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Abstract 

Confidence intervals are an important tool to indicate uncertainty of estimates and to give an idea 

of probable values of an estimate if a different sample from the population was drawn or a 

different sample of measures was used. Standard symmetric confidence intervals for proportion 

estimates based on a normal approximation can yield bounds outside the [0,1] scale and poor 

coverage, because such approximations are generally inappropriate. Many alternative intervals 

have been proposed to address these issues. This paper discusses a selection of intervals based on 

scale transformations and continuity corrections and adapts these for use in complex samples. 

The study expands on the work of Brown, Cai, and DasGupta (2001) and Korn and Graubard 

(1998) using educational survey designs and complex sample data. Results based on a National 

Assessment of Educational Progress (NAEP) data resampling study showed that the theoretically 

appealing Wilson interval yields appropriate coverage with short intervals in most situations. 

Key words: Confidence intervals, NAEP, complex samples, variance estimators, jackknife 

repeated replications 
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1. Introduction 

Suppose one has a contingency table with two cells and n  observations in the table that 

are divided between these two cells following a binomial distribution. Furthermore, the 

proportion of observations in one of the two cells is denoted by , and the true proportion is 

denoted by 

p̂

p . Often, symmetric confidence intervals for this proportion are computed following 

the formula: 

( ) ( )2,N N NCI L U p z p p nα= = ± −1  (1) 

where p  is approximated by , p̂ 2zα  is the ( )100 1 2α−  quantile of the standard normal 

distribution with α  usually chosen to be 0.05, and the ±  sign is used to denote the lower bound 

(L) by applying the minus and the upper bound (U) by applying the plus. However, (1) is 

inappropriate, because the proportion scale is bounded, [ ]0,1p∈ , and the scale is discrete, 

. In other words, (1) will yield confidence bounds that often do not exist for a given 

sample size and confidence level 1

ˆ ,np n +∈

α− . In some cases, this method will yield bounds of the 

proportion confidence interval that includes points outside [ ]0,1  (i.e., overshoot). Primarily, the 

bounded scale would suggest an asymmetric stochastic process. 

The discreteness of the scale also results in oscillation of coverage relative to an a priori 

determined coverage probability 1 α−  for specific  and variable  or for specific  and 

variable . Coverage is defined as 

p n n

p [ ]( ),E p L U∈ . Despite claims of Brown, Cai, and DasGupta 

(2001) about the complexity of the oscillation, it is simply a function of the distance between the 

true proportion and the nearest observable proportions for a given sample size and confidence 

probability under the binomial distribution (Clopper & Pearson, 1934). As a result, high or low 

coverage relative to an a priori established nominal level may represent the best possible 

coverage for a given sample size and not provide substantial information about the success of the 

confidence interval in providing appropriate coverage. Yet, an extensive query of the binomial 

distribution (or multinomial distribution in more complex situations) to find appropriate bounds 

is labor intensive; hence, approximate intervals as often proposed and summarized in Brown et 

al. have practical virtue. 
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Several approaches have been developed that generate asymmetric confidence bounds, 

either from an asymmetric distribution or by centering a symmetric distribution around a value 

other than the point estimate of the proportion. Some of these approaches apply a continuity 

correction, whereas other approaches are based on a variance stabilizing function. In some sense, 

both approaches accomplish the same goal, which is to smooth a discrete function. Only few of 

the proposed intervals apply a crucial inversion from the observed to the true proportion. First 

documented by Wilson (1927), the basis for this approach is to state that the probability an 

observation will occur that falls outside the confidence interval bounds based on the true 

proportion ( )2 1p z p pα± − n  is α . This is radically different from the interval in (1) stating 

that the true value lies outside the observed interval with probability α , which is usually 

between 0 and 1. However, the true proportion lies either inside or outside the interval, and 

therefore the probability is either 0 or 1. 

The purpose of this paper is to apply and compare several methods that aim at providing 

appropriate confidence intervals to complex sample situations, specifically, stratified, multistage 

probability samples. A complex sample is defined as a sample of observable, individual units 

that are distributed over larger, group units, such that the individual units within a group unit are 

more related to each other than they are to individual units from other group units with respect to 

variables of interest. Usually, the larger units are called clusters or strata and are selected with a 

specific probability. Generally, the degrees of freedom of the sampling distribution are sharply 

reduced, and specific estimators (e.g., jackknife, bootstrap) are needed to establish the 

appropriate amount of uncertainty in estimates (e.g., Cochran, 1977). These estimators are often 

aggregates of estimates of uncertainty for each cluster or stratum. Hence, for relatively small 

samples, substantial variation in a few clusters may dominate the formula or even evoke 

eccentric behavior, leading to erratic estimates of uncertainty. In sum, finding an appropriate 

confidence interval for proportions is severely complicated in complex samples because of the 

reduction in degrees of freedom and a problematic assessment of uncertainty predominantly near 

the bounds (i.e., 0 and 1) of the scale. 

1.1 Complex Samples 

Regardless of the type of interval chosen, some kind of provision for complex samples 

has to be made. In general, a complex sample standard error estimator, 
1
2
complexv , can replace a 
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simple random sample based estimator, 
1
2
srsv . This may constitute the replacement of the sample 

size ( ) with the effective sample size ( n ) following: n

, complex

srs

vnn d
d v

= =  

The design effect, , is a measure of the grade of complexity of a sample and equal to 1 in a 

simple random sample. In some cases, predominantly when the number of clusters is small, the 

design effect is underestimated. A pragmatic solution proposed by Korn and Graubard (1998) is 

to truncate the effective sample size to the (weighted) sample size to protect against severe 

underestimation of the design effect. A practical rationale is that in very small groups the 

frequency of drawing a student may be equal to or less than 1 for each sampling unit (e.g., 

school). Hence, the sample approaches a simple random sample. However, for typically small 

but highly clustered groups, this may be unsatisfactory. In general, some degree of 

overestimation of the effective sample size has to be expected and, subsequently, confidence 

intervals that are too narrow. If the proportion is equal to 0 or 1, the design effect cannot be 

estimated at all, and a design effect of 1 can be used in those cases as well.  

d

1.2 Confidence Interval Definitions 

Below, the confidence intervals will be listed that were compared in this study, all 

adjusted for use in complex samples. This list is by no means a complete inventory, but a 

selection of intervals that have shown reasonable coverage in previous studies. The intervals 

compared can be divided into exact intervals, approximate intervals, and scale transformations, 

which also should be considered approximate intervals. Note that student t distributions are used 

instead of normal approximations. 

1.2.1 Exact Intervals 

Wilson. The idea behind the Wilson interval has been mentioned above and constitutes 

solving the equation ( ), 2 1dfp t p pα± − n  for p  in terms of the observed rate in a quadratic 

form, ( , yielding the interval: )2p̂ p−
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( ) ( )
21

2 2
2 2

ˆ
ˆ ˆ, 1df df

W W W df
df df

pn t t n
CI L U p p t n

n t n t
+

= = ± − +
+ +

4  (2) 

One of the problems reported by Brown et al. (2001) with this interval is a sharp 

downward spike in coverage near the tails of the scale. However, they compared the interval to 

an a priori set nominal level, which has shown to be misleading (Clopper & Pearson, 1934). In 

complex samples, a sharp drop also may be encountered due to the probable underestimation of 

the design effect in those areas. This can be prevented to some extent by setting the minimum 

design effect at 1 as mentioned earlier. 

Brown et al. (2001) proposed a boundary modification. The lower bound is replaced for 

proportions based on cells with very few observations or the upper bound for proportions based 

on cells with almost all observations in the sample. The replacement is based on the relationship 

between a one-sided Poisson and the 2χ  distribution: 

( )

2
ˆ2 , 2

1

2
ˆ2 1 ,1 2

1

2

2

pn
W

pn
W

L
n

U
n

ν α

ν α

χ

χ

=

= + −

=

=
 (3) 

Some guidelines are provided to use this replacement for cells with one or two 

observations if the sample size is less than 50; for cells with one, two, or three observations for 

sample sizes equal to or larger than 50; and correspondingly for cells with all but one, two, or 

three observations for the upper bound replacement. This yields the confidence interval . If 

desired, an estimated design effect can be used to translate these guidelines into effective sample 

sizes and products of proportion estimates and effective samples sizes, which will be denoted 

. The bounds in (3)also can be used entirely to compute confidence intervals and are called 

Breeze intervals  (Korn & Graubard, 1998). 

1WCI

2WCI

( 1 1,B W WCI L U= )
Clopper-Pearson. The Clopper-Pearson (Clopper & Pearson, 1934) interval is based on 

the binomial distribution by solving the equation ( )1
2

n
n jj

L L
j x

n
p p

j
α−

=

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
∑  for the lower bound, 

where x and n are the summation of binomial variables with common p. A complementing 
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equation is solved for the upper bound, and using Snedecor’s F results in the solution shown in 

(4) (e.g., Johnson, Kotz, & Kemp, 1992, p. 130):  

( ) ( )
( )

( )
( )

3 41 2

1 2 3 4

31

2 1 4 3

1 22
, ,

2 1CP CP CP

FF
CI L U

F F
ν νν ν

ν ν ν ν

ν αν α
ν ν α ν ν α

⎛ ⎞−
= = ⎜⎜ + +⎝ ⎠2

⎟⎟−
 (4) 

where 1 ˆ2 pnν = , , ( )2 ˆ2 1n pnν = − + ( )3 ˆ2 pnν 1= + , and ( )4 ˆ2 1n pν = −  for an F distribution 

with chosen α -level. This procedure is exact in the sense that a similar argument is made as for 

the Wilson, inversing from an observed proportion interval to a true proportion interval. 

Furthermore, since the binomial distribution is used, this approach is likely more appropriate for 

binomial type problems than the Wilson. The only restriction is that an equal tail interval is 

derived; hence, this interval can be persistently conservative. 

1.2.2 Approximate Intervals 

Jeffrey’s. The Jeffrey’s prior interval is based on a beta distribution, being the standard 

prior for binomial distributions. For complex samples, this interval is defined as: 

( ) 1 2 1 2, , , , 1 ,
2 2J J JCI L U α αβ ν ν β ν ν⎛ ⎛ ⎞ ⎛= = −⎜ ⎟ ⎜⎜ ⎝ ⎠ ⎝⎝ ⎠

, ⎞⎞
⎟⎟⎠

 (5) 

where β  is a quantile from the (posterior) beta distribution with degrees of freedom 1 1p̂n cν = +  

and ( )2 ˆ1 2p n cν = − +  and with chosen level α . The prior for the binomial process is ( )1 2,c cβ , 

where 1 2 1 2c c= =  appears to be an appropriate noninformative choice. The following 

exceptions are applied to ensure that observed proportions equal to 0 or 1 are contained in the 

confidence interval:  and ( )0JL = 0 ( ) 1JU n = . 

Brown et al. (2001) proposed two consecutive ad hoc boundary modifications. The first 

modification deals with the situation where all observations are part of the numerator or none 

are: ( )1 0J lU p=  and ( )1 1J lL n p= − , where ( )11 2 n
lp α= − . This adjustment has been shown to 

be the ( )100 1 2 %α−  Bayesian prediction interval, based on a uniform prior distribution for  

(Johnson et al., 1993, p. 131). The resulting interval will be denoted 

p

1JCI . The second 
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adjustment applies to the situation where all but one or one are part of the numerator: ( )2 1 0JL =  

and . This modification does not bear any particular theoretical underpinnings but 

has some pragmatic appeal. This interval will be denoted 

( )2 1 1JU n − =

2JCI . 

Agresti-Coull. An interval that applies a continuity correction is the Agresti-Coull 

(Agresti & Coull, 1998) interval, . This interval is the same as the standard interval in (1), 

except that  is replaced by 

ACCI

p̂ 2ˆ 2p p tν= +  and  by n nn tν= + . These corrections seem 

somewhat arbitrary, especially since a discrete problem applied to small sample situations likely 

will not accommodate continuous characteristics easily. Both the Wilson and this interval are 

centered on the same value. It should be noted that the Agresti-Coull interval can yield 

overshoot. 

1.2.3 Scale Transformations 

Arcsine. The arcsine is one of the two transformation approaches discussed here. The 

advantage of a transformation is that complex sample variance estimation methods can be 

applied to the transformed metric. However, alternative methods are also available using first 

order Taylor series approximations (see the appendix). Both will be compared. The arcsine 

transformation, following the function ( )1
2

ˆ ˆarcsinpf p= , is a widely used variance stabilizing 

transformation for the binomial distribution. Straightforward application leads to:  

( )( )2
ˆsinA pCI f t var fν= ± ⋅ p̂

)

 (6) 

where ( ˆvar pf  can be found by using a complex sample variance estimator such as the bootstrap 

or the jackknife. A standard arcsine interval based on a first order Taylor series approximation is 

defined as: 

( 1
22 1

ˆ 2sinAT pCI f t nν
−= ± )  (7) 

One important drawback of this approach is the use of a periodic function. If the design 

effect is poorly estimated, in conceivable cases the lower bound would exceed the upper bound. 

Also, both these arcsine intervals are nonexistent when the proportion is 0 or 1. Two boundary 
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modifications have been implemented. The first boundary modification sets the lower bound to 0 

if the proportion is 0 and the upper bound to 1 if the proportion is 1. The second modification is 

similar to the first Jeffrey’s boundary modification. These two modifications will be referred to 

as  and . Alternatively, a replacement of  has been proposed (Anscombe, 1948) for 

use in the Taylor based logit confidence interval, which in complex samples is defined as 

1ACI 1ATCI p̂

( ) ( )3
8ˆp pn n= + + 3

4

)

. This interval is denoted . 2ATCI

Logit. In the logit interval the proportion is transformed using the log odds, and 

confidence bounds are computed for the logit scale. Reverse transformation of the bounds lead to 

values in the [0,1] interval. By denoting the logit transformation as (( )ˆ ˆln 1p pλ = − , a 

provisional interval in the logit scale based on a first order Taylor series approximation is 

derived (see the appendix) as : 

( )ˆ
ˆ ˆT

var p
CI t

pqλ νλ= ±  (8) 

where the λ  subscript denotes that this computation is before reverse transformation. The final 

confidence interval will be denoted . The transformation stabilizes the variance in the sense 

that the tails of the scale are widened to allow for a more precise differentiation between very 

small or very large values on the proportion scale. It should be noted that observed proportions 

equal to 0 or 1 will result in a nonexisting interval. By inspecting the limits, it can be reasoned 

that the log of the odds approaches infinity slower than the proportion, resulting in a [0,1] or full-

width interval (FWI). The  with application of FWI to specified cases will be denoted by 

. These bounds are unsatisfactorily wide; therefore, the first Jeffrey’s boundary 

modification can be applied here as well, yielding . Furthermore, an alternative estimate 

for the log odds has been proposed that does not yield a singular result at 0 or unit proportions 

(Anscombe, 1956), which is 

LTCI

LTCI

1LTCI

2LTCI

( ) ( )( 1
2ˆ ˆln pn n pn+ − + )1

2 . The variance component associated with 

this interval can be computed as ( )( )( ) ( )( )( )ˆ ˆ1 2 1 1n n n pn n pn+ + + − +  (proposed by Hadane; 

see Gart & Zweifel, 1967, estimator ; see also Cox & Snell, 1989, p. 32, Equation 2.27, and 3V
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Santner & Duffy, 1989, p. 32, Equation 2.1.11). This resulting interval after reverse 

transformation according to the log odds ratio is denoted . 3LTCI

Alternatively, a complex sample variance estimation method such as the bootstrap or the 

jackknife can be executed in the transformed metric leading to the interval: 

( )CI t varλ νλ λ= ±
 (9) 

followed by the reverse transformation of ( ) ( ) ( )1
, 1 , 1L U

L L LCI L U e eλ
−− − 1

λ
−⎡ ⎤= = + +⎢ ⎥⎣ ⎦

. Because 

this interval suffers from similar limit problems as the Taylor based logit similar boundary, 

modifications can be applied as well to obtain  and . 1LCI 2LCI

Other intervals. Numerous other approaches to intervals for binomial processes are not 

part of this study, such as randomized approaches and the likelihood ratio interval. These 

intervals have not received much attention in the literature but do deserve further study. 

1.3 Previous Findings 

A few comparative studies have been conducted that are briefly summarized here. Brown 

et al. (2001) recommended, besides the Agresti-Coull interval, two other intervals: the modified 

Wilson interval and the modified Jeffrey’s interval. Both intervals seem to yield similar and 

appropriate coverage. Also, they did not recommend the Agresti-Coull interval for small 

percentages. Newcombe (1998) recommended the Wilson interval using the Clopper-Pearson 

criterion as a golden standard based on a simulation with simple random samples. Korn and 

Graubard (1998) studied a limited number of methods for confidence interval calculation around 

proportions in complex samples. They recommended the Clopper-Pearson interval adjusted for 

complex samples for use in surveys with relatively few primary sampling units. Specifically, 

they stated that this interval provides better coverage than a logit transformation based interval. 

This finding has been replicated by Gray, Haslett, and Kuzmicich (2004), applying the Clopper-

Pearson interval to a slightly different type of clustering (i.e., one that approaches a simple 

random sample rather quickly). It should be noted that Brown et al. have shown the Clopper-

Pearson interval has shown to be overly conservative. 
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1.4 Variance Estimation and the National Assessment of Educational Progress 

An assessment that could benefit from asymmetric confidence intervals is the National 

Assessment of Educational Progress (NAEP). NAEP is the only U.S. assessment that 

periodically monitors what American students in elementary and secondary schools know and 

can do in various subjects such as reading and mathematics. NAEP uses a sample of students to 

estimate average proficiency of subgroups of students in addition to proportions at or above 

certain cut points of proficiency. These cut points are set by experts under auspices of the 

National Assessment Governing Board. Also, NAEP provides estimates of subgroup proportions 

in the population. While uncertainty of estimates in NAEP is exclusively characterized by 

standard errors, for proportion estimates, overshoot is specifically monitored based on symmetric 

standard normal intervals, suppressing standard errors if overshoot occurs (Allen, Donoghue, & 

Schoeps, 2001). Hence, it is pertinent to explore methods to construct asymmetric confidence 

intervals for NAEP to accurately characterize uncertainty without the need to explain seemingly 

peculiar results or to suppress results. However, the methodology and findings are widely 

applicable to other large-scale assessments, such as the Trends in International Mathematics and 

Science Study (TIMSS) and the National Assessment of Adult Literacy (NAAL). 

NAEP draws a stratified multistage probability sample. In the first stage, schools are 

sampled with probability of selection relative to size for each primary stratum (usually states). In 

the second stage, a random sample of students is drawn for each sampled school for the age or 

grade assessed. Schools (and students) are pairwise assigned to replicate strata following 

systematic ordering based on a limited set of demographics. A jackknife repeated replication 

(JRR), also referred to as a leave-out-group jackknife, approach is taken to estimate sampling 

variance by sequentially removing one of the pairs for one replicate stratum at a time. Because 

only one of the pairs is removed, this approach is more formally known as the JRR-half. The 

resulting variance estimate accounts for the hierarchical nature of the sample and considers the 

number of replicate strata to be the maximum degrees of freedom. Student sampling weights are 

computed as the inverse of the probability of being selected in the sample in combination with 

several nonresponse adjustments for students and schools. 

There are many alternative variance estimators for complex samples (Wolter, 1985). Two 

popular methods are the bootstrap (e.g., Efron & Tibshirani, 1993) and Taylor series expansion 

(e.g., Woodruff, 1971). Although the bootstrap is straightforward to implement, large-scale 
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assessments such as NAEP have been hesitant to implement this approach, predominantly 

because of computational burden and a relatively small gain in accuracy. Some Taylor series 

approaches have been studied relatively well in the NAEP context (Hansen & Tepping, 1985; 

Kovar, 1985; Kovar, Rao, & Wu, 1988). The results generally have shown that variance 

estimates based on a JRR approach are substantially less biased and more stable compared to 

stratified Taylor series approximations. Therefore, this study focused exclusively on the JRR 

approach for estimating variance of proportions or functions of proportions and, subsequently, 

design effects. 

1.5 Note on the Sampling Distribution 

In complex samples, the dependencies can reduce severely the degrees of freedom of the 

distribution of summary statistics, in particular for the cases of interest in this study: small 

proportions and proportions based on small samples where the expected number of strata can be 

quite small. However, it is difficult to assess the effective degrees of freedom of the student t 

distribution commonly used for statistical inference. In NAEP, a procedure is used adopted from 

Satterthwaite (1941) and, subsequently, linearly adjusted for stratum dependencies based on 

simulation (Johnson & Rust, 1992). The procedure is based on fourth order moments from the 

JRR procedure and, conversely, has the weakness that underestimation in the standard error also 

results in underestimation of the degrees of freedom. Moreover, the degrees of freedom of 

observed proportions equal to 0 cannot be estimated under this procedure, yielding a division by 

0, and some boundary correction has to be implemented. For the purpose of this study, a lower 

bound of 1 to the degrees of freedom has been enforced. 

The remainder of this paper is devoted to comparing the methods described above in a 

NAEP database study. The study compares a wide array of potential intervals, adapting 

definitions for use in complex samples, by using real data to mimic the complexities of 

educational surveys as closely as possible. 

2. Method 

In this study, confidence intervals were compared with respect to two quantities: 

coverage and width. The primary goal was to find methods of computing confidence intervals 

that provide appropriate coverage, considering conservative and liberal estimates equally 

problematic. A secondary goal was to select the approach with the shortest confidence interval 
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widths conditional on appropriate coverage. Conceivably, a small loss in coverage may be traded 

for a substantial reduction in width. For evaluation, the processes underlying potential oscillation 

were ignored, as the sample size, discussed below, was substantial, allowing for reasonable 

precision for most cases of interest. 

One of the fundamental challenges this study faced was to simulate a complex sample. 

This problem was approached by drawing stratified subsamples from a large complex parent 

sample. The goal behind this procedure is to retain the clustering, sampling design, sampling 

weights, and structure in addition to several unique sample characteristics that are challenging to 

account for in a simulation. A disadvantage is that the parent sample is finite; therefore, the 

stratified samples can be only relatively small to limit dependence, reducing the amount of 

clustering that can be retained. With respect to the coverage of confidence intervals, one of the 

effects of this dependence is overestimation of the coverage (i.e., the proportion estimate from 

the sample drawn will more often fall within the confidence interval than can be expected based 

on chance). Subsequently, if a relatively large proportion of the parent sample is drawn, coverage 

will approximate 100%. This effect can be decreased somewhat by sampling with replacement to 

increase the range of samples, although this may also decrease the clustering. In this study, a 

without replacement approach was taken for stratified samples that were less than 0.8% of the 

parent sample size. Another disadvantage of this database approach is little room to control the 

values of proportions of interest, although it can be argued that the proportions in this study are 

those of most interest and do span a typical range of proportions that could be associated with 

difficulties in interval estimation. 

2.1 Sample 

The 2003 NAEP reading assessment data in Grade 8 was taken as a parent sample (i.e., 

the population), and all statistics of interest were computed from this population. These were 

considered the true values. This population contained more than 158,000 students from all 50 

states and the District of Columbia. Each state or district was a primary stratum for public 

schools in addition to several region- and denomination-based primary strata for private schools. 

Within each stratum, large metropolitan statistical areas were sampled with certainty, while 

smaller areas were sampled relative to student enrolment. Students in certainty areas were 

assigned to replicate strata, while in noncertainty areas, schools were assigned. There were 62 
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replicate strata with two variance units per stratum, which were used for the leave-out-group RRJ 

method to estimate sampling variance. 

For each of 500 repetitions, 100 samples were drawn. In each sample, 10 students were 

randomly drawn per variance unit, resulting in 1,240 students per sample. This sample size was 

chosen to minimize the drawbacks of a finite population while analyzing realistic sample sizes. 

Too large a sample would result in overcoverage, because the sample observations and the 

population are dependent. For each sample, 95% and 99% confidence intervals were computed, 

and the true value (i.e., population value) was determined to be inside the interval or not. 

Subsequently, a coverage percentage (out of 100%) for each repetition was obtained, which was 

aggregated over repetitions. The jackknife approach in this study, used to compute standard 

errors and effective sample sizes, is largely the same as that used by NAEP. The replicate 

stratum and variance unit designations were taken directly from the parent sample. 

2.2 Statistics of Interest 

The proportion estimates of interest were chosen specifically with three goals in mind: (a) 

computing both nonextreme and extreme proportions, (b) computing both sample characteristic 

proportions and proportions based on performance levels, and (c) computing proportions with 

both unstable numerators and unstable numerators and denominators. The following proportion 

statistics have been computed: 

1. Proportion of students classified by gender and race/ethnicity was computed. Table 1 

shows the (weighted) proportions in the parent sample. Two genders and six 

race/ethnicity categories (White, Black, Hispanic, Asian/Pacific Islander, American 

Indian/Alaskan Native, Other) combined into 12 proportion estimates. 

2. Proportion between performance levels was computed. NAEP’s literacy scale was 

used to determine four proportions of performance levels set at the standard normal 

distribution quantiles 0.20, 0.60, and 0.95, where the first is the proportion below the 

first quantile and the fourth is the proportion above the last quantile. The true 

proportions were calculated from the parent sample. 

3. Proportion at each performance level for each race/ethnicity category. These 

proportions sum to 1 for each race/ethnicity category. 
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The total number of estimates is 40. All confidence intervals mentioned in the 

introduction have been computed. 

Table 1  

Weighted Percentage of Students in a Cross-Tabulation of Gender and Race/Ethnicity Groups 

in the 2003 Reading Grade 8 NAEP Assessment 

Gender (%) Performance levels (%) 
Race/ethnicity Male Female < I I II > II 

Total 50.1 49.9 19.7 38.5 37.8 4.0 
White 31.6 31.0 12.4 36.8 45.5 5.2 
Black   8.0   8.5 35.1 42.9 21.0 1.1 
Hispanic   7.3   7.2 33.5 41.5 23.4 1.6 
Asian/Pacific Islander   2.2   2.2 16.2 34.8 42.5 6.5 
American Indian/Alaskan 
Native   0.6   0.6 34.6 39.6 24.0 1.7 

Other   0.4   0.3 16.0 41.7 38.5 3.9 

Note. Performance levels were set at the standard normal distribution quantiles 0.20, 0.60, and 

0.95, where the first is the proportion below the first quantile and the fourth is the proportion 

above the last quantile. 

2.3 Clustering 

One of the features of a complex sample is a design effect substantially larger than 1. A 

design effect was computed reflecting the sampling procedure of the simulation study:  

( )
( )

100 2
1

100
1*

1

ˆ

1

ij
j

i

p p
deff

n p p
=
−

−
=

−

∑
 (10) 

where n is the total sample size of 1,240 and  is the proportion for repetition i and replication  

j = 1,2,…,100. Hence, the numerator is the variation across samples, and the denominator is a 

simple random sample variance estimate based on the true proportion. Table 2 shows the design 

effect in the population based on the total sample and using the JRR as numerator, the design 

effect in the study following (10), and the design effect of the samples as percentage of the 

ˆ ijp
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population design effect. From Table 2, it can be concluded that the study was in general 

reasonably successful in obtaining clustered samples, though not to the same extent as in the 

population. For all groups, about half to a third of the population clustering was retained. 

Table 2 

Design Effects for the Population and the Samples and Percentage Clustering Retained in the 

Samples Compared to the Population 

Group Population Samples 
%  

Clustering retained
Male 

White   4.50 2.07 46% 
Black   7.37 3.48 47% 
Hispanic   6.76 1.95 29% 
Asian   9.75 3.14 32% 
American Indian   6.51 2.95 45% 
Other 15.17 5.92 39% 

Female 
White   3.33 1.53 46% 
Black   7.75 3.77 49% 
Hispanic   7.18 2.10 29% 
Asian   9.17 2.77 30% 
American Indian   5.17 2.91 56% 
Other   4.69 2.13 45% 

Performance levels (total sample)    
Below Level I   7.47 3.05 41% 
At Level I   2.46 1.07 43% 
At Level II   5.28 2.33 44% 
Above Level II   4.02 1.82 45% 

3. Results 

Two statistics will be discussed: coverage and average confidence interval width. 

Coverage will be discussed first, followed by width. 
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3.1 Coverage 

Using the 40 statistics of interest discussed in the previous sections, the average, 

minimum, and maximum coverage as well as deviations from the nominal level were computed. 

In Table 3 the coverage results are summarized. The first three results columns display results for 

99% confidence intervals. These results reveal that, besides poor average coverage, the arcsine-

based intervals showed tremendous variation in coverage. Also, the disadvantages of the 

standard confidence interval were characterized; the Breeze interval performed slightly worse 

compared to most other intervals, with intervals that could cover as little as 90%, when 99% was 

intended. 

The last six columns in Table 3 are similar to the first few columns, except that the 

normal, arcsine, and Breeze confidence intervals are removed, limiting the results to a subset of 

proportions: those that had an expected sample size less than 3% of the total sample in the 

numerator. Furthermore, in addition to 99% confidence intervals, 95% confidence intervals are 

displayed. The results for larger sample sizes were highly satisfactory and remarkably similar 

across all methods, including the normal and arcsine. The results showed that several intervals 

did not provide adequate coverage in addition to the arcsine, normal, and Breeze, when 

considering relatively small samples. These were mainly the Jeffrey’s intervals, showing 

relatively large undercoverage. Also, the first three logit intervals—CI(L), CI(L1), and CI(L2)—

applying a complex sample variance estimation technique directly, seemed to result in large 

undercoverage. 

Some intervals provided more satisfactory average coverage and were remarkably close 

to each other: the Wilson intervals and the Taylor series expansion based logit intervals, 

especially under Anscombe’s adjustment. It is interesting to note that the boundary adjustments 

in both sets of confidence intervals had little impact on the coverage. Also, the Agresti-Coull and 

the Clopper-Pearson confidence intervals appeared to provide satisfactory coverage on average, 

although the distribution of coverage in both these cases seemed much wider. For example, the 

maximum coverage for both intervals was at or close to 100%. However, this was also true to 

some extent for the Taylor series expansion based logit and the Wilson confidence intervals. On 

a related note, the maximum coverage of 100% of the logit intervals LT and LT1 were inspected 

to make sure that for some subgroups all replications were not FWI. This was not the case. 



Table 3 

Average, Minimum, and Maximum Coverage Deviation From Nominal Level on a Scale of [0,1] Across 40 and 20 Subgroups for 

99% and 95% Confidence Intervals 

All subgroups  
(n = 40) 

Subgroups with expected sample size < 3% of total sample  
(n = 20) 

99%   99% 95%
Confidence interval Mean         Min Max Mean Min Max Mean Min Max

Normal         -0.069 -0.647 0.000
W  0.001 -0.013  0.009  0.002 -0.013 0.009  0.010 -0.036  0.038 
W1a  0.001 -0.013  0.009  0.002 -0.013 0.009  0.013 -0.036  0.044 
W2b  0.001 -0.013  0.009  0.002 -0.013 0.009  0.013 -0.036  0.044 
B      

          
         
         
         
         

-0.012 -0.078 0.009      
J -0.011 -0.047  0.006 -0.016 -0.047 0.006 -0.042 -0.098  0.028 
J1c -0.010 -0.047  0.007 -0.015 -0.047 0.007 -0.034 -0.079  0.028 
J2d -0.010 -0.047  0.007 -0.015 -0.047 0.007 -0.033 -0.079  0.035 
CP -0.004 -0.038  0.009 -0.005 -0.038 0.009  0.002 -0.048  0.044 
A -0.193 -0.656 -0.001
A1e -0.178 -0.650 -0.001
ATf -0.134 -0.979  0.001
AT1g -0.090 -0.499  0.001
AT2h -0.119 -0.923  0.001
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Table 3 (continued) 

All subgroups  
(n = 40) 

Subgroups with expected sample size < 3% of total sample  
(n = 20) 

99%   99% 95%
Confidence interval 

Mean         Min Max Mean Min Max Mean Min Max

L     -0.004 -0.027   -0.0080.004  -0.027 0.004 -0.027 -0.054 -0.003
L1i -0.003 -0.027  0.006 -0.007 -0.027 0.006 -0.021 -0.053  0.030 
L2j -0.004 -0.027  0.006 -0.008 -0.027 0.006 -0.021 -0.053  0.030 
LTk  0.003 -0.007  0.010  0.005 -0.007 0.010  0.019 -0.031  0.043 
LT1l  0.003 -0.007  0.010  0.006 -0.007 0.010  0.022 -0.031  0.043 
LT2m  0.003 -0.007  0.009  0.005 -0.007 0.009  0.022 -0.031  0.043 
LT3n  0.002 -0.008  0.009  0.004 -0.008 0.009  0.011 -0.035  0.031 
AC  0.002 -0.010  0.010  0.004 -0.010 0.010  0.019 -0.029  0.047 

Note. A = Arcsine; AC = Agresti-Coull; B = Breeze; CP = Clopper-Pearson; J = Jeffrey’s; L = logit; LT = logit based on a Taylor 

series expansion; W = Wilson. 

a Adjusted Wilson based on counts. b Adjusted Wilson based on effective sample size. c Adjusted Jeffrey’s for U(0) and L(n).  
d Adjusted Jeffrey’s for U(0), L(n), L(1) and U(n-1). e Adjusted arcsine for L(0), U(n), U(0), L(n). f Arcsine based on a Taylor series 

expansion. g Arcsine based on a Taylor series expansion and adjusted for L(0), U(n), U(0), L(n). h Arcsine using Anscombe’s 

adjustment (Taylor series expansion). i Adjusted logit adding full-width interval (FWI). j Adjusted logit adding FWI and adjustments 

for U(0) and L(n). k Logit based on a Taylor series expansion. l Logit based on a Taylor series expansion and adding FWI. m Logit 

based on a Taylor series expansion and adding FWI and adjustments for U(0) and L(n). n Logit using Anscombe’s adjustment (Taylor 

series expansion).  



For illustration purposes, the Anscombe adjusted logit and the Wilson were compared 

directly. Figure 1 compares all groups of interest for 99% intervals. This figure reveals that the 

Wilson and logit intervals were relatively close to each other and to nominal levels, except for 

the performance levels of Asian American students and students classified as Other, where the 

Wilson interval was substantially closer to the nominal level. 
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Figure 1. Deviation from nominal coverage of the Wilson and logit (LT3) 99% confidence 

intervals for 40 estimates of interest. 

3.2 Width 

The second statistic used for evaluation was the width of the intervals. To summarize the 

results, for each group of interest the width of each interval method was divided by each other 

interval method. Subsequently, these ratios were averaged across groups and averaged across 

ratios that shared the same method in the numerator. In formula, if there are k = 1,2..,K 

proportions estimated, and there are m = 1,2,…,M methods, then the average width ratio for 

method j is the following: 
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These averages are shown in Table 4 across all groups, across the 20 groups that were 

based on less than 3% of the sample (numerator), and across the 20 groups that were based on 

more than 3%. The basic interpretation was that a smaller interval would have a lower ratio; in 

this case, the Jeffrey’s intervals (columns J, J1, and J2) had the smallest average ratios. This was 

to be expected, because these intervals also had the most liberal coverage, likely resulting in 

intervals that were too short. Between the Wilson and the logit it is clear that the Wilson has on 

average smaller interval bounds. Among the Wilson intervals, the unmodified Wilson (W) had 

the smallest interval; among the logit, the LT3 had the smallest intervals. Also, for large groups 

essentially all interval widths, except possibly the Jeffrey’s, were similar, leading to ratios close 

to 1. The ratio of the Wilson over the logit was 0.91 for all observations and 0.82 for the small 

sample subset. 

4. Summary and Conclusion 

In this study, several approaches to computing confidence intervals for proportion 

estimates in complex samples have been compared. Three related issues, regardless of the 

complexity of the sample, usually surface: (a) the categorical nature of the scale, (b) the bounds 

of the scale (overshoot), and (c) the accuracy of variance estimation at the extremes of the scale 

(degeneration). The result of these phenomena is oscillation of the coverage along the proportion 

scale relative to a priori determined nominal levels, even for relatively large sample sizes and 

moderate proportions. Several methods have been proposed in the literature to obtain a priori 

nominal coverage. Some of these methods entail the application of a continuity correction based 

on some continuous (normal) distribution derived interval, whereas other proposed solutions 

include transformations of the metric of the proportion scale. Wilson (1927) and Clopper and 

Pearson (1934), formulating the problem in a radically different fashion, have provided a 

conceptually appealing approach, resulting in exact as opposed to approximate confidence 

intervals. Whereas each approach addresses in part different issues or the same issues in different 

ways, the resulting coverage and bounded intervals make an interesting comparison. 

It is important to put the notion of a priori nominal coverage into perspective. With a 

small sample size of, say, 5 observations, it is obvious that coverage cannot be nominal. In fact, 

for most choices of sample size, true proportion, and alpha, nominal coverage is not possible and 

the best coverage can be substantially less or more than the a priori nominal coverage. As 

discussed in the introduction, this is the process that generates the oscillation effect and is a  
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Table 4 

Average Width Ratios for 15 Confidence Interval Methods, for all Groups, Those Groups That Represent Less Than 3% of the 

Population, and Those That Represent More Than 3% of the Population 

Interval W W1a W2b J J1c J2d CP L L1e L2f LT LT1g LT2h LT3i AC 

99%                

All                

                

                

%                

                

                

                

1.08 1.09 1.09 0.80 0.80 0.80 0.85 1.53 1.57 1.49 1.44 1.47 1.39 1.29 1.16

< 3% 1.16 1.16 1.16 0.65 0.67 0.67 0.73 2.03 2.11 1.95 1.86 1.92 1.76 1.55 1.29

> 3% 1.01 1.01 1.01 0.94 0.94 0.94 0.97 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02

95

All 1.03 1.03 1.03 0.83 0.84 0.84 0.91 1.39 1.47 1.36 1.25 1.32 1.21 1.24 1.08

< 3% 1.05 1.06 1.06 0.70 0.72 0.72 0.81 1.77 1.93 1.70 1.49 1.63 1.40 1.47 1.16

> 3% 1.01 1.01 1.01 0.96 0.96 0.96 1.00 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01

Note. AC = Agresti-Coull; CP = Clopper-Pearson; J = Jeffrey’s; L = logit; LT = logit based on a Taylor series expansion;  

W = Wilson. 

a Adjusted Wilson based on counts. b Adjusted Wilson based on effective sample size. c Adjusted Jeffrey’s for U(0) and L(n). d 

Adjusted Jeffrey’s for U(0), L(n), L(1) and U(n-1). e Adjusted logit adding full-width interval (FWI). f Adjusted logit adding FWI and 

adjustments for U(0) and L(n). g Logit based on a Taylor series expansion and adding FWI. h Logit based on a Taylor series expansion 

and adding FWI and adjustments for U(0) and L(n). i Logit using Anscombe’s adjustment (Taylor series expansion).  



function of the distance between the true proportion and the closest observable proportions for a 

given sample size. The only confidence intervals that take this into account are the Wilson and 

the Clopper-Pearson intervals. Hence, applying corrections for certain boundary cases (e.g., one 

or two observations in the cell of interest), as Brown et al. (2001) proposed frequently, seems 

misguided, because a priori nominal coverage is not necessarily appropriate as a reference. In 

some sense, it seems surprising that so much effort has been put into developing alternative 

confidence intervals, when the problem seems to have been largely solved in 1927. The findings 

of this study show that these adjustments essentially do more harm than good to the Wilson 

interval. Hence, it is not surprising that the Wilson interval provides the best results in terms of 

coverage and width in this study. 

In formulating a recommendation on the use of confidence intervals for proportion 

estimates in complex samples, no single method can be advised without further consideration of 

specific requirements. Also, the specific properties of the chosen complex sample variance 

estimation technique have to be taken into consideration. There is no doubt that the JRR 

approach has influenced the outcome of this study substantially. Variance estimates based on the 

JRR method tend to become increasingly unreliable if relatively few primary sampling units are 

used (Burke & Rust, 1995), and thus the degrees of freedom of the proportion distribution is 

small. This is especially cumbersome in highly clustered populations, such as American Indians 

in the studied data, who are distributed among a small set of primary sampling units. 

Furthermore, this problem is carried forward in the degrees of freedom estimate, using a 

Satterthwaite estimator (Johnson & Rust, 1992; Satterthwaite, 1941) to determine the t-

distribution quantiles. Subsequently, the question arises: To what extent is the sample 

appropriate for estimating characteristics of certain subgroups? Nevertheless, the results from 

this study in combination with the theoretical background of each of the methods compared 

suggest that the Wilson approach is most appropriate. 

The key issue addressed in this paper is how these approaches can be adapted for use in 

complex samples (e.g., clustered multistage probability samples) and how these methods 

compare. The study was based on the methodology used in several large-scale assessments such 

as the NAEP, the NAAL, the TIMSS, and the Progress in International Reading Literacy Study. 

In most of these studies, students are clustered within schools, and schools are clustered within 

relatively homogenous geographic areas with respect to median income, racial/ethnic 
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distribution, language, and so on. Taking NAEP as the lead example, variance estimation in this 

study was conducted using a JRR approach. 

The results showed that for most moderate proportions (more than 5% or less than 95%) 

and reasonably large sample sizes (about 50 clustered observations or more) all studied 

confidence intervals except the standard and arcsine approaches provide nominal coverage. 

Confidence intervals that also provide nominal coverage for small proportions and small sample 

sizes are the Wilson, Clopper-Pearson, and Agresti-Coull intervals as well as the Taylor series 

based logit interval with Anscombe’s continuity correction. Among these, the Wilson approach 

is generally closest to nominal coverage. Also, the width of the Wilson confidence interval is on 

average the smallest. The Clopper-Pearson interval is relatively conservative due to the equal tail 

restriction, and the Agresti-Coull interval does not solve satisfactorily the problem of overshoot. 

Finally, the logit approach shows substantially wider confidence intervals than the Wilson 

approach. 
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Appendix 

Derivation of Taylor Series Based Intervals 

The logit transformation confidence interval formula in logit metric is the following: 
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where (ˆ 1 )ˆp q= −  is the estimated proportion in the sample of the population with proportion 

value π  and  is the 97.5 or 99.5 percentile of the standard normal distribution or an appropriate 

Student t distribution. The formula in (8) is based on a first order Taylor series approximation. If 
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Therefore, the standard error is 
( )ˆ

ˆ ˆ
Var p

pq
. 

The arcsine transformation confidence interval in arcsine metric is the following: 
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