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How the use of concrete materials in the form of counters allows students to model increasingly 
complex number problems is explored. The use of counters scaffolds students’ development of 
number sense and algebra skills leading to an understanding of quite abstract concepts.

Introduction

This article takes the position that teachers can use  
simple manipulative materials to model relatively  
complex situations and in doing so scaffold the devel- 
opment of students’ number sense and early algebra 
skills. According to McIntosh, Reys, and Reys (1997), 
number sense refers to an intuitive feel for numbers  
and their various uses. While students’ early experiences 
are usually dominated by the cardinal aspect of number 
(i.e., counting the number of items in a set), over time 
students broaden their understanding to include increas-
ingly abstract concepts, such as negative numbers. 

Numbers are also used “in the ordinal sense, as  
labels for putting things in order” (Haylock & Manning, 
2014, p. 68). Once students have established the order-
ing of numbers they can begin to develop the skill of 
locating numbers on a number line (Anghileri, 2007). 
As children become comfortable with the ordering of 
numbers they can begin to talk about their positions 
in relation to each other (Anghileri, 2014). Number 
lines feature prominently in the Australian Curriculum: 
Mathematics (ACARA, 2015) and have a variety of 
applications including graphing, estimation, probability 
and statistics. In Year 1, students use number lines to 
locate numbers “up to at least 100” (ACMNA013).  
By Year 4, students are using number lines to locate  
and represent “quarters, halves and thirds, including  
with mixed numerals” (ACMNA078). In Year 5, 
students “Compare and order common unit fractions 
and locate and represent them on a number line” 
(ACMNA102), and in Year 6, students “Investigate 
everyday situations that use integers… and represent 
them on a number line” (ACMNA124). 

The number line provides a flexible representation 
that allows students to extend their work to incorporate 

negative numbers, which occur in a range of conven-
tional contexts including temperatures, banking and 
elevation below sea level. While there is evidence to 
suggest that “Quite young children can grasp the idea 
of the temperature falling below zero” (Haylock & 
Manning, 2014, p. 197), many international curricula 
introduce negative numbers earlier than in Australia 
(Siemon et al., 2011). According to Strogatz (2012), 
“Subtraction forces us to expand our conception of 
what numbers are… you can’t see negative 4 cookies 
and you certainly can’t eat them—but you can think 
about them” (p. 15). While “complexities arise with 
the notion that some numbers are ‘smaller than  
nothing’” (Anghileri, 2007, p. 25), the number line 
provides a “straightforward image for us to associate 
with positive and negative integers” (Haylock & 
Manning, 2014, p. 197).

Here it is argued that manipulatives such as coun-
ters may be used as a means of stimulating thinking 
about abstract mathematical concepts, such as the 
relative position of consecutive numbers and variable 
quantities on the number line (e.g., n and n + 1). This 
appears to contrast with the way in which manipula-
tives have been used, with teachers tending to abandon 
them as mathematics becomes more complex (Swan 
& Marshall, 2010). While students can also use the 
counter representation described here to explore a 
range of simple number patterns, Swan and Marshall 
(2010) caution that “simply placing one’s hands on 
the manipulative materials will not magically impart 
mathematical understanding. Without the appropriate 
discussion and teaching… children may end up with 
mathematical misconceptions” (p. 19). 

The activities described here provide a context 
within which students can investigate number  
patterns and formulate and test conjectures.  
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According to Haylock and Manning (2014) “the 
experience of conjecturing and checking is fundamen-
tal to reasoning mathematically” (p. 39). Students can 
be encouraged to refine their conjectures as they work 
towards establishing a general result. In this way, ideas 
that emerge from working with manipulatives “give way 
to more concise, symbolic arguments that will eventually 
develop into algebra… and carry meaning independent-
ly of the investigations from which they were estab-
lished” (Booker, Bond, Sparrow, & Swan, 2014, p. 93). 

Number line representation

Counters are a familiar resource for students learning  
about counting numbers. While students frequently  
use counters to explore processes such as counting  
on, here it is argued that the use of physical manipula-
tives can greatly facilitate the transition from concrete 
and more abstract representations, such as the number  
line. The number line representation can be used to  
develop the concept that counting numbers continue 
indefinitely and that it is possible to count on from  
any starting point. 

Figure 1 shows how students’ understanding of the 
counting numbers can be extended from concrete to 
more abstract examples involving symbols, numerals  
and counters on the number line. The convention I  
have followed here is to use a black counter to represent 
the unknown quantity (i.e., n) and white counters to 
represent units. Larger numbers, such as (n + 2), may  
be represented by adding the appropriate number of 
white counters. 

A thermometer is a perhaps the most familiar  
physical analogue for a number line that allows  
students to explore negative numbers. The Celsius  
scale allows a meaningful interpretation to be applied  
to temperatures such as –5˚C, which can be understood  
in relation to their positive counterparts. Nevertheless, 
such as representation is not without its limitations. 

Here I have avoided referring to –5˚C as the opposite 
of 5˚C in deference to the absolute temperature scale. 
It is also impossible to replicate a number line which 
extends indefinitely in either direction. 

Research suggests that an overemphasis on the  
cardinal aspect can lead to problems with students  
acquiring an appropriate concept of number” (Haylock 
& Manning, 2014). Student understanding needs  
to be extended beyond the point at which physical 
representations break down. For example, while the 
opposite of a $20 note has no direct physical analogue, 
the concept of credit remains a useful one with direct 
application in the real world. In the abstract sense,  
‘– 20’ can be seen as a point on the number line that is 
twenty units to the left of zero. In this context, ‘– $20’ 
can be meaningfully interpreted as the amount needed 
to offset a $20 deposit. 

The use of two-colour counters allows us to extend 
the model so that students can count both forwards  
and backwards from any point on the number line  
(see Van De Walle, 2007, pp. 500–501). For consisten-
cy, we continue to use the white side of the counters to 
represent units, while the red side is used to represent 
the opposite of a unit (i.e., –1). This allows us to  
represent numbers in the abstract sense such as n and  
(n – 1). Either a white or a red counter can be turned 
over to create its opposite, with a white counter and  
a red counter together having a net value of zero  
(see Figure 2).

Here we note a small but significant parallel between 
the use of counters and Roman numerals. Exploring 
the Roman numerals reveals a useful pattern in the 
representations used for consecutive numbers such as 
IV, V and VI. Notice that IV represents a quantity that 
is one less than five or one before five (i.e., 5 – 1) while 
VI represents one more than five (i.e., 5 + 1). The same 
pattern exists for other Roman numerals (e.g., IX, X 
and XI) and can be extended to any set of consecutive 
numbers such as (n – 1), n and (n + 1).

1           2       3     ... n                  n + 1           n + 2  
     

Figure 1. Using symbols, numerals and counters to represent the counting numbers on the number line.

I           II                III    ... 
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Figure 4. Using counters to find the arithmetic mean of n, (n + 1)  
and (n + 2).

Similar results hold for other sets of numbers that 
are evenly spaced on the number line. The counter  
representation can also be used to establish, for exam-
ple, that (n + 2) is the arithmetic mean of n, (n + 2) 
and (n + 4). Students can explore similar conjectures 
with larger or smaller sets of numbers.  
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Figure 2. Roman numerals and counters showing the relative position of consecutive numbers on the number line. 

The algebraic representation provides a concise  
way of describing the sum of two consecutive numbers 
(i.e., 2n + 1). Students may, however, reason that the 
sum is one more than twice the smaller number or 
one less than twice the larger number. Alternatively, 
students may reason that consecutive numbers must 
consist of an odd and an even number and therefore 
that the sum is necessarily odd. Such reasoning is 
equally valid and should be encouraged. 

Using the algebraic representation also allows us 
to consider other potentially interesting cases. What 
would happen, for instance, if n represented a rational 
number such as 3.5? In this case, 2n + 1 = 8, which 
is clearly even, but n and (n + 1) no longer represent 
consecutive numbers. 

Arithmetic mean

Counters may also be used to prove some simple  
conjectures about the arithmetic mean. For example,  
it may be readily observed that (n + 1) is the arithmetic  
mean of n, (n + 1) and (n + 2). I have deliberately  
avoided referring to n, (n + 1) and (n + 2) as consecu- 
tive numbers, since there is no requirement for n to  
be an integer. Indeed the result holds regardless of  
the value of n.

n                  n + 1           n + 2  
     

IX               X            XI             XII                          XIII

(or                )

Figure 3.The sum of two consecutive numbers is not divisible by 2, 
shown here for the general case and n = 2.

Number conjectures

Students can also use counters to explore a range of 
simple number conjectures in the classroom context. 
Clearly it is essential to ensure that students have 
sufficient opportunities to work with concrete examples 
before exploring number patterns in a more abstract 
sense. This provides students with time to develop  
and formulate conjectures, a skill which is essential  
in mathematical reasoning. 

Consecutive number sums

A handful of examples (such as 1 + 2 = 3 and 6 + 7 = 
13) are usually all that is needed for most students to 
conjecture that the sum of two consecutive numbers is 
odd. Indeed, many students are willing to accept at face 
value that this pattern will continue indefinitely. The 
use of prompts such as “Can you show this is true for 
127 and 128?” and “Why?” may be needed to restore 
an appropriate degree of scepticism to the classroom. 

Having established an abstract representation for 
consecutive numbers, it is a simple matter to show that 
the sum of any two consecutive numbers is odd. Using 
a black counter to represent n and one black and one 
white counter to represent (n + 1), we see that the  
sum (i.e., two black counters and one white counter)  
is clearly not divisible by 2 and therefore odd. More- 
over, this remains true regardless of the value of n.  
This can be verified by substituting any set number  
of white counters for each black counter (e.g., n = 2).  
This process has been illustrated in Figure 3. 
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For instance, it can readily be observed that the arith-
metic mean of n and (n + 2) is (n + 1). It is also appar-
ent that the mean of four consecutive numbers is not 
an integer, since n + (n + 1) + (n + 2) + (n + 3) = 4n + 
6 (represented by four black and six white counters) is 
clearly not a multiple of four.

Odd and even numbers

Counters also provide an effective way of exploring 
the patterns inherent in odd and even numbers. While 
many students are inclined to begin their exploration 
of odd and even numbers with statements such as 
‘Let n be an even number’, it is more advantageous to 
create a representation in which n may represent any 
counting number. Multiplying any counting number 
by two necessarily produces an even number, and this  
fact can be exploited to represent any even number  
as 2n. Since odd and even numbers alternate, 2n is  
immediately followed by 2n + 1 (which is odd) and  
2n + 2 (which is even). 

Using this representation, it is clear that the sum  
of two consecutive even numbers (e.g., 2n and 2n + 
2) is even (i.e., 4n + 2). It can also be shown that this 
result extends to the sum of three (or more) consecu-
tive even numbers, since 2n + (2n + 2) + (2n + 4) = 6n 
+ 6. While it is also true that the sum of two consecu-
tive odd numbers is even, since (2n + 1) + (2n + 3) = 4n 
+ 4, the sum of three consecutive odd numbers is not. 

It is also possible to establish that the arithmetic 
mean of two consecutive odd numbers is even. Using 
2n + 1 and 2n + 3 to represent consecutive odd num-
bers gives a sum of 4n + 4, which is clearly divisible 
by 2. In contrast, the mean of two consecutive even 
numbers is odd, since the mean of 2n and (2n + 2) is 
2n + 1. The mean of three consecutive even numbers  
is even, as is apparent in Figure 5.

Think of a number problem

Counters can also be used to model a variety of num-
ber puzzles (see Booker et al., 2014, p. 391; Reys et al., 
2012, p. 363). Table 1 illustrates how a word problem 
can be represented verbally, using counters, symbols 
and algebra. Students may begin with a concrete exam-
ple such as n = 2. Doubling and adding three produces 
seven. Adding the number that we started with (i.e., 2) 
gives nine. Finally, dividing by three gives us an answer 
of three. A second example (such as n = 5) produces 
a result of six, suggesting that the number problem 
appears to produce an answer that is one more than 
the number that we started with. 

The general result can be established by using a 
black counter to represent n. Doubling produces two 
black counters (i.e., 2n) and adding three gives 2n + 
3, which is represented by two black and three white 
counters. Adding the number we started with (i.e., a 
black counter) gives 3n + 3, which is represented by 
three black and three white counters. Finally, divid-
ing into three groups leaves one black and one white 
counter in each group (i.e., n + 1). Thus the counter 
representation (and the associated algebraic reasoning) 
allows us to confirm that the number problem always 
produces a number that is one more than the number 
we started with. 

Conclusion

The counter representation described here allows  
students to model increasingly complex number  
problems and conjectures using concrete materials. 
The approach was trialled with approximately 550 
pre-service primary teachers in their final mathematics 
education unit. The feedback received from students 
revealed that very few had previously encountered  
this approach. 

West

         Figure 5. Using counters to show that the mean of three consecutive even numbers is even.
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While some students initially found the counter 
representation confronting, it may be that this was  
due to the perceived novelty of the approach. With 
appropriate support and guidance, it took approxim- 
ately 20 minutes before most students were reasonably 
proficient with this approach. Students then quickly 
began to pass on their skills to other members of  
their group.

Of particular interest was that often students who 
appeared to have the strongest grasp of algebra found 
it most difficult to understand an alternate representa-
tion. Conversely, a number of students who self-report 
difficulty with algebra experienced significant ‘A-ha’ 
moments. Further research is required to explore the 
potential benefits of such an approach. 
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Table 1.Verbal, physical, symbolic and algebraic representations of a word problem.

Verbal representation Physical representation Symbolic  
representation

Algebraic  
representation

Choose a number ∆ n

Double it    2 × ∆ 2n

Add 3           2 × ∆ + 3 2n + 3

Add the number you choose               3 × ∆ + 3 3n + 3

Divide by 3       ∆ + 1 n + 1
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