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Abstract

The general diagnostic model (GDM) utilizes located latent classes for modeling a multidimensional

proficiency variable. In this paper, the GDM is extended by employing a log-linear model

for multiple populations that assumes constraints on parameters across multiple groups. This

constrained model is compared to log-linear models that assume separate sets of parameters

to fit the distribution of latent variables in each group of a multiple-group model. Estimation

of these constrained log-linear models using iterative weighted least squares (IWLS) methods is

outlined and an application to NAEP data exemplifies the differences between constrained and

unconstrained models in the presence of larger numbers of group-specific proficiency distributions.

The use of log-linear models for the latent skill space distributions using constraints across

populations allows for efficient computations in models that include many proficiency distributions.

Key words: General diagnostic model, multiple-group models, log-linear models, IWLS
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1. Introduction

Located latent class (LLC) models (McCutcheon, 1987) relate a set of observed discrete

multivariate variables to a set of discrete latent variables. LLC models are alternatives to item

response theory (IRT) models (Lord & Novick, 1968) in analyzing item responses. Though it is

convenient and parsimonious to assume latent ability be a continuous random variable with a

limited number of parameters as in IRT models, some research (Follmann, 1988; Haberman, 2005)

has demonstrated that only a finite number of points along the hypothetical scale of the latent

ability can be identified. LLC models assume discrete latent random variables. In LLC models,

latent abilities are conceptualized as an ordered or unordered set of a finite number of fixed classes

(Haberman, 1979; Heinen, 1996; Lazarsfeld & Henry, 1968). Latent classes are defined by the

values of this random variable if there is only one dimension in the latent space. If the latent

ability space is multidimensional, the latent classes are defined by the combinations of the values

of this latent ability vector (Goodman, 1974; Haberman, 1979).

In the LLC modeling framework, the probability of obtaining score x for item j, conditional

on a latent class c, is denoted by p(Yj = x|c). Here Yj is the response variable for item j. Often

the constraint
∑C

k=1 P (ck) = 1 is imposed to make the parameters identifiable, where C is the

total number of latent classes. A latent class c is usually a realization of a discrete latent vector.

So the conditioning probability can also be written as p(Yj = x|c) = p(Yj = x|θ1, θ2, . . . , θM ),

where M is the dimension of the latent vector, and θ1, . . . , θM are M latent random variables. The

latent class space can be expanded geometrically as the dimensionality of the vector and levels

for each component in the vector increase. If a latent vector contains M discrete variables with

K real values for each, there will be KM − 1 latent classes in total. With the increases in K and

M , the total number of latent classes increases so quickly that they cannot even be identified in

most data sets. For instance, when K = 4 and M = 5, there will be 1,024 latent classes, or 1,023

independent parameters in the unconstrained case, which results in problems with identifiability in

most data sets. To address this issue, Xu and von Davier (2008) applied a log-linear model for the

latent class space (Nerlove & Press, 1973) to capture basic features of the latent class distribution

without loosing model fit. Specifically, they modeled the latent class distribution p(θ1, θ2, . . . , θM )
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as:

log[p(θ1, θ2, . . . , θM )] = α+
M∑

m=1

β1(m)θm +
M∑

m=1

β2(m)θ
2
m +

M∑
m=1

β3(m)θ
3
m +

M−1∑
mi=1

M∑
mj=mi

β4(mimj)θmiθmj ,

(1)

where m is the index for the latent random variable, M is the total number of dimensions for

this latent random vector, and α is a normalizing constant. Note that the fourth component is

included only when there are at least four levels for a latent random variable.

By implementing this log-linear model, Xu and von Davier (2008) successfully reduced the

parameters in the latent class space, hence increasing estimation efficiency. However, (1) does

not allow for differences between subgroups. To evaluate the differences between groups, Xu and

von Davier (2006) used a multiple-group assumption to analyze data. Under this assumption,

all subgroups are calibrated concurrently with the item parameters constrained to be the same

across these subgroups. In the meantime, the latent class distributions of different subgroups are

estimated separately. For a test with four latent variables, four levels in each of these variables,

and four prespecified subgroups, there will be 4(groups) × 18 = 72 distributional parameters in

the latent class space if (1) is used for each subgroup. Since α is a normalizing constant, it is

completely determined by the other parameters in (1). Compared to (1), this multiple-group

assumption indeed puts a subgroup indicator in every term of the model:

log[pg(θ1, θ2, . . . , θM )] = αg+
M∑

m=1

β1g(m)θm+
M∑

m=1

β2g(m)θ
2
m+

M∑
m=1

β3g(m)θ
3
m+

M−1∑
mi=1

M∑
mj=mi

β4g(mimj)θmiθmj ,

(2)

where g is an indicator for subgroup membership, and g = 1, . . . , G. Immediately this raises a

question: Has the difference between subgroups been overparameterized?

To address this, another model with fewer parameters is proposed:

log[pg(θ1, θ2, . . . , θM )] = αg+
M∑

m=1

β1g(m)θm+
M∑

m=1

β2(m)θ
2
m+

M∑
m=1

β3(m)θ
3
m+

M−1∑
mi=1

M∑
mj=mi

β4(mimj)θmiθmj .

(3)

Group differences are present only in the first moment of the latent variables, while higher-order

moments and linear-by-linear interactions are assumed to be the same across groups. For a test

with four latent variables, four levels in each variable, and four prespecified subgroups, there will

be 14 + 4 ∗ 4(groups) = 30 distributional parameters in the latent class space if (3) is used. This
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model reduces the required parameters to model the latent class space to a large extent, which

enables one to carry out subgroup analysis even when the number of subgroups is large.

The primary goal of this paper is to conduct model comparisons with varying numbers of

groups (here G = 1, 2, 4, 8) using the constrained model in (3) versus unconstrained multiple-group

models, such as (2). A general diagnostic model (GDM) is used to connect the observed item

responses to the latent classes, and (2) and (3) are used to capture the characteristics of the latent

classes distributions. The remainder of this paper is organized as follows. Section 2 provides

a brief introduction to the GDM, while section 3 details the estimation of (3) using iterative

weighted least squares (IWLS) methods. Section 4 describes our real analysis plan and the data

itself. Section 5 presents the results, and section 6 provides a discussion and summary.

2. An Extension of General Diagnostic Model

A compensatory GDM suitable for dichotomous and polytomous ordinal items (von Davier,

2005) is given by:

log P (Yj = x|θ1, θ2, . . . , θM ) = aj(bjx, γjm) + bjx +
M∑
m

xγjmθmqjm, (4)

where Yj is the response variable for item j, aj(·) is a normalizing term, and bjx is a location

parameter for score x on item j. Furthermore, m is an indicator for the m-th latent variable, and

M is the total number of dimensions of the latent vector. Also, γjm is the index for the slope

parameter for item j associated with mth latent variable, and qjm is the entry in a Q-matrix for

item j and latent variable m. The Q-matrix specifies the correspondence between items and the

latent variables. Specifically, qjm = 1 if item j requires the m-th latent skill, otherwise qjm = 0.

Finally, K real values are assigned to each discrete latent variable θm to represent performance

levels along each variable.

Using the model in (1), Xu and von Davier (2008) extended GDM model by structuring the

latent class distribution. The observed log-likelihood of response vector Y1, Y2, . . . , YJ is

logp(Y1, Y2, . . . , YJ) = log
∑

θ1,θ2,...,θM

J∏
j=1

p(Yj |θ1, θ2, . . . , θM )p(θ1, θ2, . . . , θM ), (5)

where p(Yj |θ1, θ2, . . . , θM ) comes from (4).

The observed log-likelihood of response vector Y1, Y2, . . . , YJ combined with the constrained

3



latent space model in (3) is

logpg(Y1, Y2, . . . , YJ) = log
∑

θ1,θ2,...,θM

J∏
j=1

p(Yj |θ1, θ2, . . . , θM )pg(θ1, θ2, . . . , θM ), (6)

where p(Yj |θ1, θ2, . . . , θM ) uses the form of (4), and pg(θ1, θ2, . . . , θM ) utilizes the form of (3).

There is a difficulty in solving this log-likelihood since a summation is included in the logarithm.

Instead, a complete log-likelihood is derived that treats both item responses and latent variables

as observable, and an expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin,

1977) is usually used to solve this type of optimization problem. The likelihood of the complete

data may be written as

logpg(Y1, Y2, . . . , YJ , θ1, θ2, . . . , θM ) =
J∑

j=1

logp(Yj |θ1, θ2, . . . , θM ) + logpg(θ1, θ2, . . . , θM ). (7)

Note that the first component in the right side contains only the parameters related to the GDM

model, and the parameters of latent space structure are included only in the second component if

the value of these latent skill variables is known. So in this complete log-likelihood, the values of

pg(θ1, θ2, . . . , θM ) need to be imputted, and then the maximum likelihood estimates (MLE) of the

parameters can be obtained. Impute pg(θ1, θ2, . . . , θM ) by employing the posterior distribution

of pg(θ1, θ2, . . . , θM |Y1, Y2, . . . , YJ). The parameters related to GDM, such as (4), in the first

component of (7) can be estimated by methods in von Davier (2005). The estimates of parameters

related to (3) in the second component of (7) are outlined in next section.

3. Computational Formula for the Parameters in (3)

The model in (3) is also referred to as the product multinomial log-linear model (Lang, 1996)

in the statistical literature. This paper uses iterative weighted least squares methods (IWLS) to

derive the estimates and their estimation errors. In our experience, this method has proven stable

and quick, and it is one common choice to estimate this type of model.

3.1 Estimation of the Constrained Multiple-Group Model

To enable estimation using IWLS methods, the design matrix for (3) has to be specified.

The design matrix that enters the IWLS algorithm puts group dependent parameters in different

columns and group independent parameters in the same column. This yields
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Z =
(
A B D

)
, (8)

where

A =



0C 0C . . . 0C θ1 0C . . . 0C . . . θM 0C . . . 0C

1C 0C . . . 0C 0C θ1 . . . 0C . . . 0C θM . . . 0C

0C 1C . . . 0C 0C 0C . . . 0C . . . 0C 0C . . . 0C

...
...

. . .
...

...
...

. . .
... . . .

...
...

. . .
...

0C 0C . . . 1C 0C 0C . . . θ1 . . . 0C 0C . . . θM


,

where C = KM is the total number of latent classes, and M is the total number of latent variables.

Each entry in this matrix represents a vector. For example, 0C = {0, 0, . . . , 0}T with a total of C

elements.

B =



θ1
2 θ2

2 . . . θM
2 θ1

3 θ2
3 . . . θM

3

θ1
2 θ2

2 . . . θM
2 θ1

3 θ2
3 . . . θM

3

θ1
2 θ2

2 . . . θM
2 θ1

3 θ2
3 . . . θM

3

...
...

...
...

...
...

...
...

θ1
2 θ2

2 . . . θM
2 θ1

3 θ2
3 . . . θM

3


,

and

D =



θ1θ2 θ1θ3 . . .θM−1θM

θ1θ2 θ1θ3 . . .θM−1θM

θ1θ2 θ1θ3 . . .θM−1θM

...
...

...
...

θ1θ2 θ1θ3 . . .θM−1θM


,

where θm = (θm,1, θm,2, . . . , θm,C)T .

3.2 Parameter Vector and Response Vector for (3)

The parameter vector β to be estimated by IWLS for (3) consists of the following

concatenation of components:

β = (αg, β1g(m), β2(m), β3(m), β4(mimj))
T ,

for g = 1, . . . , G, and the latent variable indices m = 1, . . . ,M , mi = 1, . . . ,M − 1 as well as

mj = 2, . . . ,M .
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The response vector is

Y = (log[pg=1(θ1, . . . , θM )]T , . . . , log[pg=G(θ1, . . . , θM )]T )T ,

which are imputed by the posterior distribution.

3.3 Parameter Estimates for (3)

With design-matrix Z and parameter vector β set up for (3), the estimation equation can be

written in matrix form:

Y = Zβ.

The steps to be cycled through in the IWLS method include:

1. µ(0) = n = (n
′
1, . . . ,n

′
g, . . . ,n

′
G)T , where ng = (ng,1, . . . , ng,C)T is a vector of elements in

the latent classes for subgroup g. Here ng,C stands for the number of students in group g

who belong to attribute pattern c (composed by θ1, . . . , θM ). Once the probability of each

attribute pattern is known, this number can be easily calculated.

2. µ(t) = Zβ(t)

3. X(t) = log(µ(t)) + (n − µ(t))/µ(t)

4. v(t) = diag(µ(t))

5. β̂ = (ZT v(t)Z)−1ZT v(t)X(t)

Iteration t will continue until a prespecified convergence criterion is met. Then the covariance of

the estimates β̂ is given by:

cov(β̂) = (ZT vZ)−1.

4. Analysis Plan and Data

The models in (2) and (3) with G = 1, 2, 4, 8 will be used to analyze two reading data sets

from the National Assessment of Educational Progress (NAEP). When G = 1, this model is called

a single-group model. In this model, no subgroup differences are accounted for. When G = 2,

the two groups are identified by the gender variable. For the case of G = 4, the race or ethnicity
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variable is used as the indicator of the subgroups. Specifically, they are White, Black, Hispanic,

and Asian-American groups. When G = 8, a complete factorial design of race and gender is

defined and used as the indicator variable for the subgroups. These four models are compared

using the following: model fit, item parameter estimates, as well the marginal distribution of each

latent random variable.

The two data sets are from the Grade 4 reading assessment in 2003 and the Grade 8 reading

assessment in 2005, respectively. Each data set contains a representative sample of the student

population in the target grade. The Grade 4 data contains the responses of 191,300 students to

102 items, while the Grade 8 data consists of the responses of 159,500 students to 142 items. The

item sets for both grades include both multiple-choice items and constructed-response items. A

partially balanced incomplete block (pBIB; Allen, Donoghue, & Schoeps, 1998) was utilized in

these two assessments. This means that each student took only approximately one sixth of the

entire test, and different students may have taken different subsets of the assessment.

The Grade 4 assessment was designed to measure two content areas, reading for literary

experience and reading to get information. The Grade 8 assessment was designed to measure

three content areas, reading for literary experience, to gain information, and to perform a task.

A Q-matrix is an integral part of the GDM. In these two assessments, specifically, the content

domains defined in the NAEP reading framework serve as the skill dimensions in the Q-matrix,

and the correspondence between the content area and items serves as the Q-matrix. Since one

item measures only one skill in the Q-matrix, this Q-matrix is also referred to as a simple-structure

Q-matrix. Though the NAEP assessments were not originally developed for the purpose of skills

diagnosis, the application of the GDM enables a multidimensional analysis.

5. Results

Tables 1 and 2 give an overview of the results in terms of indices of model-data fit. The

Akaike information criterion (AIC; Akaike, 1974) is one of the indices used to assess model fit.

A model is said to be better when it results in a smaller fit indices and a larger log-likelihood.

Compared to the single-group analysis (when G = 1), all multiple-group models improve the

log-likelihood as well as the AIC index. Among the models examined in this study, the subgroup

analysis being defined by the complete factorial of race and gender has the smallest AIC and the

largest log-likelihood. Conditional on eight-group analysis, the unrestricted group analysis using
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(2) gives a better fit and a larger likelihood than the restricted model in (3). The second best fit

is provided by the subgroup analysis using four racial groups.

Table 1.
Model Fit for 2003 Grade 4 Reading Data

(3) # of parameters Log-likelihood AIC
G=1 Single group 230 -2,123,709.38 4,247,879
G=2 Gender 244 -2,122,960.92 4,246,410
G=4 Race 250 -2,112,678.39 4,225,857
G=8 Race * Gender 262 -2,111,761.79 4,224,048

(2) # of parameters Log-likelihood AIC
G=2 Gender 247 -2,122,875.37 4,246,245
G=4 Race 261 -2,112,606.41 4,225,735
G=8 Race * Gender 289 -2,111,585.27 4,223,749

Note. AIC = Akaike information criterion.

Table 2.
Model Fit for 2005 Grade 8 Reading Data

(3) # of parameters Log-likelihood AIC
G=1 Single group 344 -1,866,356.62 3,733,401
G=2 Gender 348 -1,865,083.91 3,730,864
G=4 Race 356 -1,858,987.40 3,718,687
G=8 Race * Gender 372 -1,857,542.85 3,715,830

(2) # of parameters Log-likelihood AIC
G=2 Gender 353 -1,865,062.97 3,730,832
G=4 Race 375 -1,858,767.67 3,718,285
G=8 Race * Gender 419 -1,857,135.02 3,715,108

Note. AIC = Akaike information criterion.

Next, the item parameter estimates obtained from these models are compared. There are

233 item parameters in the Grade 4 data, and 331 item parameters for the Grade 8 data. Due

to limitations of space, this paper lists only the 10 items with the largest differences between

the models. A list of these items and their parameter estimates are given in Tables 3 and 4. An

inspection of the results shows that these item parameters estimates are similar across different

models. The largest difference is equal to 0.1, which should be evaluated in comparison to the

range of parameters within models, which is about (-4,4).

The marginal distributions of the latent classes from the eight-group analysis are shown in
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Table 3.
Ten Items With the Largest Difference

in Parameter Estimates for 2003 Grade 4 Data

Estimates
Item ID G = 1 G = 2 G = 3 G = 4

190 1.3924 1.3954 1.3732 1.3720
26 1.6230 1.6362 1.6120 1.6249

105 1.1713 1.1719 1.1953 1.1955
192 1.0023 1.0048 0.9805 0.9802
63 -3.7367 -3.7529 -3.7273 -3.7277

100 2.8840 2.8912 2.8650 2.8673
45 -4.8598 -4.8697 -4.8846 -4.8916

107 2.0844 2.0768 2.1119 2.1042
99 1.9779 1.9876 1.9481 1.9570

188 1.6616 1.6641 1.6222 1.6236

Table 4.
Ten Items With the Largest Difference

in Parameter Estimates for 2005 Grade 8 Data

Estimates
Item ID G = 1 G = 2 G = 3 G = 4

202 1.1173 1.1601 1.1286 1.1542
189 -3.5310 -3.5530 -3.5100 -3.5310
195 0.8017 0.8194 0.8411 0.8450
270 1.1000 1.1075 1.1434 1.1417
260 -1.0940 -1.0794 -1.0500 -1.0473
197 -1.0830 -1.0937 -1.1260 -1.1301
276 1.0508 1.0529 1.0989 1.0898
20 -3.6116 -3.5983 -3.6303 -3.5810

205 -3.8372 -3.9006 -3.8489 -3.8922
315 1.6713 1.6706 1.7414 1.7234

Tables 5 to 6. Among the 48 probabilities in the 2003 data for Grade 4 , the largest difference

between the unrestricted and restricted models is 0.018 (i.e., 1.18 %), and 5 of the probabilities are

larger than 0.01. The differences for the rest are less than 0.01. For Grade 8 in 2005, the largest

discrepancy between these two models is less than 0.03 (i.e., 3%), and the differences in most

probabilities are less than 0.01 (i.e., 1%). In short, the results show that the marginal distribution

resulting from these two models are similar.
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Table 5.
The Marginal Distribution From Eight-Group Analysis for 2003 Grade 4 Data

G = 8 of (3) G = 8 of (2)
Groups Skills Levels Levels

-1.73205 -0.57735 0.57735 1.73205 -1.73205 -0.57735 0.57735 1.73205
White Skill 0 0.041 0.176 0.440 0.345 0.042 0.174 0.441 0.344

Skill 1 0.047 0.239 0.377 0.337 0.049 0.239 0.378 0.334
Black Skill 0 0.178 0.364 0.362 0.098 0.179 0.368 0.357 0.096

Skill 1 0.218 0.439 0.260 0.085 0.207 0.454 0.258 0.082
Hispanic Skill 0 0.161 0.340 0.384 0.116 0.165 0.334 0.388 0.113

Skill 1 0.204 0.417 0.280 0.099 0.211 0.408 0.290 0.092
Asian- Skill 0 0.052 0.197 0.425 0.327 0.056 0.197 0.407 0.341

American Skill 1 0.063 0.263 0.360 0.315 0.067 0.268 0.345 0.321
Male Skill 0 0.102 0.262 0.415 0.221 0.103 0.261 0.424 0.213

Skill 1 0.115 0.314 0.340 0.232 0.116 0.313 0.344 0.228
Female Skill 0 0.066 0.209 0.418 0.306 0.069 0.208 0.410 0.313

Skill 1 0.091 0.293 0.340 0.275 0.091 0.296 0.340 0.273

Table 6.
The Marginal Distribution From Eight-Group Analysis for 2005 Grade 8 Data

G = 8 of (3) G = 8 of (2)
Groups Skills Levels Levels

-1.73205 -0.57735 0.57735 1.73205 -1.73205 -0.57735 0.57735 1.73205
White Skill 0 0.055 0.202 0.376 0.367 0.063 0.195 0.378 0.363

Skill 1 0.015 0.115 0.390 0.481 0.017 0.117 0.389 0.477
Skill 2 0.006 0.088 0.393 0.514 0.008 0.090 0.387 0.514

Black Skill 0 0.210 0.378 0.301 0.111 0.197 0.386 0.317 0.101
Skill 1 0.055 0.296 0.460 0.189 0.056 0.301 0.479 0.163
Skill 2 0.029 0.269 0.501 0.201 0.031 0.267 0.518 0.184

Hispanic Skill 0 0.178 0.344 0.332 0.145 0.177 0.335 0.352 0.133
Skill 1 0.054 0.276 0.455 0.214 0.052 0.280 0.480 0.185
Skill 2 0.035 0.267 0.488 0.209 0.039 0.275 0.471 0.213

Asian- Skill 0 0.059 0.200 0.360 0.379 0.065 0.209 0.342 0.383
American Skill 1 0.018 0.121 0.371 0.488 0.023 0.125 0.347 0.504

Skill 2 0.007 0.094 0.378 0.518 0.012 0.106 0.352 0.529
Male Skill 0 0.126 0.280 0.352 0.240 0.137 0.263 0.368 0.231

Skill 1 0.036 0.198 0.427 0.338 0.039 0.197 0.435 0.327
Skill 2 0.020 0.179 0.451 0.348 0.024 0.182 0.447 0.345

Female Skill 0 0.074 0.227 0.359 0.340 0.069 0.235 0.357 0.337
Skill 1 0.020 0.142 0.395 0.443 0.019 0.150 0.398 0.432
Skill 2 0.008 0.113 0.399 0.479 0.010 0.117 0.393 0.479

6. Discussion

In this study, the unrestricted multiple-group model in (2) and restricted multiple-group

model in (3) with different group skill distribution constraints were compared in terms of model
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fit, item parameter estimates, as well as the marginal distributions for these groups. Four different

group definitions were used in this analysis. These are a single-group analysis, a two-group

analysis defined by gender, a four-group analysis defined by race, and an eight-group analysis

defined by a factorial design of gender and race.

For overall model fit indices such as the log-likelihood and AIC, the eight-group analysis is

the best compared to other group analyses. For the eight-group model, the unrestricted model in

(2) has better fit than the restricted model in (3). The results are within expectation since (2)

relaxes the homogeneity constraints on group effects of higher moments in the log-linear model of

the class distribution. This may imply that the parameter reduction in (3) has overconstrained

the group effects. However, the results in this paper do not mean that (3) is inadmissible. This

model might outperform (2) when there are large numbers of subgroups to take into account. For

example, in the current NAEP analysis procedure, hundreds of background variables are included

in the latent regression model (Mislevy, 1991). If one wants to mimic the procedure in the GDM

framework, the parameter set of (2) will be much larger than that of (3) so that the parameters

might not be identified. Hence, (3) is a substitute for (2) when the latter is not permissible in

analysis.

Although the model fit of the restricted and unrestricted models differ substantially, a

comparison of the marginal distributions of the latent classes under different models show that the

differences are small in this regard. For the two data sets analyzed in this paper, the maximum

differences are 1.8% and 2.7%, respectively. A comparison of item parameter estimates across

these models provides information on the potential of introducing undesirable effects on the item

parameters by using a constrained model for the proficiency variables. Effects that are evident can

be interpreted as differential item functioning (DIF), that is, distortions of item parameters due to

constrained shapes of conditional proficiency distributions. In particular, if significant differences

are found in these estimates between using a single-group assumption and using a multiple-group

assumption, one may argue that DIF could be introduced via use of a constrained multiple-group

model. However, the analysis in this paper has shown that there is little effect as evidenced in

Tables 3 and 4, and we are confident that no DIF is introduced by using these models to fit the

data.

Finally, the selected variables race and gender are just two out of several hundred of available

background variables in NAEP. Since most variables might not have a major effect on the

11



conditional proficiency distributions, it is neither practical nor useful to include every background

variable in the latent space model. In addition, while (3) is instrumental in reducing the number of

parameters in the latent space without sacrificing accuracy, the number of model parameters will

increase too much if many more variables are used in the definition of subgroups. The challenge

lies in how to choose group predictors and where to limit the addition of variables to the latent

space model.
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