to
analyze test answers, as with Item Response Theory; in adaptive learning technologies, such
as the use of Bayesian Knowledge Tracing (Corbett and Anderson, 1995) in intelligent tutoring
systems; to analyze the domains that students study, such as the study of transfer across tasks
(Pavlik et al., 2015); and to understand behaviors such as gaming the system (Baker et al., 2004).

Our work examines several different representations of recency. The intuition is simple: as
students practice a skill, we expect their understanding to increase and their performance to
improve. Having recently succeeded at a task may be an indicator that learning has taken place,
and such a moment of learning ought to contribute to our prediction of successful performance.
This work is the first thorough investigation of recency effects in performance modeling.

We begin by describing a space of representations of student performance, including rep-
resentations of the entirety of observed student practice and only a recent subset. We further
incorporate these representations into the Linear Logistic Test Model framework. This frame-
work subsumes many existing modeling efforts, including the Additive Factors Model (AFM)
(Cen et al., 2006), Performance Factors Analysis (PFA) (Pavlik et al., 2009), and the recency-
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weighted model by Gong and colleagues (Gong et al., 2011). We then propose the Recent-
Performance Factors Analysis (R-PFA) in this framework; this model emphasizes recent over
total practice. We evaluate the representations of practice on a real-world dataset of practice from
the Assistments system (Heffernan and Heffernan, 2014). Finally, since real-world datasets ex-
hibit certain data limitations including replicability, we further examine the properties of the
new R-PFA model and several alternatives on a range of simulated datasets.

2. RELATED WORK IN PERFORMANCE MODELING

Models of student performance represent the probability that a student will respond to a task in a
particular way. For example, Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1995)
represents this as a first-order Hidden-Markov model (HMM). Models of student performance
have many uses: to predict a student’s response; to describe a latent property of the task or
the student; to consider what information bears on the prediction, and the relationship among
the sources of variance (Junker, 2011). By considering different representation of the history
of practice, our work falls into this latter category. Thus, even though our investigation uses
predictive models as a framework, the goal is not predictive accuracy per se.

As choices for a modeling framework, there are two prominent approaches in the literature:
graphical models, including BKT, and logistic regression models. The original Corbett and An-
derson BKT model describes students moving from a state where skills are unknown to a state
where they have learned a skill. It assumes that all students learn at the same skill-specific rate,
and that all items associated with a skill have the same difficulty. While the generative structure
of BKT represents (to a degree) human learning, this HMM structure also leads to mathemati-
cal complexity and may lead to implausible parameter values (Beck and Chang, 2007). There
have been many attempts to modify BKT structure (e.g., Baker et al. 2011; Beck et al. 2008;
Falakmasir et al. 2015), and a variety of methods for estimating BKT models (e.g., Falakmasir
et al. 2013; Boots et al. 2011). It is also possible to incorporate covariates such as student ability
and item difficulty into Knowledge Tracing (González-Brenes et al., 2014; Khajah et al., 2014),
although BKT with these extensions had lower predictive accuracy than the one-parameter item
response theory (1PL-IRT) model on three out of four datasets from intelligent tutors (Khajah
et al., 2014).

In comparison to BKT, logistic regression models are simple, numerically stable, and well
understood. The linearly additive structure of logistic regression has facilitated investigations of
the history of practice with hints across problems (Chi et al., 2011) and within the same problem
(Goldin et al., 2012). In the same way, linearly additive models provide a flexible test bed for
our investigation of recency.

LINEAR LOGISTIC TEST MODELS The Linear Logistic Test Models (LLTM) (Fischer, 1973;
de Boeck and Wilson, 2004) are logistic regression models with parameters for skill difficulty
and student ability. The related Rasch and Item Response Theory (IRT) models include param-
eters for individual task difficulty, rather than grouping together tasks that share an underlying
skill. Because task difficulty is estimated from data, replacing per-task parameters with per-
skill parameters in LLTM reduces the number of model parameters, and leverages the power of
task-level observations to provide a relatively more robust estimate of skill difficulty.

Other IRT models explore considerations such as partial credit modeling, complex parametriza-
tions of items and students, responses to items with multiple correct answers, and interference
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from distractor answer options (de Boeck and Wilson, 2004). However, IRT models tend to be
applied to data from test administrations, not learning environments, and they do not account for
change over time, let alone for recency. The MRCML model (Adams et al., 1997) can account
for change in student ability between test administrations, but it does not consider recency. Sim-
ilarly, variants of Diagnostic Classification Models (Rupp et al., 2010) target assessment, not
data with evidence of learning.

The Additive Factors Model (AFM) and Performance Factors Analysis (PFA) reflect a stu-
dent’s history of practice (Cen et al., 2006; Pavlik et al., 2009). AFM includes a slope coefficient
for the total number of prior opportunities a student has had to practice a skill. The claim is that
the more practice a student has had, the more likely they should be to answer the next item
correctly. PFA separates the number of total prior practice opportunities into counts of suc-
cesses and failures, representing the claim that successful and unsuccessful practice may have
differential value for student learning and thus for probability of correctness on the next task.

PFA-decay (Gong et al., 2011) uses the same counts of successes and counts of failures as
PFA, and further down-weights older practice. Gong et al. (2011) found very modest improve-
ments of PFA-decay over PFA. The representation of recent practice history that we develop in
section 3. is based on non-parametric kernel weighting, and subsumes PFA-decay as a special
case. We demonstrate in section 5.2. that the primary reason Gong et al. (2011) observed only
modest improvement is that PFA-decay places too much weight on older attempts.

3. A REPRESENTATION OF RECENT PRACTICE

Informally, when a student is learning a new skill, we generally expect that initial attempts to
apply the skill may be unsuccessful, and that as learning occurs, attempts will be predominantly
successful. We can relate this idea to a ‘moment-of-learning’. If a student has been successful
in recent practice, then a moment-of-learning has likely already occurred. If recent attempts
have not been successful, then the student has most likely not yet learned the skill. By contrast,
evidence from older attempts may not be as informative as more recent evidence with regard to
whether a moment of learning has taken place.

The question then is how to summarize a student’s recent history. First, how many trials are
sufficient to cover “recent”? Should all these “recent” trials be counted equally, or should the
most recent evidence receive more weight? To resolve this, we use kernel weighting functions
(Wasserman 2006, p.55). For example, a box kernel weights all of the most recent K attempts
equally, while with an exponential kernel, attempts farther in the past receive exponentially
smaller weights.

Second, the simplest representation would be either a count or proportion of successes out
of the most recent several trials, but which is better? Because a proportion is bounded between
0 and 1, no matter the choice of kernel, or the length of the recent history being considered,
coefficients in a model using proportions will have the same scale (e.g., the effect of ten percent
of recent practice being successful, twenty percent, etc.). By contrast, counts are not bounded,
and therefore their coefficients are more difficult to interpret. For example, looking at the most
recent three practice opportunities vs. the most recent five opportunities, the count has a different
maximum and the scale of the coefficients will change. (Proportions have a predictive advantage
as well, which we will discuss later.)

Proportions reveal a complexity that is hidden when using a count of successes to summa-
rize a student’s history. At the beginning of practice, the count of prior successes is zero because
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no data have been observed. The proportion of prior successes is (zero successes)/(zero oppor-
tunities), i.e., not mathematically defined. One way to resolve this is to make the assumption
that if the student has had any unobserved prior practice, it has been unsuccessful. Notably, the
count of prior successes implicitly contains the same assumption (zero prior successes). Com-
putationally, we implement this using a trivial technique we call “ghost attempts”: we prepend
a small number of unsuccessful attempts to a student’s practice history, forcing the proportion
of prior successes on the first observed practice attempt to be zero. In this way, the intercept can
be interpreted as the difficulty of the skill for a student whose recent proportion of successes is
zero, and the slope of the proportion of successes can be interpreted as the effect of observing
proportionally more successes in recent practice. As a side benefit, this reduces noise in the
predictor, which in turn reduces the standard error of the coefficients.

Recent performance includes both successful and unsuccessful practice, and a representation
of recency can include both. It may be that it is sufficient to consider total practice, without
distinguishing the two; that successes and failures should be treated separately but analogously,
or that distinct representations are appropriate. Below, we discuss recent history in terms of
successes, but all of these ideas apply equally to the calculation of a recent proportion of failures.

3.1. DEFINING “RECENT” USING A KERNEL FUNCTION

To formally define the recent proportion of success, we first introduce the following notation:
j skill index, j = 1, . . . , J
i student index, i = 1, . . . , N
t practice opportunity index, t = 1, . . . , Oij

Xijt response by student i, on opportunity t of skill j,

Xijt =

{
0 if incorrect
1 if correct

pijt Probability of a correct response: Pr(Xijt = 1)
Tijt count of past opportunities
Sijt recency-weighted count of previous successes, up to trial t
Fijt recency-weighted count of previous failures, up to trial t
Rijt recency-weighted proportion of past successes

The general formula for the proportion of recent success is

Rijt =
t−1∑

`=(1−g)

wt`Xij` (1)

wherewt` is an appropriate weight, and 1−g is the start of practice including any ghost attempts.
How much practice history is included in the proportion of recent success is controlled by the
weights wt` in equation 1. A general kernel weighting framework allows for calculating wt`

in a principled way that still allows the substitution of different kernels for different purposes;
however, we note that the choice of kernel function is usually less important than the bandwidth
of the kernel (Wasserman, 2006).

To calculate the proportion of success over the entire history of practice (including g ghost
attempts), then

wt` =
1

t− 1 + g
. (2)
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Whereas, for the proportion of success over the last K attempts, the weights are

wt` =

{ 1
K

if t− ` < K

0 otherwise
. (3)

The box kernel in equation 3 gives equal weight to each attempt within the window. We shall
refer to Rijt calculated with these weights as Rbox

ijt . By definition, the box kernel is not a smooth
kernel and in most applications smooth kernels have slightly better performance (Wasserman,
2006).

An exponential kernel

wt` =
dt−`∑t−1

`=(1−g) d
t−`

(4)

is a smooth kernel that down-weights older attempts according to the decay parameter d. For
simplicity, in general, when we say Rijt, we are referring to R computed with this exponential
kernel. As necessary to avoid confusion, we will denote it as Rexp

ijt . Different values of d control
the ‘smoothing’ over the history of practice. If d = 1, then equation 4 simplifies to equation 2,
and a student’s entire history of practice gets equal weight. Alternatively, if d = 0.1, then 90%
of the weight is on the single previous trial, and 9% is placed on the 2nd most recent attempt,
so that effectively only the last attempt is counted in the recent history. For exponential decay, d
ranges from 0 to 1, while for the box kernel, the window size K ranges from 1 to infinity, so that
selecting the optimal d has a more tractable search space than K. Thus the exponential kernel
has a computational advantage for tuning decay weight, the advantage of smoothness, and an
interpretability advantage since older evidence is down-weighted.

Gong et al. (2011) uses an un-normalized exponential decay function in PFA-decay;

wt` = dt−`. (5)

These un-normalized weights do not create a recent proportion of success, but a recent count of
success. Note also that when the weights are un-normalized, including ghost attempts has no
effect, since it just adds zeros to the total. From that perspective, Sijt already includes an infinite
number of ghost attempts.

Sijt =
t−1∑

`=(1−g)

wt`Xij` =
t−1∑
`=0

dt−`Xij` (6)

Another transformation that can be applied to count variables is a logarithmic transformation
(e.g., Yudelson et al. 2014; Chi et al. 2011). The intuition behind it is that the probability
of a correct should not increase infinitely with practice, and additional evidence should have
diminishing returns. Computationally, the logarithmic transformation places more weight on
early attempts, and diminishing weight on later attempts. This transformation is effectively the
opposite of the exponential kernel.

KERNEL BANDWIDTH Kernel functions have a bandwidth tuning parameter that controls the
“width” of the kernel: K for the box kernel, d for the exponential. Figure 1 illustrates the
effect of bandwidth tuning for three different success representations over three different practice
histories.
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Figure 1: Effect of decay weighting on a (potentially decayed) count of successes Sijt (bottom
row), proportion of successes Rijt with a box kernel (middle) and exponential kernel (top). Red
circles indicate observed successful (top) and unsuccessful (bottom) practice. Black diamonds
indicate ghost attempts. Blue line shows the tuning parameter with the widest bandwidth (longest
memory), black line shows the narrowest bandwidth, red line shows the optimal bandwidth.
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The simplest case is a count of successes Sijt (Figure 1, bottom row). As the student accu-
mulates correct answers (red circles at top of panel), Sijt with no transformations (the blue line)
grows indefinitely. Incorrect answers (in the “Two Late Incorrects” and “Alternating Correct &
Incorrect” panels, indicated by red circles at bottom of panel) cause Sijt with no transformation
to plateau, and correct answers (red circles) make it grow again. The exponential decay of Sijt

in equation 6 gives more weight to more recent observations, and less to older observations. The
black line shows the effect of a very steep decay rate (narrow bandwidth), and the red line shows
an optimal decay rate according to the results in section 6.

The next case is a proportion of successes in a lookback windowRbox
ijt (Figure 1, middle row).

The box kernel discards all evidence outside the window, and gives equal weight to all evidence
in the window (equation 3). The top row of figure 1 shows Rexp

ijt . The exponential kernel gives
more weight to more recent evidence, and down-weights older evidence. The tuning parameter
is the decay rate. Ghost attempts are included here in the calculation of R, and are discussed in
section 3.2.

Notice that the student histories as summarized by Rbox and Rexp are highly similar. When
the bandwidth is small (black lines), there is very little difference between the two kernels. For
either kernel, all or most of the weight is on the single last attempt. The effects of this are
most visible on the pattern “Alternating Correct & Incorrect”: at this small bandwidth R ≈ 1
if the most recent attempt was a success, and R ≈ 0 if the most recent attempt was a failure.
At large bandwidths (blue lines) again both kernels generate similar summaries of a students
practice (although with d = 1, Rexp is equally weighting each attempt in the entire history of
practice, while with K = 10, Rbox is equally weighting the most recent 10 attempts). It is at
the middle bandwidth that the differences between the two kernels become most apparent. Rbox

equally weights the most recentK attempts, and can change rapidly, as happens in the “Two Late
Incorrects” panel: Rbox moves from 1.0 to 0.0 in only 2 attempts. In contrast, the exponential
kernel smoothly down-weights the older evidence. In practice, this is why smoother kernels are
generally preferred over the box kernel (Wasserman, 2006, p.56).

When bandwidth is large and maintains a longer memory over a student’s practice history
(blue), the proportion of recent success R may give too much weight to older evidence, i.e.,
fail to reflect recent learning. If bandwidth is small and the window over recent practice is
narrow (black), then wide fluctuations in R may make the term useless as a predictor of future
performance. We can see the effect of the different bandwidths most clearly in the pattern “Two
Late Incorrects”. This student has the attempt history Xij = (0, 1, 1, 1, 0, 0, 1, 1, 1), as indicated
by the red circles. With decay d = 1.0 (blue line), each attempt in the entire history of practice
receives equal weight, so thatR decreases very little when the student misses two items in a row,
but it also increases very little when the student responds correctly three times in a row. On the
other hand, when d = 0.1 (black line), 90% of the weight is on the single most recent attempt,
so that after three correct attempts in a row, R ≈ 1, but after missing two attempts, R ≈ 0.

The behavior of Rexp
ijt with d = 0.7 mirrors our intuition. If we were tutoring a student

one-on-one, on the third correct attempt in a row, we might think ‘Ok, the student seems to be
learning the skill.’ When the next attempt is incorrect, we might think ‘That might have just
been a slip.’ On the second incorrect attempt, we might revise our assessment of the student’s
knowledge: ‘Maybe the student doesn’t know this.’ But after 3 subsequent correct responses
in a row, we might be fairly convinced the student has learned the skill. This parallels exactly
the Bayesian updating of the probability that a student has learned a skill that takes place in
a Bayesian Knowledge Tracing model. In this way, exponential decay weighting is capturing
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student performance in a similar way to BKT, but without the complexity of a Hidden Markov
Model.

Gong et al. (2011) fix d at 0.9, aiming not to “eliminate the effects of further practices
too quickly.” This is an overly simplistic choice, and as we shall demonstrate in section 5.2.,
tuning the decay parameter appropriately produces large improvements in predictive accuracy,
and tuning the decay parameter for successes and failures separately is even more effective.

Here, we have illustrated the effects of the tuning parameter on two different kernels, the box
kernel and the exponential kernel. It is certainly possible to use other kernel weighting functions
(half-Gaussian, Epanechnikov, quadratic, etc.), but this illustration should emphasize why the
choice of bandwidth is more important than the choice of kernel.

3.2. INTRODUCING PRIOR BELIEF THROUGH GHOST ATTEMPTS

Ghost attempts have several important impacts within the model: they enable the computation
of the predictor of the proportion of prior successes (with any choice of kernel), they introduce
a sensible prior belief, and they reduce noise in the predictor.

Ghost attempts enable computation of the predictor because they resolve the issue of the
proportion of recent success before a student’s first attempt on a skill. As discussed above, on
a first attempt, the proportion of recent success is 0/0. For the intercept to be interpretable in
a model with Rijt as a predictor, the most sensible choice is to choose to set Rij1 = 0. This
choice is equivalent to stipulating g unobserved attempts Xij(1−g), . . . , Xij0, all incorrect, so
that Rij1 = 0/g.

Ghost attempts are one way to make explicit the assumption that at time 0, a student has not
already learned the skill, which is very plausible in real-world learning datasets. (If a student
is assigned to tutoring, it is likely that the student does not already know the material.) In this
way, ghost attempts introduce a weakly informative prior belief into the R predictor, analogous
to how Bayesian models incorporate prior beliefs.

Finally, ghost attempts reduce noise in the R predictor. Without ghost attempts, it is possible
to stipulate that the proportion of prior successes on the first attempt Rij1 = 0. However, after
just one observation, Rij2 may change dramatically, because it includes exactly one observation.
By increasing the amount of information in R, even if that information comes from prior belief
rather than data, ghost attempts cause R to grow more slowly. Noise in the R predictor would
increase the standard error of both the intercept and the slope, and would drive the slope estimate
closer to zero.

Figure 2 shows the effect of different values g of ghost attempts on two practice histories,
Xij = (1, 0, 0, 0, 0), and Xi′j = (0, 1, 1, 1, 1). Consider the summary of a student’s practice
history after the first attempt when no ghost attempts are included. Student i with a single
success has a 100% success rate, and student i′ with a single failure has a 0% success rate.
Now consider the students’ histories after attempt 5. Student i′ now has four successes in a
row, but they only have an recent success rate of 0.91, thus, they look less successful after 4
correct attempts than student i looked after a single correct attempt. This difference is noise in
the proportion when the number of attempts is small. As we add ghost attempts, noise in the
proportion of recent success is reduced.

As previously noted, the count of successes Sijt implicitly includes an infinite number of
such ghost attempts, but how many ghost attempts should be included in proportion of successes
R? The value we choose (g = 3) is smaller than the length of the median practice history in the
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Figure 2: Effect of ghost attempts. Rows show two different patterns of student practice, while
columns show different numbers of ghost attempts. Red circles indicate the student’s practice
history Xijt, open black diamonds indicate the ghost attempts. Rijt is computed using the expo-
nential kernel with the optimal decay parameter d = 0.7. When no ghost attempts are included,
it is impossible to calculate Rij1.

dataset we study, so that the ghost attempts influence a relatively small fraction of the dataset.
(Their influence is felt most keenly on the first attempt, and practically vanishes by the fourth.)
It is an informed prior because we consider the dataset at hand, but we choose one value, so there
is no overfit due to parameter search. It is reasonable to consider different values of g (different
prior beliefs) for different applications, but note that g may affect the optimal bandwidth for a
particular application.

4. REPRESENTATIONS OF HISTORY OF PRACTICE

All the models we examine are logistic regression models, with the general form

pijt = Pr(Xijt = 1|Z = z) =
exp(z′β)

1 + exp(z′β)
. (7)

The fixed structure of the logistic regression model allows us to compare the predictive utility
of different representations of a student’s prior practice. These terms, which replace the generic
Z’s in equation 7, are displayed for clear comparison in table 1.

In section 3., we defined the recent proportion of success R, and the same construction
extends to a recent proportion of failure. Common, alternative representations of prior practice
include the total length of practice T , the count of total successes S, and the count of total
failures F . The total length of practice is the summary used in the Additive Factors Model
(AFM) (Cen et al., 2006; Chi et al., 2011)

logit(pijt) = θi + βj + γjTijt. (8)
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Table 1: Terms in logistic model variants.

Student skill Success Failure Total Recent
ability difficulty count count trials success rate

AFM θi βj γjTijt

PFA θi βj αjSijt ρjFijt

S-only θi βj αjSijt

R-only θi βj δjRijt

R-AFM θi βj γjTijt δjRijt

R-PFA θi βj ρjFijt δjRijt

Performance Factors Analysis (PFA) (Pavlik et al., 2009; Chi et al., 2011) utilizes both the count
of prior successes and prior failures:

logit(pijt) = θi + βj + αjSijt + ρjFijt. (9)

The decayed count of successes defined in equation 6 is utilized by PFA-decay (Gong et al.,
2011). Aside from the decay weight, PFA-decay uses the same predictors S and F as original
PFA. In fact, when d = 1, PFA-decay and PFA are exactly the same. Thus, we refer to both
these models that only include (possibly decayed) counts S and F as PFA.

To separate the effects of recent practice, total practice, and the differential predictive effects
of recent success and failure, we compare three model variants that contain R:

R-only logit(pijt) = θi + βj + δjRijt, (10)

R-AFM logit(pijt) = θi + βj + γjTijt + δjRijt, (11)

R-PFA logit(pijt) = θi + βj + ρjFijt + δjRijt. (12)

We compare these three recent-history models with the established AFM and PFA models,
as well as an S-only baseline model that uses only the count of successes.1 For PFA & R-
PFA, which include two decay-weighted variables, we consider both the case where the tuning
parameters are equal and the case where they are tuned separately. This allows for the potentially
differential predictive power of recent successes vs. recent failures.

5. MODEL APPLICATION TO REAL-WORLD DATA

5.1. METHODS

We evaluate the models described above in modeling student performance in the Assistments
data used in the “moment of learning” work by Baker and colleagues (Baker et al., 2011). The
data contain first attempts by 4,138 students on problem sets involving 54 skills, for a total of
187,309 first attempts (Table 2). Each problem is coded with a single skill. Each skill was

1The R-AFM model is what Galyardt and Goldin (2014) called R-PFA. We have adjusted the name to be more
consistent with the names of other models. AFM uses total history, while PFA uses success and failures.
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Table 2: Dimensionality of Assistments data.

Full Data CV Filter Rule CV Data

Total Instances 187,309 33,431
Students 4,138 170
Skills 54 32
Overall % correct 65.7% 66.7%
Median students per skill 410 # of students > 10 51
Median skills per student 3 # of skills > 6 9
Median attempts per student per skill 4 # of attempts > 8 15
Maximum attempts per student per skill 141 First 39 attempts 39

attempted between 89 and 16,200 times, and had an overall percent correct between 23% and
95%. The data are from the mastery learning “Skill Builder” feature of Assistments, which
allows teachers to set a threshold for the number of problems a student must correctly answer in
a row to be considered proficient. For this data set, the threshold was set at either three or five.

This data set is sparse at the student level. First, the median number of skills seen by each
student is three, 22% of students practiced only a single skill, and 75% of students practice 7
or fewer different skills. Second, the median number of attempts per skill by students is 4, and
435 students (11%) made 3 or fewer total problem-solving attempts. This sparsity of data at the
student level means that any student effects in a model should be fit as random effects coming
from a common distribution. In this way, we “pool” the data, so the student effects θi for students
with less data shrink towards the mean student effect. The ghost attempts necessarily have the
greatest influence on practice strings that are relatively short, i.e., they reduce the noise that
would otherwise be present in Rijt for these attempts.

For estimation purposes, a sufficient number of students practice each skill; of the 54 skills,
only one is practiced by fewer than 25 students. However, since the standard error of a slope
coefficient depends on the variance in its predictor, the small number of attempts per skill for
the majority of students leads to higher uncertainty in the slope. For this reason, we also treat all
skill intercepts and slopes as random effects. We did not include the covariance matrix for skill
parameters in the model.

We used the glmer function in the R package lme4 to fit all models listed in Table 1 (Bates
et al., 2013). Counting the different kernels, and all of the different tunings of relevant decay
weights, we fit a total of 242 models. Data2 and analysis code3 are posted online.

MODEL COMPARISON Due to the sparsity of the data, the Akaike information criterion (AIC)
(Akaike, 1973; Akaike, 1985) is the best choice for a measure of model fit. AIC is a likelihood-
based measure of model accuracy that incorporates a penalty for model complexity; and when
the formula for the likelihood is correctly specified, AIC can easily accommodate hierarchical
models. Minimizing AIC is equivalent to minimizing KL-divergence risk, and Stone (1977)
proves that AIC is equivalent in general to cross-validation. Our simulation in section 6. reaf-
firms that AIC and cross-validation are equivalent for model selection in this application.

2https://sites.google.com/site/assistmentsdata/home/goldstein-baker-heffernan
3https://sites.google.com/site/aprilgalyardt/research
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Student-stratified cross-validation is the commonly preferred method of model comparison
within the educational data mining community: a model is trained on one set of students, and
used to make predictions for a held-out set of students. In this way, one can claim to have a
reasonable expectation of how well the model will perform on entirely new students. However,
the sparsity at the student level, both in skills per student, and attempts per skill, makes student-
stratified cross-validation on the full dataset unreliable, if not entirely untenable. Therefore, we
also used 25-fold student-by-skill stratified cross-validated MAD scores (L1 loss) on a reduced
data set (Table 2) to compare AFM, PFA and R-PFA. We chose these because they use the three
different representations of practice. For parameter estimates to be stable as segments of the
data are left out, we only included students who practiced at least a minimal number of skills,
and skills which were practiced by at least a minimal number of students. The thresholds we
used are not severe, but because the full dataset is exceptionally sparse, these filters resulted
in an 82% decrease in the size of the data. However, as discussed below, the CV-MAD model
rankings on the reduced data set agree completely with the AIC rankings on the full data set.

5.2. RESULTS AND DISCUSSION

We present results on the value of using only recent data rather than all observed data; on the
relative utility of alternative data transformations; and on the optimal amount of recent data to
retain. These results by necessity apply only to the Assistments data. The simulation in section
6. tests whether these results hold up in a variety of conditions. Work on other datasets provides
evidence for the generalizability of these findings (Goldin and Galyardt, 2015b).

THE BEST-PERFORMING MODEL The best overall model for predicting future success from
a student’s history is R-PFA with an exponential kernel and the optimal decay weight for suc-
cesses is d = 0.7, and for failures is d = 0.1. For 49 of the 54 skills, the coefficients for the
effect of recent successes are significantly positive. The remaining 5 skills have few associated
attempts, very wide CI’s, and are not significantly different than zero. In general, the more re-
cent successes a student has had, the higher the probability of correctly responding to the next
item, which corresponds to our intuitions about learning. It has been previously documented in
PFA and AFM that the slopes for the effect of the count of past failures Fij (and occasionally
even for the count of past successes Sij) are often negative, e.g., (Kaser et al., 2014). Such
negative slopes signal an area of concern (with the performance model itself or with the skill
decomposition), because more practice, successful or unsuccessful, should in general increase
the probability of a correct response. The R-PFA result that recent success is predictive of future
success counters the negative-slope phenomenon.

THE VALUE OF RECENT HISTORY Figure 3 presents a heatmap AIC scores for all models.
Note that any difference in AIC scores that is visible in the color gradient is a difference of a
hundred or more, where an AIC difference of 3 is generally statistically significant.

The models containing any summary of recent success outperformed the models using total
length of practice (AFM), and count of success and failures (PFA). CV-MAD scores for the
reduced data set rank R-PFA (0.383), PFA (0.390), and AFM (0.395) in the same order. The fact
that PFA outperforms AFM replicates prior research (Pavlik et al., 2009; Chi et al., 2011). The
1PL-IRT model, which lacks any summary of practice, is by far the worst performing model.
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S-only with decay weight d = 1 outperforms AFM. With a decay parameter of 1, Sijt is
simply the total count of all prior successes for person i on skill j. Thus, a simple count of
successes is a better predictor of future success than the total count of practice.

R-only with just the proportion of recent success, and no summary of failure, has better pre-
dictive performance than PFA. Even with a decay parameter of d = 1.0 which retains the entire
history of practice, the proportion of success is a better predictor than the count of successes
(S-only) or the separate counts of successes and failures (PFA). At the optimal bandwidth of
d = 0.6 for R-only, most of the weight is on the last 3-5 attempts and the difference in AIC
scores between R-only and PFA is 3000. R-PFA which treats the effects of recent success and
recent failure separately, offers an even greater predictive advantage.

CHOICE OF KERNEL Consistent with the literature on nonparametric statistics, choice of ker-
nel is less important than bandwidth, but smoother kernels are generally preferred (Wasserman,
2006). With the smooth exponential kernel, predictive performance degrades gracefully from
optimal to sub-optimal bandwidths; with the non-smooth box kernel, performance does not de-
grade gracefully (Figure 3).

In addition, the normalized exponential kernel applied to the proportion of success R is a
better predictor of student performance than the unnormalized exponential kernel that generates
the decayed count of success S. At every fixed bandwidth d, R-only outperforms S-only.

OPTIMAL AMOUNT OF RECENT PRACTICE CONSIDERED The optimal tuning parameter
for both S and Rexp is d = 0.7. This places 52% of the weight on the last 2 attempts, and 85%
of weight on the last 5 attempts. For the box kernel, the optimal window for Rbox is K = 2, so
the effective size of the optimal bandwidth is similar for both kernels.4

In all cases, the smallest bandwidth investigated here for failures is found to be optimal,
implying that only a failure on the single most recent attempt contains relevant information for
predicting future performance, and prior failures are less informative. Tuning the success rate
and the failure rate separately offers a distinct advantage. In the best-performing model, R acts
like a running average over the last 2-5 actions, while F effectively indicates whether the last
action was correct or incorrect.

The difference between the optimal tuning parameters for recent successes and recent fail-
ures may account for the difference in slips and guesses. If a student knows the skill and has
been correctly responding, then R ≈ 1 and F ≈ 0. If this student then slips and responds
incorrectly, with the optimal decay parameters, R will decrease to 0.7, and F jumps to 0.9. If
the incorrect answer was truly a slip then the student will likely answer correctly on the next
attempt, so that R increases towards 1 again, and F falls back toward zero. In this way, R is
largely unaffected by slips, while F is an indicator that the last response may have been a slip.
Now consider a student who does not know the skill, and has a history of incorrect practice
attempts, so that R ≈ 0 and F ≈ 1. If this student then guesses correctly on an item, R only
increases to 0.3, and F falls to 0.1. Here R is largely unaffected by the correct answer, while F
is an indicator that the last response may have been a guess.

4For the box kernel, the AIC heatmap in figure 3 appears to have stripes indicating that even window widths
are better than odd windows. This may be because even-width windows are functionally smoother than odd-width
windows. Consider the history of practice Xij = {0, 1, 0, 1, 0, 1, ...}. With an odd window size for the box kernel
the recent proportion oscillates, e.g., K=3, Rij = {..., 1

3 ,
2
3 ,

1
3 ,

2
3 , ...}. If the window is even, whether K = 2 or 4,

or 6, we get Rij = {..., 0.5, 0.5, 0.5, 0.5, ...}.
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5.3. UNDERSTANDING MODEL DIFFERENCES THROUGH VISUALIZATION

What is the source of the predictive advantage of a student’s recent history of performance (R-
PFA) compared to a student’s entire history of performance (PFA)? Where do the predictions
of the two models agree and where do they disagree? Given the sparsity in our dataset, it is
inappropriate to examine errors in prediction on a held-out or cross-validation set; nonetheless
it is instructive to compare predictive accuracy on the training set.

We present the difference in the predictions in figure 4, which we call the Viz-R visualization
(Goldin and Galyardt, 2015a). To read the figure, consider that a conventional way to evaluate
a single model is by using a confusion matrix that has four cells: true positive predictions, false
positives, true negatives, and false negatives. In comparing two models, there are twice as many
cells, because the models may agree or disagree. These 8 cells are spread over the the two
rows of the figure, which correspond to actually incorrect (top) and actually correct (bottom)
outcomes. Each row is divided into 4 facets according to the value of the R predictor:

• R in [0, 0.3] indicates that the student has produced either 1 or fewer right answers in the
last 4 attempts, or is at the very beginning of practice.

• R in (0.3, 0.5] indicates 2 correct answers in the last 3-4 attempts.

• R in (0.5, 0.7] implies that the most recent 2 answers were correct.

• R in (0.7, 1] means that at least the last 3 answers were correct.

We use the standard labels (true positives, etc.) for cells where the models agree. With
PFA as the baseline model and R-PFA as the comparison, “true positive wins” are where R-PFA
gains true positive predictions over PFA, “false negative losses” are where R-PFA makes a false
negative error that PFA does not commit, and so forth.

Viz-R is similar to a confusion matrix in that it shows the percentage of observations in
each cell; but it also shows the distance between observations and the classification decision
boundary for each model.5 The X and Y axes indicate the predicted probabilities p̂ from the
PFA and R-PFA, respectively. This (x, y) position has a different meaning for the actually
correct and actually incorrect outcomes. For example, the top-right quadrant for the actually
incorrect outcomes indicates false positive values, and the top-right quadrant for the actually
correct outcomes indicates true positives.

There is very little correlation between the predictions of PFA and R-PFA, but there are
notable differences between the model predictions in two cases. First, when students have had
more than a couple of attempts at a skill, but the student has had few recent successes, R-PFA is
much better at predicting incorrect outcomes than PFA (top row, R in [0, 0.3], TN Win, yellow-
red color). This advantage is due directly to using recent history to make predictions.

To understand this, consider that the advantage is absent when there is little history (on the
first or second attempt, R in [0, 0.3], blue-green color): the only basis for a prediction then is

5The logistic models examined here all used a decision boundary of 0.5. Instances for which the predicted
probability of a correct response was above the boundary (p̂ > 0.5) are treated as predicting a correct rather than
an incorrect, and vice versa. The decision boundary has a margin of error; a model is not confident in a prediction
that is close to the boundary. Thus, it is sensible to prefer models that not only make predictions on the right side of
the decision boundary, but also close to the true class and far from the boundary. (In fact, this is reflected in metrics
such as AIC, MAD, RMSE, and point-biserial correlation, but not in metrics that use 0-1 loss such as precision,
recall, and AUC.)
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the estimated difficulty of the skill, and both models generate a large number of false positives.
Instead, R-PFA gains an advantage as the length of practice history increases. Consider three
histories XAj = {0, 1, 0, 1, 0, 1}, XBj = {0, 0, 0, 1, 1, 1}, and XCj = {1, 1, 0, 1, 0, 0}. These
three histories look equivalent to PFA on opportunity t = 7 since it only uses counts of successes
and failures, but they look quite different to R-PFA; Student B has a fairly high proportion of
recent success, while student A has a moderate value of RAj7, and RCj7 is quite low. Thus,
for students like student C, PFA will generate a false positive prediction while R-PFA generates
a true negative prediction. This improvement in predicting when a student will fail to answer
correctly is an important contribution of R-PFA for intelligent tutors and adaptive systems.

Second, when the student has had successes on the most recent items, R-PFA is more likely
to predict a correct outcome than PFA. This is true both when the observed outcome is correct,
and when it is not, i.e., when the observed incorrect outcome is likely a slip. Ultimately, the
number of false positive losses for R-PFA (top row, R in (0.5, 0.7] or (0.7, 1.0]) is much lower
than the number of true positive wins (bottom row, same R). To an intelligent tutor, accurately
predicting slips is arguably unimportant. An intelligent tutor using R-PFA rather than PFA
would be more aggressive and more accurate at predicting student mastery of a skill, allowing
students to graduate from practicing a skill more quickly than PFA.

When the student has had 2 correct answers in the last 3-4 attempts (R in (0.3, 0.5]), it is
hard to know whether to expect a correct or an incorrect outcome. In the aggregate, PFA and
R-PFA perform comparably in this case.

In sum, the exponentially decayed proportion of recent success outperforms separate success
and failure counts because it is more accurate at predicting true negatives in early practice, and
true positives for students with a history of successful practice.

6. SIMULATION STUDY

Simulations allow the exploration of model performance under a variety of controlled condi-
tions. They address the question, “if student behavior has these features, how does model
performance change?” Even though simulated data are not real, they are realistic. Thanks to
simulations, we can understand more deeply how aspects of models and data affect model per-
formance, and what performance we might expect on future datasets.

Simulation also removes some of the limitations of real data. Two aspects of the Assistments
dataset examined above complicate model comparison. First, the sparsity in the Assistments data
(section 5.) complicates the use of cross-validation for model comparison on the full dataset.
In a simulation, sparsity can be controlled, so that we can compare model performance using
both AIC and cross-validation. Second, the stopping rule used in the Skill Builder feature of
Assistments leads to data missing non-randomly. Once Assistments determines that a student
has mastered a skill, Assistments does not assign further practice on this skill. Because the
stopping rule for the mastery criterion is often set at either 3 or 5 items in a row correct, this
aspect of the data may impact the optimal bandwidth for recent performance. Simulation allows
us to determine the optimal bandwidth when no stopping rule affects data generation.

We compare the predictive value of the recent proportion of success (R-PFA), a count of
total successes and failures (PFA), and the total length of practice (AFM), across three different
assumed features of student behavior. In simulation 1, we assume an idealized student behavior
where each student learns at a consistent rate. In simulation 2, we assume that while students
are practicing a skill, they may exhibit inconsistent performance, with relatively long sequences
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of interwoven correct and incorrect performance. In simulation 3, we assume that some students
may generate long sequences of incorrect responses on some skills (e.g., due to skill difficulty,
or to a student gaming the system); we call these skills ‘stumper skills’.

6.1. SIMULATION 1: IDEALIZED STUDENT BEHAVIOR

The Bayesian Knowledge Tracing (BKT) model (Corbett and Anderson, 1995) provides a gen-
erative model of idealized student behavior. BKT is a hidden Markov model with two states:
a learned state where the student has a high probability of correctly responding to a question,
and an unlearned state where the student has a low probability of correctly responding. At each
practice attempt students transition from the unlearned state to the learned state with a fixed
probability.

BKT does not represent complex detail of human cognition, but it is useful to treat it as an
idealized, abstract model of observable student behavior. BKT is naive in multiple ways, among
them that it treats all students as having the same ability and learning at the same rate; it does
not consider that skills may be unexpectedly difficult for some students, or that students may
attempt to game the system; it also assumes that students never forget a skill.

Simulating from BKT should favor PFA and AFM, since the probability that a student is in
the learned state increases at a rate of 1−qtj with each attempt t. In this simple model, the length
of practice should be a sufficient summary of student performance.

METHODS We generated 100 datasets from this model, each with 50 skills and 3500 students,
so that the total size of the data is near the size of the Assistments data. Each student practiced
a random number of skills, generated by a Poisson distribution with a mean of 5. The number
of opportunities for a student to practice each skill also varied randomly, generated by a Poisson
distribution with a mean of 8. This means the number of opportunities for practice is statistically
independent of the skill. This eliminates the uneven sparsity observed in the real data set. Full
technical details for data generation are in appendix A1. Code for each of the simulations is
posted online6.

On each dataset, we fit seven of the logistic test models; AFM, using total practice length
Tijt; PFA, using undecayed counts of failures Fijt and successes Sijt; and R-PFA (exponen-
tial), at 5 different values of the decay weight for the weighted proportion of successes Rij:
d = 0.2, 0.4, 0.6, 0.8, 1.0. For the count of failures in R-PFA, we fixed the decay weight d = 0.1,
because the smallest decay parameter for failures was always optimal for the Assistments data.
As in the Assistments data, we used g = 3 ghost attempts. Student parameters were omitted
from the models to allow for student-stratified cross-validation. Additionally, it was the uneven
sparsity in the Assistments data that necessitated random effects for the skill parameters; ran-
domness in the simulation means that there is sufficient data at each level to fit skill parameters
as fixed effects. Because there is sufficient data at each level, the estimates for random effects
from the R function glmer and fixed effects from the R function glm, used here, will be effec-
tively the same. We compared the fits using AIC and 5-fold student-stratified cross-validation
MAD (L1 loss).

RESULTS Across all 100 simulation replications, both AIC and CV-MAD ranked the 7 models
in the same order: R-PFA at any bandwidth performed better than PFA, and AFM was ranked

6https://sites.google.com/site/aprilgalyardt/research
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last. Among the R-PFA bandwidths, AIC ranked d = 0.6 as best in about 80% of the simulations
and d = 0.8 as best in the other 20%. CV-MAD ranked d = 0.6 as best in 40% of the simulations
with d = 0.8 best in about 60%. Note that these decay rates bracket the best-performing rate
d = 0.7 observed on the Assistments data. This is the kind of behavior we expect when two
models are similar. AIC and CV-MAD clearly agree that these are the best two decay parameters
compared to the rest of the available models.

6.2. SIMULATION 2: PRACTICING

Simulation 1 represents idealized student behavior; in Simulation 2, we add an aspect of real-
istic student behavior. When students are learning a new skill, they often exhibit some length
of inconsistent performance where correct and incorrect attempts are interwoven, and practice
histories are similar to sequences such as Xij = (0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1). The classic BKT
model does not adequately capture this phenomenon. With only the two states of unlearned
and learned, BKT tends to generate practice sequences where students suddently transition from
mostly incorrect to mostly correct practice, e.g., Xij = (0, 0, 0, 0, 1, 1, 1, 1).

METHODS To simulate gradual transition from incorrect to correct practice, we created a 3-
state BKT model, adding an intermediate state to BKT. Students in the unlearned state have
a low probability of answering correctly. In the new ‘practicing’ state, students are learning
the skill, but their understanding is not complete, so they have only moderate probabilities of
a correct response. Students in the ‘fluent’ state have a very high probability of answering
correctly. We assume that no student begins practice in the fluent state, so that practice will
benefit all students. Details are in appendix A2.. This model is more realistic than the idealized
student behavior generated by the classic 2-state BKT model, but it should still favor AFM and
PFA, since the probability that a student will reach the fluent state increases at a consistent rate
across each practice opportunity t.

As in Simulation 1 (section 6.1.), we generate 100 datasets, fit the same 7 models, and
compare them using AIC and 5-fold student-stratified CV-MAD scores.

RESULTS Across all 100 simulation replications, both AIC and CV-MAD ranked the 7 models
in the same order: R-PFA at any bandwidth performed better than PFA, and AFM was ranked
last. In 100% of the simulations, both AIC and CV-MAD ranked d = 0.6 as the best bandwidth.
The bandwidth d = 0.4 was second best in about 60% of the simulations, with d = 0.8 falling
in third place.

6.3. SIMULATION 3: STUMPER SKILLS

In the first two simulations, all students progress towards mastery at a steady rate (that depends
on individual skills). But real students sometimes encounter skills that for a variety of reasons,
they are not able to master and leave them “stumped”. Students may lack a pre-requisite skill,
and legitimately struggle and fail to master the target skill; or they may become de-motivated and
engage in hint abuse (Aleven and Koedinger 2000) or in gaming the system (Baker et al. 2004).
Such a student will generate a practice history that is a sequence of predominantly incorrect
practice. The presence of such sequences can dramatically affect model parameters since the
behavior of the stumped students does not match the behavior of the other students, and may
affect the relative utility of the different summaries of prior student practice under consideration.
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METHODS To simulate this behavior, we adapted a BKT model. A randomly generated seg-
ment of students (about 8%) will occasionally get stumped. The probability that one of these
students gets stumped on a particular skill depends on the skill. When a student gets stumped,
they have a low probability of correctly responding to any item on that skill. When a student
is not stumped, their practice history is generated according to the classic 2-state BKT model.
Full technical details are in appendix A3. Once again, we generate 100 datasets, fit the same 7
models, and compare them using AIC and 5-fold student-stratified CV-MAD scores.

RESULTS As in the previous simulations, in 100% of simulated datasets both AIC and CV-
MAD ranked R-PFA at any bandwidth above PFA, and AFM was the worst performing model.
AIC and CV-MAD agree that the best two bandwidths are d = 0.6 and d = 0.8; AIC ranks
d = 0.6 as better in 60% of the simulations, while CV-MAD ranks d = 0.8 as better in 60% of
the simulations.

6.4. SIMULATION DISCUSSION

In all three simulation scenarios, recent history is a better predictor of future success than a
complete history of successes and failures, or the total length of practice. This was true even
in the first simulation, which should have favored AFM and PFA. In a BKT model with no
forgetting, the more opportunities that a student has to practice, the more likely it is that a
student will transition from the unlearned state to the learned state. Therefore, on average, the
total number of opportunities to practice should be proportional to the log-odds of a correct
response. Yet even in this case, recent history makes better predictions.

The scenarios that students may go through periods of “practicing” (Sec 6.2.) or encounter
“stumper skills” (Sec 6.3.) reflect real-world phenomena by construction. R-PFA is robust to
this for the same reason that it is robust to interleaved skill practice, namely that it disaggre-
gates learning curves, in effect allowing different students different amounts of time to begin to
demonstrate successful practice (Goldin and Galyardt, 2015b).

In all 3 simulation models, the optimal decay parameter is in the range [0.6, 0.8]. If the
number of ghost attempts changes from g = 3, this may change slightly; but since by the
student’s third attempt the ghost attempts are largely forgotten, adding additional ghost attempts
will make little difference. With these decay rates 75-93% of the weight is on the last 5 attempts,
and 55-78% of the weight is on the last 3 attempts. Thus, the last 3-5 practice opportunities
contain sufficient information to judge whether or not a student has learned the skill.

7. CONCLUSIONS

The primary contributions of this work are:

• a definition of several representations of recent practice

• a thorough comparison of these representations in terms of predictive accuracy on real-
world and simulated data, which demonstrates how a student’s recent performance history
evidences whether or not they have acquired a particular knowledge component

• the novel Recent-Performance Factors Analysis model that embeds the most effective
representation (the kernel-transformed proportion of recent successes and the decayed
count of prior failures)
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• the publicly available implementation of the recency representations and R-PFA model

ON RECENCY We proposed that recent history ought to be a better predictor of student per-
formance than the entire history of practice. We validated this insight by embedding various
representations of recent history in the well-established Linear Logistic Test Model framework,
and by leveraging prior work: the separation of student and item characteristics (IRT), the group-
ing of items by skill and the significance of past performance (AFM), the separation of prior
successful and unsuccessful practice (PFA), and discounting of older evidence by Gong et al.

We found that, first, a decay-weighted proportion of successes is a better predictor than a
decay-weighted count of successes. Second, decay weights should be tuned, rather than deter-
mined heuristically (as in the work by Gong et al.). Third, decay weights for successes and
failures should be tuned separately. Fourth, it is sensible and effective to inform the model with
a prior “belief” that students who have never attempted the skill will likely fail to answer cor-
rectly, e.g., using ghost attempts. In aggregate, these insights lead to improvements in predictive
accuracy in the true negative rate when recent history contains few correct attempts, and in the
true positive rate when recent history mostly consists of correct attempts.

The optimal amount of recent history for modeling is consistent across all of the simula-
tions, and the Assistments data; the best decay parameter for recent successes is consistently
d = {0.6, 0.7, 0.8}. Weights in this range place almost all of the weight on the last 3-5 at-
temtps. Thus, empirically, these last 3-5 attempts contain sufficient information about the stu-
dent’s knowledge state to make accurate predictions. Interestingly, this decay rate supports the
heuristic, implemented in some adaptive learning systems (Heffernan and Heffernan, 2014), that
a student has mastered a skill if a student has a “streak” of 3-5 correct responses in a row on the
skill. However, because the exponentially decayed kernel performs better than a box kernel, we
can conclude that the streak model can be easily improved.

The exponential kernel is relatively simple mathematically, adding only three tuning weights
beyond the parameter structure of PFA (the number of ghost attempts, and decay rates for fail-
ures and successes). The stability of the decay weights identified in this work implies these
weights might be reasonably treated as starting values in new uses of R-PFA, further reducing
complexity of R-PFA (Goldin and Galyardt, 2015b). Importantly, the proportion of successes
not only has higher predictive accuracy than a count predictor, but it also has clearer interpreta-
tion, because it avoids the scaling issues associated with the unlimited count predictor.

The findings here cast doubt on the validity of the AFM model, because its treatment of total
practice had the lowest predictive accuracy of all the other logistic model variants, including
even the non-decayed count of successes only, i.e., S-only with d = 1. At present, AFM has
uses aside from prediction, including in skill model selection in Learning Factors Analysis (Cen
et al., 2006), which may need to adopt different models.

We evaluated models on both real-world and simulated data. Simulated data allowed us
to test out representations of recency under conditions where we could control different kinds
of noise, and to ensure that our ranking of recency representations generalized beyond the As-
sistments dataset. Although simulated data evaluations are rare in the educational data mining
literature, they are very popular in statistics. In fact, we argue that real-world datasets have
sparse data properties that necessitate both kinds of comparisons.

CURRENT LIMITATIONS AND FUTURE WORK This investigation of recency leveraged the
logistic regression framework. In the future, we will consider the relationship of R-PFA to
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Dynamic Bayesian Networks such as Knowledge Tracing. Graphical models also reflect change
over time, but in a less transparent way than a simple proportion of recent success. Preliminary
work suggests that the two kinds of models reveal interesting aspects in each other.

In this study, the decay rate for recent history was held constant over all skills, and the
optimal decay rate was consistently in the same window [0.6, 0.8]. It is possible that the opti-
mal bandwidth is different for different skills, perhaps we need a smaller bandwidth for harder
skills where students have very little chance of guessing an answer correctly. Future work may
investigate this potential.

We will consider how R-PFA may incorporate richer Q-matrices (multiple skills per item),
and we have begun to look at how R-PFA may be used to improve cognitive models (Goldin and
Galyardt, 2015b).

A CONJECTURE One interpretation of the recency investigation is that a handful of the most
recent observations are a better summary of the learner’s mastery of a skill than the student’s
entire history of practice. Why might that be? One explanation is that because data are noisy, by
saving all older data, we retain too much noise. Another explanation is that in a system where
change (e.g., learning) can happen, older data may be not merely noisy, but erroneous.

Just as a human tutor can make accurate inferences about tutee mastery on the basis of
watching a student solve a problem or two, ideally, a machine ought to be able to do the same.

We conjecture that the more information can be extracted from the most recent practice
attempts, the fewer attempts are necessary to make valid and accurate inference about student
knowledge. Beyond correct and incorrect outcomes, some information that we might extract
from an attempt includes the time taken to solve the problem, the interaction of the student
with the problem, student affect and engagement, use of hints and feedback, likely and apparent
misconceptions, and scratch work.

A SIMULATION DETAILS

A1. SIMULATION 1: IDEALIZED STUDENT BEHAVIOR

Simulated data is generated according to the usual BKT model, it is a hidden Markov model
with an unlearned and a learned state.

• Knowledge components are indexed j = 1, . . . , K

• Students indexed i = 1, . . . , N

• Student i’s response on the tth opportunity to practice skill j:

Xijt =

{
0 if incorrect
1 if correct

• Denote student i’s unobserved knowledge of skill j on the tth opportunity as

Zijt =

{
1 if unlearned state
2 if learned state
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• Probability of initially knowing skill j: Pr(Zij1 = 2) = πj ∼ Beta(1, 2).

This distribution has positive probability for all values on the interval [0,1], but is centered
at a mean of E[πj] = 1

3
. This encapsulates our expectation that in a well-targeted educa-

tional intervention, most of the students would not already know the majority of topics
which will be taught. The density is shown in figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

Density of Beta(1,2)

Figure 5: Density of Beta(1, 2) distribution.

• Transition matrices for the Markov process are

Pj =

(
1− Lj Lj

0 1

)
Lj is the probability of learning skill k following a practice attempt, generated according
to Lj ∼ Beta(2, 2).

This distribution positive probability for all values on the interval [0,1], but is centered at
E[Lk] =

1
2
. If Lk is near 1, then a student has a high probability of learning the skill after a

single practice attempt. In the same way ifLk is near 0, then a student has a low probability
of learning the skill, regardless of how much they practice. This Beta distribution places
more probability near 0.5, and lower probability near 0 or 1, reflecting the idea that most
students need to practice skills a couple of times before they learn them. The density is
shown in figure 6.

• Probability of a correct answer in the unlearned state (guessing): Cuj ∼ Unif(0.02, 0.3)

Pr(Xijt = 1|Zijt = 1) = Cuj

• Probability of a correct answer in the learned state (1-slip): Clj ∼ Unif(0.7, 0.98)

Pr(Xijt = 1|Zijt = 2) = Clj

• Average number of skills seen by each student is fixed at K.n = 5

• Number of skills seen by student i is generated Ji ∼ min{K,Poisson(K.n)}.
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Figure 6: Density of Beta(2, 2) distribution.

• The skills that student i answers are drawn without replacement from {1, . . . , K}.

• T.avg = 8 is the average number of practice opportunities for any student on any skill.

• The number of practice opportunities for student i on skill k isOij ∼ max{Poisson(T.avg), 2}.
So that if a student practiced a skill, they practiced it at least twice.

A2. SIMULATION 2: PRACTICING STUDENT BEHAVIOR

The 3-state BKT model uses the states unlearned, practicing, and fluent. Students in the un-
learned state have a low probability of answering correctly. Students in the practicing state have
moderate probabilities of answering correctly. We may think of students in this state as largely
understanding the ideas and knowing what to do, but slipping frequently perhaps due to high
working memory loads or other causes. Students in the fluent state have a very high probability
of answering correctly.

• Student i’s response on the tth opportunity to practice skill j:

Xijt =

{
0 if incorrect
1 if correct

• Denote student i’s unobserved knowledge of skill j on the tth opportunity as

Zijt =


1 if unlearned state
2 if practicing state
3 if fluent state

• Probability for initial states: πj = (πj1, πj2, πj3).

P (Zij0 = 1) = πj1 ∼ Beta(2, 2)

P (Zij0 = 2) = πj2 = 1− πj1
P (Zij0 = 3) = πj3 = 0
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This distribution for πj assumes that no student begins practice in the fluent state, so that
practice will benefit all students. The Beta(2, 2) distribution is shown in figure 6. πj1
can take any value between 0 an 1, but it is more likely to take values nearer to 0.5. This
simulates the idea that for an average skill approximately half the students will start out
not knowing the skill at all, and the other half of the students need more practice.

• Transition matrices for the Markov process are

Lj =

Lj11 1− Lj11 0
0 Lj22 1− Lj22

0 0 1


where

Lj11, Lj22 ∼ Beta(2, 2).

With these transition matrices, a student may not transition directly from the unlearned
to the fluent state over a single opportunity. However, since this is a 1st order Markov
process, it is possible and fairly likely that some students will transition from unlearned to
fluent within 2 practice opportunities.

• Probability of a correct answer in the unlearned state (guessing): Cuj ∼ Unif(0.02, 0.2)

Pr(Xijt = 1|Zijt = 1) = Cuj

• Probability of a correct answer in the practicing state: Cpj ∼ Unif(0.4, 0.7)

Pr(Xijt = 1|Zijt = 2) = Cpj

• Probability of a correct answer in the fluent state (1-slip): Cfj ∼ Unif(0.85, 1)

Pr(Xijt = 1|Zijt = 3) = Cfj

• Average number of skills seen by each student is fixed at K.n = 5

• Number of skills seen by student i is generated Ji ∼ min(K,Poisson(K.n)).

• The skills that student i answers are drawn without replacement from {1, . . . , K}.

• T.avg = 8 is the average number of practice opportunities for any student on any skill.

• The number of practice opportunities for student i on skill k isOij ∼ max(Poisson(T.avg), 2).
So that if a student practiced a skill, they practiced it at least twice.

107 Journal of Educational Data Mining, Volume 7, No 2, 2015



A3. SIMULATION 3: STUMPER SKILLS

The second adaptation to the familiar 2-state BKT model includes a small proportion of students
who occasionally engage in unproductive learning behavior, which produces long strings of
incorrect responses, or failure sequences. This behavior might appear for many different reasons,
such as the student engaging in hint-abuse or other gaming behaviors, or the student may simply
lack a key prerequisite skill. As a shorthand, we shall refer to students who engage in this
behavior as stumped students.

On each skill, the stumped students will have a probability of engaging in the stumped
behavior for that skill. The probability that these students will engage in the behaviors depends
on the skill, not the student. Whether a student ever engages in the stumped behavior depends
on the student. When a student does so depends on the skill.

When a student does engage in stumped behavior, their responses will be a string of primarily
incorrect responses with high probability. When a student is not engaging in stumped behavior,
data is generated according to an unmodified two-state BKT model.

• To simulate the stumped behavior:

– For each student draw the indicator Gi for whether student i engages in the stumped
behavior, Gi ∼ Bernoulli(0.08).

– For each skill j, draw a probability that one of the stumped students will engage in
this behavior on this skill. Bj ∼ Uniform(0, 1).

– Draw an indicator for whether student i will engage in this behavior on skill j

Wij|Gi = 1 ∼ Bernoulli(Bj)

Wij|Gi = 0 = 0

– If Wij = 0, then generate Xij from the 2-state BKT model (exactly as in appendix
A1.).

– If Wij = 1, then for t = 1, . . . , Tij , Xijt|Wij = 1 ∼ Bernoulli(0.2).

• Average number of skills seen by each student is fixed at K.n = 5

• Number of skills seen by student i is generated Ji ∼ min(K,Poisson(K.n)).

• The skills that student i answers are drawn without replacement from {1, . . . , K}.

• T.avg = 8 is the average number of practice opportunities for any student on any skill.

• The number of practice opportunities for student i on skill k isOij ∼ max(Poisson(T.avg), 2).
So that if a student practiced a skill, they practiced it at least twice.
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