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Abstract

An estimation tool for symmetric univariate nonlinear regression is presented. The method is

based on introducing a nontrivial set of affine coordinates for diffeomorphisms of the real line.

The main ingredient making the computations possible is the Connes-Moscovici Hopf algebra of

these affine coordinates.
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1 Introduction

Usual univariate regression analysis makes a distinction between the predictor and the

outcome variable. In some situations, however, a completely symmetric handling of the two

variables is required. One such example, the main motivation behind this investigation, is the

equating of educational tests (see von Davier, Holland, & Thayer, 2004, for an introduction to

test equating). When the same sample of students are taking two different tests (Test A and

Test B), there is no natural order of the two tests in the resulting data for the test scores. That

is, the role of Test A and Test B are interchangeable, and this interchangeability is referred to

as the symmetry of the data set. Consequently, any model based on this data should reflect

this symmetry. Ordinary least squaresss linear regression will result, in general, in two different

regression lines: one when Test A is fitted to Test B and the other is obtained when Test B is

fitted to Test A.

For linear regression, there are known symmetric methods: one of them is obtained by

measuring the distance of the points of the scatter plot and the regression line along line segments

perpendicular to the regression line (Golub & Loan, 1989; Nievergelt, 1994; Sardelis & Valahas,

2004). Some statistical advantages of the symmetric view point are detailed in Sardelis and

Valahas. The method was also found superior to the usual least squaresss approach in the field of

image reconstruction see (Hamid, Bobick, & Yezzi, 2004; Kennedy, Buxton, & Gibly, 1999) and

references therein.

For nonlinear regression, even the family of possible regression functions is a nontrivial

question. The usual next level of generalization, polynomial regression, is not a good candidate for

several reasons. First, for a higher order polynomial, the inverse does not always exist. Even when

it does, it is impossible to find it, in general. Moreover, if the degree of the polynomial is larger

than 1, the inverse is not going to be a polynomial, thereby prohibiting symmetric handling of the

data using polynomials exclusively. Considering the larger set of functions containing invertible

polynomials and their inverses would pose an unsolvable algebraic challenge, in addition to being

awkward.

For these reasons, this paper introduces a solution based on diffeomorphisms along with their

natural affine coordinatization introduced by Connes and Moscovici (1998). A real diffeomorphism

is a differentiable one-to-one and onto R → R function with a nonzero derivative. It is easy to

see that its inverse is also a diffeomorphism. With this large family of functions, symmetry is
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readily taken into account. The challenge lies in finding suitable subspaces of diffeomorphisms for

regression and a practical way of handling the inverse of a diffeomorphism.

2 Preliminaries

A two-dimensional scatter plot is a finite subset Dobs = {(xi, yi) | i = 1, . . . , N} of

R2. The word scatter plot is used here instead of the usual terminology data to emphasize

the geometrical nature of our problem. Often one has a model expressed through a family

of functions F ⊂ Function(R, R) and the problem is to find a member f ∈ F so that

Dm = {(xi, f(xi)) | i = 1, . . . , N} and Dobs are as closely related as possible. This regression

function is denoted by RF (Dobs) := f . That is, RF is defined as a map from the set of scatter

plots to F . For example, when the model is given by Pn (polynomials up to degree n) and

closeness is defined by the distance squared,

d2(Dobs, Dm) :=
N∑

i=1

(yi − p(xi))2, p ∈ Pn,

being small, one deals with polynomial least squares regression.

This paper is concerned with the case when the family of functions Diff(R)+ is a subset of

increasing diffeomorphisms. 1

Diff(R)+ = {f : R → R |f is bijection, f (n) exists ∀n, f ′ > 0} ⊂ Diff(R).

Moreover, the goal is to find the symmetric regression φ ∈ Diff(R)+ for the scatter plot Dobs. For

symmetric regression, use the following:

Definition 1 The regression map Rsymm
Diff(R)+

from scatter plots to diffeomorphisms is a symmetric

regression, if whenever φ = Rsymm
Diff(R)+

(Dobs) is the regression on Dobs, its inverse is the regression

on D−1
obs = {(yi, xi) | i = 1, . . . , N}, that is,

φ = Rsymm
Diff(R)+

(Dobs) ⇐⇒ φ−1 = Rsymm
Diff(R)+

(D−1
obs).

Now assume that φ : R → R is an increasing diffeomorphism of the real line. First, factor the

diffeomorphism as a composition of a linear function e and a diffeomorphism ϕ

φ = e ◦ ϕ (1)
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so that ϕ(0) = 0 and ϕ′(0) = 1. That is,

e(x) = φ(0) + φ′(0)x, (2)

ϕ(x) =
φ(x)− φ(0)

φ′(0)
. (3)

Let G2 = {ϕ ∈ Diff(R)+ | ϕ(0) = 0, ϕ′(0) = 1} denote the collection of all diffeomorphisms

without linear part.2

The reason for this decomposition is that now it is possible to define linear and nonlinear

symmetric regression. That is, the decomposition (1) can be thought of as the first step towards

defining the degree of a diffeomorphism.

Following this natural decomposition, this paper first discusses the linear symmetric regression

and then presents a solution for handling the nonlinear (or G2) part of the problem.

3 Symmetric Linear Regression

First consider the case when the fitted function is a line, e(x) = bx + a. It is easy to see that

the usual vertical least squares solution is symmetric if the correlation of the data is 1: ρ(D) = 1.

In this case the regression is the unique line passing through all data points. If the distance

between the regression line and points of the scatter plot is measured perpendicularly to the

regression line, then the resulting linear regression is symmetric. More generally, if the distance

between a data point and the regression line is measured along a line with slope s(b) given by a

symmetric slope function s : R → R× (R× = R\{0} is the set of nonzero real numbers) depending

on the slope of the regression line b, then to satisfy the symmetry requirement the distance for the

inverse should be computed along the line s(1/b). This gives the symmetry condition for s as

1
s(b)

= s

(
1
b

)
. (4)

The above mentioned perpendicular solution is obtained by setting

s(b) = −1
b
. (5)

For the value s(1) from (4), s2(1) = 1 is obtained, that is, s(1) = ±1. Only s(1) = −1, however, is

a meaningful solution. Note that (4) can be used to obtain symmetric slope functions by setting

s : (0, 1] → R× arbitrarily with the only restriction s(1) = −1 and defining s(b) = 1
s( 1

b
)

for b > 1.
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Smooth solutions should be infinitely many times differentiable at b = 1, resulting in a series of

conditions for the derivatives s
(n)
1 := s(n)(1) of s at b = 1:

s1 = −1 (6)

s′′1 = −s′21 − s′1 (7)

s
(4)
1 = 3s′41 + 12s′31 + 15s′21 − 4s

(3)
1 s′1 + 6s′1 − 6s

(3)
1 (8)

...

The odd degree derivatives s
(2n+1)
1 are all free. That is, there are infinitely many analytic solutions

to (4) governed by the choices for the odd degree derivatives of s at b = 1. Analyticity further

requires the convergence of the series

∞∑
i=0

s(i)(1)
i!

(b− 1)i (9)

for any b ∈ R.

The perpendicular solution (5) is obtained from the choice

s
(2i+1)
1 = −(2i + 1)!, for all i ∈ N,

which makes (9) convergent only for 0 < b < 2. Because this paper is looking for a solution in the

neighborhood of the perpendicular line, this lack of analyticity should always be anticipated. To

overcome this limitation in a practical setting, one could use the series expansion (9) to define a

solution over (0, 1] and extend it to [1,∞] by (4).

4 Nonlinear Symmetric Regression

4.1 Affine Coordinates for Diffeomorphisms

Many polynomials are diffeomorphisms, but the inverse of a polynomial is rarely a polynomial

itself. That is why polynomial regression, even with diffeomorphic polynomials, is not a good

candidate for symmetric regression. After the factorization φ = e ◦ ϕ of a diffeomorphism φ, the

nonlinear part ϕ is clearly identified. In practice, this is a two-step process. First, one fits a linear

symmetric regression e to the scatter plot. Then, if the fit of e is not satisfactory, symmetric

nonlinear regression is performed on the scatter plot for which the linear part e is removed.

Nonlinear regression means finding the best fitting ϕ ∈ G2 diffeomorphism.
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If an arbitrary diffeomorphism ϕ ∈ G2 were allowed during the process, the resulting

regression would be a function so that Dobs = Dm. This, however, may render the regression too

data driven and consequently less sample invariant. Also, there will be infinitely many solutions

satisfying this equality, so the decision rule would be almost useless. Hence, the degree of the

diffeomorphism for the regression should be limited, similarly to the polynomial regression case.

To overcome these problems, this paper follows Connes and Moscovici (1998) and introduces

affine coordinates for the group G2 ⊂ Diff(R) by defining for a diffeomorphism ϕ ∈ G2:

δn(ϕ) := log(ϕ′)(n)(0) ∈ R, ϕ ∈ G2. (10)

It’s possible to locally reconstruct ϕ from these affine coordinates via

ϕ(x) =
∫ x

0
e
P

n
δn(ϕ)

n!
un

du. (11)

General theory of affine algebraic groups (Hochschild, 1981) implies that the resulting set of affine

coordinates carries the structure of a Hopf algebra.

For the coordinates of the inverse, there is

δ̃n(ϕ) := δn(ϕ−1) = log((ϕ−1)′)(n)(0). (12)

The main advantage of this Hopf algebra-based approach is that there are explicit formulae

expressing the coordinates of the inverse in terms of the coordinates of the original function. The

first few are listed here (see the appendix for the first 10):

δ̃1 = −δ1, (13)

δ̃2 = −δ2 + δ2
1 , (14)

δ̃3 = −δ3 + 4δ1δ2 − 2δ3
1 , (15)

The interested reader should read the appendix for the details of how such expression can be

derived.

4.2 Algorithm for Nonlinear Symmetric Regression

Now, a practical algorithm for computing the nonlinear symmetric regression of a scatter

plot Dobs is provided. For a general scatter plot, the first step is to find the linear part of the
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decomposition (1). That is, a function e(x) = bx + a is sought, so that for the transformed scatter

plot,

Dnon-lin
obs = e−1(Dobs) = {(xi, e

−1(yi)) | i = 1, . . . , N}

The symmetric linear regression would be the diagonal line

Rsymm
lin (Dnon-lin

obs )(x) = x. (16)

It is easy to see that this choice will ensure the uniqueness of the linear part, since (16) means

that one cannot perform two nontrivial linear symmetric regressions one after another.

The next step is then to find a symmetric nonlinear regression ϕ ∈ G2 on Dnon-lin
obs . A closer

look at the definition of affine coordinates reveals that the affine coordinates are nothing else but

the terms of the Taylor expansion of the function log(ϕ′). To estimate the coordinates, one has to

transform first the scatter plot e−1(Dobs) to this log derivative scale. That is, observed derivatives

are computed from the scatter plot using finite differences:

di :=
yi − yi−1

xi − xi−1
, ∀i = 2, . . . , n. (17)

The observed log derivatives are then given by li = log(di) ∀i = 2, . . . , n. For inside points, that

is when 1 < i < n; there could be another estimate dg
i obtained via averaging the incoming and

outgoing slopes. To keep the symmetry of the model, one should use the geometric mean:

dg
i :=

√
didi+1, ∀i = 2, . . . , n− 1. (18)

Symmetry means that the slopes for a scatter plot D are reciprocal for the slopes computed for

D−1. It as an easy exercise to see that the arithmetic mean does not respect this property.

This averaging appears to be useful in resolving the anomaly introduced by the fact that the

observed derivatives di should correspond to a mean of xi−1 and xi rather than to either xi or to

xi−1. This would make symmetric handling of the problem a bit awkward.

A sort of stabilization could be achieved by extending these new observations by defining

dg
1 :=

√
d1, and dg

n :=
√

dn−1. (19)

The observed log derivatives in this case are given by lgi = log(dg
i ) ∀ i = 1, . . . , n. The stabilization

can be thought of as introducing two new points at the end of the scatter plot so that the resulting

slopes are 1. This is not required for the method here but maybe useful in some applications. In
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what follows, this paper either assumes that stabilization had been done or that the first and last

points had been dropped and the data had been reindexed.

Let l̃gi denote the corresponding observed log derivatives that are derived from the inverse

scatter plot (Dnon-lin
obs )−1. By construction,

l̃gi = −lgi . (20)

The problem then reduces to fitting two polynomials simultaneously with a certain maximum

degree K. To this end, for a polynomial,

p(x) = δ1x +
δ2

2
x2 + · · ·+ δK

K!
xK (21)

with the k-truncated antipode by

p̃(x) = δ̃1x +
δ̃2

2
x2 + · · ·+ δ̃K

K!
xK , (22)

where δ̃m is given as in (13) to (15) and in the appendix. Truncation refers to the fact that even if

δi = 0 for i > K with some K, the coordinates of the inverse δ̃i for i > K are not necessarily zero.

When defining the truncated antipode, those higher order terms are omitted. Also, note that the

K-truncated antipode of p̃ is p itself (see the appendix for details):

˜̃p = p. (23)

Then, using ordinary least squares, the polynomial fit, that is, the vector of parameter

estimates ∆ = (δ1, δ2, . . . , δK), is found by minimizing the function

`2(δ1, δ2, . . . , δK) =
n∑

i=1

(lgi − p(xi))2 + (l̃gi − p̃(yi))2

=
n∑

i=1

(
lgi −

K∑
k=1

δk

k!
xk

i

)2

+

(
−lgi −

K∑
k′=1

δ̃k′

k′!
yk′

i

)2

. (24)

The nonlinear regression ϕ is then obtained via integration

ϕ(x) =
∫ x

0
ep(u)du. (25)

Note, that the antipode was defined so that

ϕ−1(y) =
∫ y

0
ep̃(v)dv, (26)
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by neglecting the error originating from the truncation. In (26), the inverse of the diffeomorphism

is obtained from the antipode of the corresponding log derivative polynomial. That is, the inverse

always exists, and it can be relatively easily found, unlike in the case of polynomial regression as

outlined in the introduction. Moreover, by the definition of `2 and by (20) and (23),

`2(δ1, δ2, . . . , δK) = `2(δ̃1, δ̃2, . . . , δ̃K). (27)

Note that (27) directly implies the symmetry property of the regression ϕ.

For the sake of explicitness, expand (24) in the case of a degree three approximation scheme:

`2(δ1, δ2, δ3) =
n∑

i=1

(
lgi − δ1xi −

δ2

2
x2

i −
δ3

6
x3

i

)2

+

(
−lgi + δ1yi −

−δ2 + δ2
1

2
y2

i −
−δ3 + 4δ1δ2 − δ3

1

6
y3

i

)2

. (28)

The estimation consists of finding (δ̂1, δ̂2, δ̂3) in the neighborhood of (0, 0, 0) so that `2(δ̂1, δ̂2, δ̂3)

of (28) is minimal.

5 Conclusion

The approach to symmetric regression based on diffeomorphisms of the real line and their

Hopf algebra of affine coordinates were introduced in this paper. This method provides a practical

way of handling the inverse of the regression function together with the function itself, thereby

providing a tool to handle symmetric regression. While some preliminary steps towards solving

the problem in general are presented, the paper should be considered as a research plan rather

than a report on a finished product.

Several questions are left open. Some of them are relatively small technical matters. A

notable example is the proof of the the statements about the linear symmetric slope function

around (6) through (8). Some of them are potentially difficult questions. An example would be

the effect of truncation of the antipode in (22).

Another large topic would be to relate the technique presented here to the usual equating

methods as applied in current practice (von Davier et al., 2004).

Also, the method explicitly uses the estimates of the derivatives as derived from the data.

This works as presented only when the data set is ordered in the sense that the piecewise linear
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function it defines is strictly monotonic. If this is not the case, then a sort of averaging procedure

should be introduced (in a symmetric fashion, of course) to estimate the slopes.

Yet another future direction could be to extend the procedure to higher dimensional

diffeomorphisms via the higher order Connes-Moscovici Hopf algebras. This extension could be

useful when equating tests utilizing a multidimensional item response theory model.
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Notes

1 The use of increasing diffeomorphisms is only to keep the connection with test equating alive.

As this paper shows, the exact same procedure handles arbitrary diffeomorphisms.

2 If the diffeomorphism is decreasing, then the linear part will be decreasing and the nonlinear

part will be increasing; that is, it too will be in in G2.

3 Results in this appendix are taken from Connes and Moscovici (1998).
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Appendix

A.1 Connes-Moscovici Hopf Algebra

For the general theory of Hopf algebras, the reader is referred to Sweedler (1969). The

one-dimensional Connes-Moscovici Hopf algebra H(1) was found by Connes and Moscovici

(1998) while working on the transverse index theorem of foliations.3 As an algebra, it is the

universal enveloping algebra of the Lie algebra generated by X, Y, (δn)∞n=1 subject to the following

commutation relations:

[X, Y ] = −X, (29)

[X, δn] = δn+1, (30)

[Y, δn] = nδn, (31)

[δn, δm] = 0. (32)

The coproduct, however, is not the usual one for enveloping algebras. It is defined by

∆Y = Y ⊗ 1 + 1⊗ Y, (33)

∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y, (34)

∆δ1 = δ1 ⊗ 1 + 1⊗ δ1, (35)

∆δn = ∆[X, δn−1]. (36)

The counit ε and the antipode S are defined on generators as follows:

ε(X) = ε(Y ) = ε(δn) = 0, (37)

S(Y ) = −Y, S(X) = −X + δ1Y, (38)

S(δ1) = −δ1, S(δn) = S([X, δn−1]). (39)

The maps above extend to H(1) endowing it with a Hopf algebra structure.

The focus is the antipode δ̃n = S(δn) of δn. In particular, it is shown how these increasingly

complicated expression can be derived in a systematic manner. From the definition, S(δ1) = −δ1.
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To compute S(δ2), proceed as follows:

δ̃2 = S(δ2) = S([X, δ1])

= −[S(X), S(δ1)]

= [−X + δ1Y, δ1]

= [−X, δ1] + [δ1Y, δ1]

= −δ2 + δ1[Y, δ1]

= −δ2 + δ2
1 . (40)

The interested reader may derive δ̃3 using the same line of argument. Also, it is worthwhile to

note that Menous (2005) contained explicit formulae for the antipode.

Even though it is very useful to consider the whole of the Connes-Moscovici Hopf algebra,

it is also worthwhile to note the commutative sub-Hopf algebra Hδ generated by δn for n > 0.

The commutativity of Hδ implies that the antipode is involutive: S2(a) = S(a) for all a ∈ Hδ.

This shows, in particular, that S2(δi1 . . . δik) = δi1 . . . δik . Hence, for a polynomial p the truncated

antipode of the truncated antipode is p itself: ˜̃p = p; see (23).

A.2 Antipode of δn up to n = 10

δ̃1 = −δ1,

δ̃2 = −δ2 + δ2
1 ,

δ̃3 = −δ3 + 4δ1δ2 − 2δ3
1 ,

δ̃4 = 6δ4
1 − 18δ2δ

2
1 + 7δ3δ1 + 4δ2

2 − δ4,

δ̃5 = −24δ5
1 + 96δ2δ

3
1 − 46δ3δ

2
1 − 52δ2

2δ1 + 11δ4δ1 + 15δ2δ3 − δ5,
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δ̃6 = 120δ6
1 − 600δ2δ

4
1 + 326δ3δ

3
1 + 548δ2

2δ
2
1 − 101δ4δ

2
1 − 271δ2δ3δ1 + 16δ5δ1

−52δ3
2 + 15δ2

3 + 26δ2δ4 − δ6,

δ̃7 = −720δ7
1 + 4320δ2δ

5
1 − 2556δ3δ

4
1 − 5688δ2

2δ
3
1 + 932δ4δ

3
1 + 3700δ2δ3δ

2
1 −

197δ5δ
2
1 + 1408δ3

2δ1 − 361δ2
3δ1 − 629δ2δ4δ1 + 22δ6δ1 − 427δ2

2δ3 +

56δ3δ4 + 42δ2δ5 − δ7,

δ̃8 = 5040δ8
1 − 35280δ2δ

6
1 + 22212δ3δ

5
1 + 61416δ2

2δ
4
1 − 9080δ4δ

4
1 −

47500δ2δ3δ
3
1 + 2311δ5δ

3
1 − 26920δ3

2δ
2
1 + 6227δ2

3δ
2
1 + 10899δ2δ4δ

2
1 −

351δ6δ
2
1 + 14613δ2

2δ3δ1 − 1743δ3δ4δ1 − 1317δ2δ5δ1 + 29δ7δ1 + 1408δ4
2 −

1215δ2δ
2
3 + 56δ2

4 − 1056δ2
2δ4 + 98δ3δ5 + 64δ2δ6 − δ8,

δ̃9 = −40320δ9
1 + 322560δ2δ

7
1 − 212976δ3δ

6
1 − 703008δ2

2δ
5
1 + 94852δ4δ

5
1 +

613892δ2δ3δ
4
1 − 27568δ5δ

4
1 + 461024δ3

2δ
3
1 − 97316δ2

3δ
3
1 − 171012δ2δ4δ

3
1 +

5119δ6δ
3
1 − 340164δ2

2δ3δ
2
1 + 37297δ3δ4δ

2
1 + 28368δ2δ5δ

2
1 − 583δ7δ

2
1 −

65104δ4
2δ1 + 51400δ2δ

2
3δ1 − 2191δ2

4δ1 + 44859δ2
2δ4δ1 − 3844δ3δ5δ1 −

2531δ2δ6δ1 + 37δ8δ1 − 1215δ3
3 + 20245δ3

2δ3 − 6285δ2δ3δ4 −

2373δ2
2δ5 + 210δ4δ5 + 162δ3δ6 + 93δ2δ7 − δ9,

δ̃10 = 362880δ10
1 − 3265920δ2δ

8
1 + 2239344δ3δ

7
1 + 8584992δ2

2δ
6
1 − 1066644δ4δ

6
1 −

8208900δ2δ3δ
5
1 + 342964δ5δ

5
1 − 7664256δ3

2δ
4
1 + 1489736δ2

3δ
4
1 +

2627260δ2δ4δ
4
1 − 73639δ6δ

4
1 + 6900116δ2

2δ3δ
3
1 − 701317δ3δ4δ

3
1 −

536596δ2δ5δ
3
1 + 10366δ7δ

3
1 + 1969008δ4

2δ
2
1 − 1434876δ2δ

2
3δ

2
1 +

57016δ2
4δ

2
1 − 1256931δ2

2δ4δ
2
1 + 100261δ3δ5δ

2
1 + 66504δ2δ6δ

2
1 − 916δ8δ

2
1 +

62335δ3
3δ1 − 1122949δ3

2δ3δ1 + 323677δ2δ3δ4δ1 + 122952δ2
2δ5δ1 −

10116δ4δ5δ1 − 7833δ3δ6δ1 − 4534δ2δ7δ1 + 46δ9δ1 − 65104δ5
2 +

112135δ2
2δ

2
3 − 8476δ2δ

2
4 + 210δ2

5 + 65104δ3
2δ4 − 9930δ2

3δ4 − 14875δ2δ3δ5 −

4904δ2
2δ6 + 372δ4δ6 + 255δ3δ7 + 130δ2δ8 − δ10. (41)
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A.3 Affine Coordinates and the Antipode

There is, of course, a deeper reason for the introduction of the affine coordinates δn(ϕ). To

keep the paper more accessible, however, only a small justification is provided for them by relating

the antipode formulae (39) to the affine coordinates of the inverse of the diffeomorphism. First

write the first few coordinates explicitly:

δ1(ϕ) = ϕ′′(0), (42)

δ2(ϕ) = −ϕ′′(0)2 + ϕ(3)(0), (43)

δ3(ϕ) = 2ϕ′′(0)3 − 3ϕ(3)(0)ϕ′′(0) + ϕ(4)(0). (44)

Moreover, by definition, δn(ϕ−1) = S(δn)(ϕ). To see how this compares to S(δn) introduced

before, first observe that

δn(ϕ−1) = (log(ϕ−1)′)(n)(0)

=
(

log
1

ϕ′ ◦ ϕ−1

)(n)

(0). (45)

Using this, one obtains

δ1(ϕ−1) = −ϕ′′(0), (46)

δ2(ϕ−1) = 2ϕ′′(0)2 − ϕ(3)(0), (47)

δ3(ϕ−1) = −8ϕ′′(0)3 + 7ϕ(3)(0)ϕ′′(0)− ϕ(4)(0). (48)

It is an easy exercise to see that

δ1(ϕ−1) = −δ1(ϕ), (49)

δ2(ϕ−1) = −δ2(ϕ) + δ1(ϕ)2, (50)

δ3(ϕ−1) = −δ3(ϕ) + 4δ1(ϕ)δ2(ϕ)− 2δ1(ϕ)3, (51)

which is in accordance with (13) to (15).
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